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Preface

The increasing number of applications, requiring a knowledge of the theory of sig-
nals and systems, and the rapid developments in digital systems technology and fast
numerical algorithms call for a change in the content and approach used in teaching
the subject. I believe that a modern signals and systems course should emphasize the
practical and computational aspects in presenting the basic theory. This approach to
teaching the subject makes the student more effective in subsequent courses. In addi-
tion, students are exposed to practical and computational solutions that will be of use
in their professional careers. This book is my attempt to adapt the theory of signals
and systems to the use of computers as an efficient analysis tool.

A good knowledge of the fundamentals of the analysis of signals and systems is
required to specialize in such areas as signal processing, communication, and control.
As most of the practical signals are continuous functions of time, and since digital
systems are mostly used to process them, the study of both continuous and discrete
signals and systems is required. The primary objective of writing this book is to present
the fundamentals of time-domain and frequency-domain methods of signal and linear
time-invariant system analysis from a practical viewpoint. As discrete signals and
systems are more often used in practice and their concepts are relatively easier to
understand, for each topic, the discrete version is presented first, followed by the
corresponding continuous version. Typical applications of the methods of analysis
are also provided. Comprehensive coverage of the transform methods, and emphasis
on practical methods of analysis and physical interpretation of the concepts are the
key features of this book. The well-documented software, which is a supplement
to this book and available on the website (www.wiley.com/go/sundararajan), greatly
reduces much of the difficulty in understanding the concepts. Based on this software,
a laboratory course can be tailored to suit individual course requirements.

This book is intended to be a textbook for a junior undergraduate level one-
semester signals and systems course. This book will also be useful for self-study.
Answers to selected exercises, marked ∗, are given at the end of the book. A Solutions
manual and slides for instructors are also available on the website (www.wiley.com/
go/sundararajan). I assume responsibility for any errors in this book and in the
accompanying supplements, and would very much appreciate receiving readers’ sug-
gestions and pointing out any errors (email address: d sundararajan@yahoo.com).
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Abbreviations

dc: Constant
DFT: Discrete Fourier transform

DTFT: Discrete-time Fourier transform
FT: Fourier transform
FS: Fourier series

IDFT: Inverse discrete Fourier transform
Im: Imaginary part of a complex number or expression

LTI: Linear time-invariant
Re: Real part of a complex number or expression

ROC: Region of convergence





1
Introduction

In typical applications of science and engineering, we have to process signals, using
systems. While the applications vary from communication to control, the basic analysis
and design tools are the same. In a signals and systems course, we study these tools:
convolution, Fourier analysis, z-transform, and Laplace transform. The use of these
tools in the analysis of linear time-invariant (LTI) systems with deterministic signals is
presented in this book. While most practical systems are nonlinear to some extent, they
can be analyzed, with acceptable accuracy, assuming linearity. In addition, the analysis
is much easier with this assumption. A good grounding in LTI system analysis is also
essential for further study of nonlinear systems and systems with random signals.

For most practical systems, input and output signals are continuous and these signals
can be processed using continuous systems. However, due to advances in digital sys-
tems technology and numerical algorithms, it is advantageous to process continuous
signals using digital systems (systems using digital devices) by converting the input
signal into a digital signal. Therefore, the study of both continuous and digital systems
is required. As most practical systems are digital and the concepts are relatively easier
to understand, we describe discrete signals and systems first, immediately followed
by the corresponding description of continuous signals and systems.

1.1 The Organization of this Book

Four topics are covered in this book. The time-domain analysis of signals and systems
is presented in Chapters 2–5. The four versions of the Fourier analysis are described in
Chapters 6–9. Generalized Fourier analysis, the z-transform and the Laplace transform,
are presented in Chapters 10 and 11. State space analysis is introduced in Chapters 12
and 13.

The amplitude profile of practical signals is usually arbitrary. It is necessary to
represent these signals in terms of well-defined basic signals in order to carry out

A Practical Approach to Signals and Systems D. Sundararajan
© 2008 John Wiley & Sons (Asia) Pte Ltd



2 A Practical Approach to Signals and Systems

efficient signal and system analysis. The impulse and sinusoidal signals are funda-
mental in signal and system analysis. In Chapter 2, we present discrete signal clas-
sifications, basic signals, and signal operations. In Chapter 3, we present continuous
signal classifications, basic signals, and signal operations.

The study of systems involves modeling, analysis, and design. In Chapter 4, we
start with the modeling of a system with the difference equation. The classification
of systems is presented next. Then, the convolution–summation model is introduced.
The zero-input, zero-state, transient, and steady-state responses of a system are derived
from this model. System stability is considered in terms of impulse response. The basic
components of discrete systems are identified. In Chapter 5, we start with the classifi-
cation of systems. The modeling of a system with the differential equation is presented
next. Then, the convolution-integral model is introduced. The zero-input, zero-state,
transient, and steady-state responses of a system are derived from this model. Sys-
tem stability is considered in terms of impulse response. The basic components of
continuous systems are identified.

Basically, the analysis of signals and systems is carried out using impulse or sinu-
soidal signals. The impulse signal is used in time-domain analysis, which is presented
in Chapters 4 and 5. Sinusoids (more generally complex exponentials) are used as the
basic signals in frequency-domain analysis. As frequency-domain analysis is gener-
ally more efficient, it is most often used. Signals occur usually in the time-domain. In
order to use frequency-domain analysis, signals and systems must be represented in
the frequency-domain. Transforms are used to obtain the frequency-domain represen-
tation of a signal or a system from its time-domain representation. All the essential
transforms required in signal and system analysis use the same family of basis signals,
a set of complex exponential signals. However, each transform is more advantageous
to analyze certain types of signal and to carry out certain types of system operations,
since the basis signals consists of a finite or infinite set of complex exponential signals
with different characteristics—continuous or discrete, and the exponent being com-
plex or pure imaginary. The transforms that use the complex exponential with a pure
imaginary exponent come under the heading of Fourier analysis. The other transforms
use exponentials with complex exponents as their basis signals.

There are four versions of Fourier analysis, each primarily applicable to a different
type of signals such as continuous or discrete, and periodic or aperiodic. The discrete
Fourier transform (DFT) is the only one in which both the time- and frequency-domain
representations are in finite and discrete form. Therefore, it can approximate other
versions of Fourier analysis through efficient numerical procedures. In addition, the
physical interpretation of the DFT is much easier. The basis signals of this transform is
a finite set of harmonically related discrete exponentials with pure imaginary exponent.
In Chapter 6, the DFT, its properties, and some of its applications are presented.

Fourier analysis of a continuous periodic signal, which is a generalization of the
DFT, is called the Fourier series (FS). The FS uses an infinite set of harmonically
related continuous exponentials with pure imaginary exponent as the basis signals.
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This transform is useful in frequency-domain analysis and design of periodic signals
and systems with continuous periodic signals. In Chapter 7, the FS, its properties, and
some of its applications are presented.

Fourier analysis of a discrete aperiodic signal, which is also a generalization of the
DFT, is called the discrete-time Fourier transform (DTFT). The DTFT uses a contin-
uum of discrete exponentials, with pure imaginary exponent, over a finite frequency
range as the basis signals. This transform is useful in frequency-domain analysis and
design of discrete signals and systems. In Chapter 8, the DTFT, its properties, and
some of its applications are presented.

Fourier analysis of a continuous aperiodic signal, which can be considered as a
generalization of the FS or the DTFT, is called the Fourier transform (FT). The FT
uses a continuum of continuous exponentials, with pure imaginary exponent, over an
infinite frequency range as the basis signals. This transform is useful in frequency-
domain analysis and design of continuous signals and systems. In addition, as the
most general version of Fourier analysis, it can represent all types of signals and is
very useful to analyze a system with different types of signals, such as continuous or
discrete, and periodic or aperiodic. In Chapter 9, the FT, its properties, and some of
its applications are presented.

Generalization of Fourier analysis for discrete signals results in the z-transform.
This transform uses a continuum of discrete exponentials, with complex exponent,
over a finite frequency range of oscillation as the basis signals. With a much larger set
of basis signals, this transform is required for the design, and transient and stability
analysis of discrete systems. In Chapter 10, the z-transform is derived from the DTFT
and, its properties and some of its applications are presented. Procedures for obtaining
the forward and inverse z-transforms are described.

Generalization of Fourier analysis for continuous signals results in the Laplace
transform. This transform uses a continuum of continuous exponentials, with complex
exponent, over an infinite frequency range of oscillation as the basis signals. With a
much larger set of basis signals, this transform is required for the design, and transient
and stability analysis of continuous systems. In Chapter 11, the Laplace transform is
derived from the FT and, its properties and some of its applications are presented.
Procedures for obtaining the forward and inverse Laplace transforms are described.

In Chapter 12, state-space analysis of discrete systems is presented. This type of
analysis is more general in that it includes the internal description of a system in
contrast to the input–output description of other types of analysis. In addition, this
method is easier to extend to system analysis with multiple inputs and outputs, and
nonlinear and time-varying system analysis. In Chapter 13, state-space analysis of
continuous systems is presented.

In Appendix A, transform pairs and properties are listed. In Appendix B, useful
mathematical formulas are given.

The basic problem in the study of systems is how to analyze systems with arbitrary
input signals. The solution, in the case of linear time-invariant (LTI) systems, is to
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decompose the signal in terms of basic signals, such as the impulse or the sinusoid.
Then, with knowledge of the response of a system to these basic signals, the response
of the system to any arbitrary signal that we shall ever encounter in practice, can be
obtained. Therefore, the study of the response of systems to the basic signals, along
with the methods of decomposition of arbitrary signals in terms of the basic signals,
constitute the study of the analysis of systems with arbitrary input signals.



2
Discrete Signals

A signal represents some information. Systems carry out tasks or produce output sig-
nals in response to input signals. A control system may set the speed of a motor in
accordance with an input signal. In a room-temperature control system, the power to
the heating system is regulated with respect to the room temperature. While signals
may be electrical, mechanical, or of any other form, they are usually converted to elec-
trical form for processing convenience. A speech signal is converted from a pressure
signal to an electrical signal in a microphone. Signals, in almost all practical systems,
have arbitrary amplitude profile. These signals must be represented in terms of sim-
ple and well-defined mathematical signals for ease of representation and processing.
The response of a system is also represented in terms of these simple signals. In Sec-
tion 2.1, signals are classified according to some properties. Commonly used basic
discrete signals are described in Section 2.2. Discrete signal operations are presented
in Section 2.3.

2.1 Classification of Signals

Signals are classified into different types and, the representation and processing of a
signal depends on its type.

2.1.1 Continuous, Discrete and Digital Signals

A continuous signal is specified at every value of its independent variable. For exam-
ple, the temperature of a room is a continuous signal. One cycle of the continuous
complex exponential signal, x(t) = ej( 2π

16 t+ π
3 ), is shown in Figure 2.1(a). We denote a

continuous signal, using the independent variable t, as x(t). We call this representa-
tion the time-domain representation, although the independent variable is not time for
some signals. Using Euler’s identity, the signal can be expressed, in terms of cosine and

A Practical Approach to Signals and Systems D. Sundararajan
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Figure 2.1 (a) The continuous complex exponential signal, x(t) = ej( 2π
16 t+ π

3 ); (b) the discrete complex
exponential signal, x(n) = ej( 2π

16 n+ π
3 )

sine signals, as

x(t) = ej( 2π
16 t+ π

3 ) = cos
(

2π

16
t + π

3

)
+ j sin

(
2π

16
t + π

3

)

The real part ofx(t) is the real sinusoid cos( 2π
16 t + π

3 ) and the imaginary part is the real
sinusoid sin( 2π

16 t + π
3 ), as any complex signal is an ordered pair of real signals. While

practical signals are real-valued with arbitrary amplitude profile, the mathematically
well-defined complex exponential is predominantly used in signal and system analysis.

A discrete signal is specified only at discrete values of its independent variable.
For example, a signal x(t) is represented only at t = nTs as x(nTs), where Ts is the
sampling interval and n is an integer. The discrete signal is usually denoted as x(n),
suppressing Ts in the argument of x(nTs). The important advantage of discrete sig-
nals is that they can be stored and processed efficiently using digital devices and
fast numerical algorithms. As most practical signals are continuous signals, the dis-
crete signal is often obtained by sampling the continuous signal. However, signals
such as yearly population of a country and monthly sales of a company are inher-
ently discrete signals. Whether a discrete signal arises inherently or by sampling, it
is represented as a sequence of numbers {x(n), −∞ < n < ∞}, where the indepen-
dent variable n is an integer. Although x(n) represents a single sample, it is also used
to denote the sequence instead of {x(n)}. One cycle of the discrete complex expo-
nential signal, x(n) = ej( 2π

16 n+ π
3 ), is shown in Figure 2.1(b). This signal is obtained

by sampling the signal (replacing t by nTs) in Figure 2.1(a) with Ts = 1 s. In this
book, we assume that the sampling interval, Ts, is a constant. In sampling a signal,
the sampling interval, which depends on the frequency content of the signal, is an
important parameter. The sampling interval is required again to convert the discrete
signal back to its corresponding continuous form. However, when the signal is in
discrete form, most of the processing is independent of the sampling interval. For
example, summing of a set of samples of a signal is independent of the sampling
interval.

When the sample values of a discrete signal are quantized, it becomes a digital
signal. That is, both the dependent and independent variables of a digital signal are in
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discrete form. This form is actually used to process signals using digital devices, such
as a digital computer.

2.1.2 Periodic and Aperiodic Signals

The smallest positive integer N > 0 satisfying the condition x(n + N) = x(n), for all
n, is the period of the periodic signal x(n). Over the interval −∞ < n < ∞, a periodic
signal repeats its values in any interval equal to its period, at intervals of its period.
Cosine and sine waves, and the complex exponential, shown in Figure 2.1, are typical
examples of a periodic signal. A signal with constant value (dc) is periodic with any
period. In Fourier analysis, it is considered as A cos(ωn) or Aejωn with the frequency
ω equal to zero (period equal to ∞).

When the period of a periodic signal approaches infinity, there is no repetition of a
pattern and it degenerates into an aperiodic signal. Typical aperiodic signals are shown
in Figure 2.3.

It is easier to decompose an arbitrary signal in terms of some periodic signals, such
as complex exponentials, and the input–output relationship of LTI systems becomes
a multiplication operation for this type of input signal. For these reasons, most of the
analysis of practical signals, which are mostly aperiodic having arbitrary amplitude
profile, is carried out using periodic basic signals.

2.1.3 Energy and Power Signals

The power or energy of a signal are also as important as its amplitude in its character-
ization. This measure involves the amplitude and the duration of the signal. Devices,
such as amplifiers, transmitters, and motors, are specified by their output power. In
signal processing systems, the desired signal is usually mixed up with a certain amount
of noise. The quality of these systems is indicated by the signal-to-noise power ratio.
Note that noise signals, which are typically of random type, are usually characterized
by their average power. In the most common signal approximation method, Fourier
analysis, the goodness of the approximation improves as more and more frequency
components are used to represent a signal. The quality of the approximation is mea-
sured in terms of the square error, which is an indicator of the difference between the
energy or power of a signal and that of its approximate version.

The instantaneous power dissipated in a resistor of 1� is x2(t), where x(t) may be
the voltage across it or the current through it. By integrating the power over the interval
in which the power is applied, we get the energy dissipated. Similarly, the sum of the
squared magnitude of the values of a discrete signal x(n) is an indicator of its energy
and is given as

E =
∞∑

n=−∞
|x(n)|2
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The use of the magnitude |x(n)| makes the expression applicable to complex signals
as well. Due to the squaring operation, the energy of a signal 2x(n), with double the
amplitude, is four times that of x(n). Aperiodic signals with finite energy are called
energy signals. The energy of x(n) = 4(0.5)n, n ≥ 0 is

E =
∞∑

n=0

|4(0.5)n|2 = 16

1 − 0.25
= 64

3

If the energy of a signal is infinite, then it may be possible to characterize it in terms
of its average power. The average power is defined as

P = lim
N→∞

1

2N + 1

N∑
n=−N

|x(n)|2

For a periodic signal with period N, the average power can be determined as

P = 1

N

N−1∑
n=0

|x(n)|2

Signals, periodic or aperiodic, with finite average power are called power signals.
Cosine and sine waveforms are typical examples of power signals. The average power
of the cosine wave 2 cos( 2π

4 n) is

P = 1

4

3∑
n=0

|x(n)|2 = 1

4
(22 + 02 + (−2)2 + 02) = 2

A signal is an energy signal or a power signal, since the average power of
an energy signal is zero while that of a power signal is finite. Signals with
infinite average power and infinite energy, such as x(n) = n, 0 ≤ n < ∞, are nei-
ther power signals nor energy signals. The measures of signal power and energy
are indicators of the signal size, since the actual energy or power depends on the
load.

2.1.4 Even- and Odd-symmetric Signals

The storage and processing requirements of a signal can be reduced by exploit-
ing its symmetry. A signal x(n) is even-symmetric, if x(−n) = x(n) for all n.
The signal is symmetrical about the vertical axis at the origin. The cosine wave-
form, shown in Figure 2.2(b), is an example of an even-symmetric signal. A sig-
nal x(n) is odd-symmetric, if x(−n) = −x(n) for all n. The signal is asymmetrical
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Figure 2.2 (a) The sinusoid x(n) = cos( 2π

8 n + π

3 ) and its time-reversed version x(−n); (b) its even

component xe(n) = 1
2 cos( 2π

8 n); (c) its odd component xo(n) = −
√

3
2 sin( 2π

8 n)

about the vertical axis at the origin. For an odd-symmetric signal, x(0) = 0.
The sine waveform, shown in Figure 2.2(c), is an example of an odd-symmetric
signal.

The sum (x(n) + y(n)) of two odd-symmetric signals, x(n) and y(n), is an
odd-symmetric signal, since x(−n) + y(−n) = −x(n) − y(n) = −(x(n) + y(n)).
For example, the sum of two sine signals is an odd-symmetric signal. The sum
(x(n) + y(n)) of two even-symmetric signals, x(n) and y(n), is an even-symmetric
signal, since x(−n) + y(−n) = (x(n) + y(n)). For example, the sum of two cosine
signals is an even-symmetric signal. The sum (x(n) + y(n)) of an odd-symmetric
signal x(n) and an even-symmetric signal y(n) is neither even-symmetric nor odd-
symmetric, since x(−n) + y(−n) = −x(n) + y(n) = −(x(n) − y(n)). For example,
the sum of cosine and sine signals with nonzero amplitudes is neither even-symmetric
nor odd-symmetric.

Since x(n)y(n) = (−x(−n))(−y(−n)) = x(−n)y(−n), the product of two odd-
symmetric or two even-symmetric signals is an even-symmetric signal. The product
z(n) = x(n)y(n) of an odd-symmetric signal y(n) and an even-symmetric signal x(n)
is an odd-symmetric signal, since z(−n) = x(−n)y(−n) = x(n)(−y(n)) = −z(n).

An arbitrary signal x(n) can always be decomposed in terms of its even-
symmetric and odd-symmetric components, xe(n) and xo(n), respectively. That is,
x(n) = xe(n) + xo(n). Replacing n by −n, we get x(−n) = xe(−n) + xo(−n) =
xe(n) − xo(n). Solving for xe(n) and xo(n), we get

xe(n) = x(n) + x(−n)

2
and xo(n) = x(n) − x(−n)

2

As the sum of an odd-symmetric signal xo(n), over symmetric limits, is zero,

N∑
n=−N

xo(n) = 0
N∑

n=−N

x(n) =
N∑

n=−N

xe(n) = xe(0) + 2
N∑

n=1

xe(n)
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For example, the even-symmetric component of x(n) = cos( 2π
8 n + π

3 ) is

xe(n) = x(n) + x(−n)

2
=

cos
(

2π
8 n + π

3

)
+ cos

(
2π
8 (−n) + π

3

)
2

=
2 cos

(
2π
8 n

)
cos

(
π
3

)
2

=
cos

(
2π
8 n

)
2

The odd-symmetric component is

xo(n) = x(n) − x(−n)

2
=

cos
(

2π
8 n + π

3

)
− cos

(
2π
8 (−n) + π

3

)
2

=
−2 sin

(
2π
8 n

)
sin

(
π
3

)
2

= −
√

3

2
sin

(
2π

8
n

)

The sinusoid x(n) and its time-reversed version x(−n), its even component, and
its odd component are shown, respectively, in Figures 2.2(a–c). As the even and odd
components of a sinusoid are, respectively, cosine and sine functions of the same
frequency as that of the sinusoid, these results can also be obtained by expanding the
expression characterizing the sinusoid.

If a continuous signal is sampled with an adequate sampling rate, the samples
uniquely correspond to that signal. Assuming that the sampling rate is adequate, in
Figure 2.2 (and in other figures in this book), we have shown the corresponding
continuous waveform only for clarity. It should be remembered that a discrete signal
is represented only by its sample values.

2.1.5 Causal and Noncausal Signals

Most signals, in practice, occur at some finite time instant, usually chosen as
n = 0, and are considered identically zero before this instant. These signals, with
x(n) = 0 for n < 0, are called causal signals. Signals, with x(n) �= 0 for n < 0, are
called noncausal signals. Sine and cosine signals, shown in Figures 2.1 and 2.2, are
noncausal signals. Typical causal signals are shown in Figure 2.3.

2.1.6 Deterministic and Random Signals

Signals such as x(n) = sin( 2π
8 n), whose values are known for any value of n, are called

deterministic signals. Signals such as those generated by thermal noise in conductors
or speech signals, whose future values are not exactly known, are called random
signals. Despite the fact that rainfall record is available for several years in the past,
the amount of future rainfall at a place cannot be exactly predicted. This type of signal
is characterized by a probability model or a statistical model. The study of random
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Figure 2.3 (a) The unit-impulse signal, δ(n); (b) the unit-step signal, u(n); (c) the unit-ramp signal, r(n)

signals is important in practice, since all practical signals are random to some extent.
However, the analysis of systems is much simpler, mathematically, with deterministic
signals. The input–output relationship of a system remains the same whether the input
signal is random or deterministic. The time-domain and frequency-domain methods
of system analysis are common to both types of signals. The key difference is to find
a suitable mathematical model for random signals. In this book, we confine ourselves
to the study of deterministic signals.

2.2 Basic Signals

As we have already mentioned, most practical signals have arbitrary amplitude
profile. These signals are, for processing convenience, decomposed in terms of
mathematically well-defined and simple signals. These simple signals, such as
the sinusoid with infinite duration, are not practical signals. However, they can be
approximated to a desired accuracy.

2.2.1 Unit-impulse Signal

The unit-impulse signal, shown in Figure 2.3(a), is defined as

δ(n) =
{

1 for n = 0

0 for n �= 0

The unit-impulse signal is an all-zero sequence except that it has a value of one when
its argument is equal to zero. A time-shifted unit-impulse signal δ(n − m), with argu-
ment (n − m), has its only nonzero value at n = m. Therefore,

∑∞
n=−∞ x(n)δ(n − m)

= x(m) is called the sampling or sifting property of the impulse. For example,

∞∑
n=−∞

2nδ(n) = 1
0∑

n=−2

2nδ(n − 1) = 0
0∑

n=−2

2nδ(−n − 1) = 0.5

0∑
n=−2

2nδ(n + 1) = 0.5
∞∑

n=−∞
2nδ(n + 2) = 0.25

∞∑
n=−∞

2nδ(n − 3) = 8
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In the second summation, the argument n − 1 of the impulse never becomes zero
within the limits of the summation.

The decomposition of an arbitrary signal in terms of scaled and shifted impulses
is a major application of this signal. Consider the product of a signal with a shifted
impulse x(n)δ(n − m) = x(m)δ(n − m). Summing both sides with respect to m, we
get

∞∑
m=−∞

x(n)δ(n − m) = x(n)
∞∑

m=−∞
δ(n − m) = x(n) =

∞∑
m=−∞

x(m)δ(n − m)

The general term x(m)δ(n − m) of the last sum, which is one of the constituent
impulses of x(n), is a shifted impulse δ(n − m) located at n = m with value x(m). The
summation operation sums all these impulses to form x(n). Therefore, the signal x(n)
is represented by the sum of scaled and shifted impulses with the value of the impulse
at any n being x(n). The unit-impulse is the basis function and x(n) is its coefficient. As
the value of the sum is nonzero only at n = m, the sum is effective only at that point.
By varying the value of n, we can sift out all the values of x(n). For example, consider
the signal x(−2) = 2, x(0) = 3, x(2) = −4, x(3) = 1, and x(n) = 0 otherwise. This
signal can be expressed, in terms of impulses, as

x(n) = 2δ(n + 2) + 3δ(n) − 4δ(n − 2) + δ(n − 3)

With n = 2, for instance,

x(2) = 2δ(4) + 3δ(2) − 4δ(0) + δ(−1) = −4

2.2.2 Unit-step Signal

The unit-step signal, shown in Figure 2.3(b), is defined as

u(n) =
{

1 for n ≥ 0

0 for n < 0

The unit-step signal is an all-one sequence for positive values of its argument and
is an all-zero sequence for negative values of its argument. The causal form of a
signal x(n), x(n) is zero for n < 0, is obtained by multiplying it by the unit-step signal
as x(n)u(n). For example, sin( 2π

6 n) has nonzero values in the range −∞ < n < ∞,
whereas the values of sin( 2π

6 n)u(n) are zero for n < 0 and sin( 2π
6 n) for n ≥ 0. A

shifted unit-step signal, for example u(n − 1), is u(n) shifted by one sample interval
to the right (the first nonzero value occurs at n = 1). Using scaled and shifted unit-step
signals, any signal, described differently over different intervals, can be specified, for
easier mathematical analysis, by a single expression, valid for all n. For example, a
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pulse signal with its only nonzero values defined as x(−1) = 2, x(0) = 2, x(1) = −3,
and x(2) = −3 can be expressed as x(n) = 2u(n + 1) − 5u(n − 1) + 3u(n − 3).

2.2.3 Unit-ramp Signal

Another signal that is often used in the analysis of systems is the unit-ramp signal,
shown in Figure 2.3(c). It is defined as

r(n) =
{

n for n ≥ 0

0 for n < 0

The unit-ramp signal increases linearly for positive values of its argument and is an
all-zero sequence for negative values of its argument.

The three signals, the unit-impulse, the unit-step, and the unit-ramp, are closely
related. The unit-impulse signal δ(n) is equal to u(n) − u(n − 1). The unit-step signal
u(n) is equal to

∑n
l=−∞ δ(l). The shifted unit-step signal u(n − 1) is equal to r(n) −

r(n − 1). The unit-ramp signal r(n) is equal to
∑n

l=−∞ u(l − 1).

2.2.4 Sinusoids and Exponentials

The sinusoidal waveform or sinusoid is the well-known trigonometric sine and cosine
functions, with arbitrary shift along the horizontal axis. The sinusoidal waveforms
are oscillatory, with peaks occurring at equal distance from the horizontal axis. The
waveforms have two zero-crossings in each cycle. As the sinusoidal waveforms of a
particular frequency and amplitude have the same shape with the peaks occurring at
different instants, we have to define a reference position to distinguish the innumerable
number of different sinusoids. Let the occurrence of the positive peak at the origin
be the reference position. Then, as the cosine wave has its positive peak at that point,
it becomes the reference waveform and is characterized by a phase of zero radians.
The other sinusoidal waveforms can be obtained by shifting the cosine waveform to
the right or left. A shift to the right is considered as negative and a shift to the left
is positive. The phase of the sine wave is −π/2 radians, as we get the sine wave by
shifting a cosine wave to the right by π/2 radians. The other sinusoidal waveforms have
arbitrary phases. The sine and cosine waves are important special cases of sinusoidal
waveforms.

2.2.4.1 The Polar Form of Sinusoids

The polar form specifies a sinusoid, in terms of its amplitude and phase, as

x(n) = A cos(ωn + θ) n = −∞, . . . ,−1, 0, 1, . . . ,∞
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where A, ω, and θ are, respectively, the amplitude, the angular frequency, and the phase.
The amplitude A is the distance of either peak of the waveform from the horizontal
axis (A = 1 for the waves shown in Figure 2.1). A discrete sinusoid has to complete
an integral number of cycles (say k, where k > 0 is an integer) over an integral number
of sample points, called its period (denoted by N, where N > 0 is an integer), if it is
periodic. Then, as

cos(ω(n + N) + θ) = cos(ωn + ωN + θ) = cos(ωn + θ) = cos(ωn + θ + 2kπ)

N = 2kπ/ω. Note that k is the smallest integer that will make 2kπ/ω an integer. The
cyclic frequency, denoted by f , of a sinusoid is the number of cycles per sample and
is equal to the number of cycles the sinusoid makes in a period divided by the period,
f = k/N = ω/2π cycles per sample. Therefore, the cyclic frequency of a discrete
periodic sinusoid is a rational number. The angular frequency (the number of radians
per sample) of a sinusoid is 2π times its cyclic frequency, that is ω = 2πf radians per
sample.

The angular frequency of the sinusoids, shown in Figure 2.1(b), is ω = π/8 radians
per sample. The period of the discrete sinusoids is N = 2kπ/ω = 16 samples, with
k = 1. The cyclic frequency of the sinusoid sin((2

√
2π/16)n + π/3) is

√
2/16. As

it is an irrational number, the sinusoid is not periodic. The cyclic frequency of the
sinusoids in Figure 2.1(b) is f = k/N = 1/16 cycles per sample. The phase of the
sinusoid cos((2π/16)n + π/3) in Figure 2.1(b) is θ = π/3 radians. As it repeats a
pattern over its period, the sinusoid remains the same by a shift of an integral number
of its period. A phase-shifted sine wave can be expressed in terms of a phase-shifted
cosine wave as A sin(ωn + θ) = A cos(ωn + (θ − π

2 )). The phase of the sinusoid

sin
(

2π

16
n + π

3

)
= cos

(
2π

16
n +

(
π

3
− π

2

))
= cos

(
2π

16
n − π

6

)

in Figure 2.1(b) is −π/6 radians. A phase-shifted cosine wave can be expressed in
terms of a phase-shifted sine wave as A cos(ωn + θ) = A sin(ωn + (θ + π/2)).

2.2.4.2 The Rectangular Form of Sinusoids

An arbitrary sinusoid is neither even- nor odd-symmetric. The even and odd compo-
nents of a sinusoid are, respectively, cosine and sine waveforms. That is, a sinusoid is
a linear combination of cosine and sine waveforms of the same frequency as that of
the sinusoid. Expression of a sinusoid in terms of its cosine and sine components is
called its rectangular form and is given as

A cos(ωn + θ) = A cos(θ) cos(ωn) − A sin(θ) sin(ωn) = C cos(ωn) + D sin(ωn)
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where C = A cos θ and D = −A sin θ. The inverse relation is A = √
C2 + D2 and

θ = cos−1(C/A) = sin−1(−D/A). For example,

2 cos
(

2π

16
n + π

3

)
= cos

(
2π

16
n

)
−

√
3 sin

(
2π

16
n

)

3√
2

cos
(

2π

16
n

)
+ 3√

2
sin

(
2π

16
n

)
= 3 cos

(
2π

16
n − π

4

)

2.2.4.3 The Sum of Sinusoids of the Same Frequency

The sum of sinusoids of arbitrary amplitudes and phases, but with the same frequency,
is also a sinusoid of the same frequency. Let

x1(n) = A1 cos(ωn + θ1) and x2(n) = A2 cos(ωn + θ2)

Then,

x(n) = x1(n) + x2(n) = A1 cos(ωn + θ1) + A2 cos(ωn + θ2)

= cos(ωn)(A1 cos(θ1) + A2 cos(θ2)) − sin(ωn)(A1 sin(θ1) + A2 sin(θ2))

= A cos(ωn + θ) = cos(ωn)(A cos(θ)) − sin(ωn)(A sin(θ))

Solving for A and θ, we get

A =
√

A2
1 + A2

2 + 2A1A2 cos(θ1 − θ2)

θ = tan−1 A1 sin(θ1) + A2 sin(θ2)

A1 cos(θ1) + A2 cos(θ2)

Any number of sinusoids can be combined into a single sinusoid by repeatedly
using the formulas. Note that the formula for the rectangular form of the sinusoid is a
special case of the sum of two sinusoids, one sinusoid being the cosine and the other
being the sine.

Example 2.1. Determine the sum of the two sinusoids x1(n) = 2 cos( 2π
8 n + π

3 ) and
x2(n) = −3 cos( 2π

8 n − π
6 ).
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Solution
As

x2(n) = −3 cos
(

2π

8
n − π

6

)
= 3 cos

(
2π

8
n − π

6
+ π

)
= 3 cos

(
2π

8
n + 5π

6

)

A1 = 2 A2 = 3 θ1 = π

3
and θ2 = 5π

6

Substituting the numerical values in the equations, we get

A =
√

22 + 32 + 2(2)(3) cos
(

π

3
− 5π

6

)
=

√
13 = 3.6056

θ = tan−1 2 sin(π
3 ) + 3 sin( 5π

6 )

2 cos(π
3 ) + 3 cos( 5π

6 )
= 2.03 radians

The waveforms of the two sinusoids and their sum, x(n) = 3.6056 cos( 2π
8 n + 2.03),

are shown, respectively, in Figures 2.4(a), (b), and (c). �

2.2.4.4 Exponentials

A constant a raised to the power of a variable n, x(n) = an is the exponential function.
We are more familiar with the exponential of the form e−2t with base e and this form
is used in the analysis of continuous signals and systems. The exponential esn is the
same as an, where s = loge a and a = es. For example, e−0.2231n = (0.8)n is a decaying
discrete exponential. As both the forms are used in the analysis of discrete signals and
systems, it is necessary to get used to both of them.

With base e, the most general form of the continuous exponential is Pest , where P

or s or both may be complex-valued. Let s = σ + jω. Then, est = e(σ+jω)t = eσtejωt .
Exponential ejωt = cos(ωt) + j sin(ωt) is a constant-amplitude oscillating signal with
the frequency of oscillation in the range 0 ≤ ω ≤ ∞. When the real part of s is positive
(σ > 0), est is a growing exponential. When σ < 0, est is a decaying exponential. When
σ = 0, est oscillates with constant amplitude. When s = 0, est is a constant signal.
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1.9319

n

x 1(n
)

(a)

0 2 4 6
−2.5981
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Figure 2.4 (a) The sinusoid x1(n) = 2 cos( 2π

8 n + π

3 ); (b) the sinusoid x2(n) = 3 cos( 2π

8 n + 5π

6 ); (c) the
sum of x1(n) and x2(n), x(n) = 3.6056 cos( 2π

8 n + 2.03)
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With base a, the most general form of the discrete exponential is Pan, where
P or a or both may be complex-valued. Let a = r ejω. Then, an = rnejωn. Expo-
nential ejωn = cos(ωn) + j sin(ωn) is a constant-amplitude oscillating signal with
the frequency of oscillation in the range 0 ≤ ω ≤ π, since e±jωn = ej(2π±ω)n =
ej(4π±ω)n = · · ·. When |a| = r > 1, an is a growing exponential. When |a| = r <

1, an is a decaying exponential. When |a| = r = 1, an is a constant-amplitude
signal.

2.2.4.5 The Complex Sinusoids

In practice, the real sinusoid A cos(ωn + θ) is most often used and is easy to visualize.
At a specific frequency, a sinusoid is characterized by two real-valued quantities, the
amplitude and the phase. These two values can be combined into a complex constant
that is associated with a complex sinusoid. Then, we get a single waveform with a
single coefficient, although both of them are complex. Because of its compact form and
ease of manipulation, the complex sinusoid is used in almost all theoretical analysis.
The complex sinusoid is given as

x(n) = Aej(ωn+θ) = Aejθejωn n = −∞, . . . ,−1, 0, 1, . . . ,∞

The term ejωn is the complex sinusoid with unit magnitude and zero phase. Its
complex (amplitude) coefficient is Aejθ. The amplitude and phase of the sinusoid are
represented by the single complex numberAejθ. The complex sinusoid is a functionally
equivalent mathematical representation of a real sinusoid. By adding its complex
conjugate, Ae−j(ωn+θ), and dividing by two, due to Euler’s identity, we get

x(n) = A

2

(
ej(ωn+θ) + e−j(ωn+θ)

)
= A cos(ωn + θ)

The use of two complex sinusoids to represent a single real sinusoid requires four
real quantities instead of two. This redundancy in terms of storage and operations can
be avoided. Figure 2.1(b) shows the complex sinusoid ej( 2π

16 n) with complex coefficient
1ej π

3 .

2.2.4.6 Exponentially Varying Amplitude Sinusoids

An exponentially varying amplitude sinusoid, Arn cos(ωn + θ), is obtained by mul-
tiplying a sinusoidal sequence, A cos(ωn + θ), by a real exponential sequence, rn.
The more familiar constant amplitude sinusoid results when the base of the real ex-
ponential r is equal to one. If ω is equal to zero, then we get real exponential se-
quences. Sinusoid, x(n) = (0.9)n cos( 2π

8 n), with exponentially decreasing amplitude
is shown in Figure 2.5(a). The amplitude of the sinusoid cos( 2π

8 n) is constrained by the
exponential (0.9)n. When the value of the cosine function is equal to one, the waveform
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Figure 2.5 (a) Exponentially decreasing amplitude sinusoid, x(n) = (0.9)n cos( 2π

8 n); (b) exponentially
increasing amplitude sinusoid, x(n) = (1.1)n cos( 2π

8 n)

reduces to (0.9)n. Therefore, the graph of the function (0.9)n is the envelope of the
positive peaks of the waveform, as shown in Figure 2.5(a). Similarly, the graph of
the function −(0.9)n is the envelope of the negative peaks of the waveform. Sinu-
soid, x(n) = (1.1)n cos( 2π

8 n), with exponentially increasing amplitude is shown in
Figure 2.5(b).

The complex exponential representation of an exponentially varying amplitude
sinusoid is given as

x(n) = A

2
rn

(
ej(ωn+θ) + e−j(ωn+θ)

)
= Arn cos(ωn + θ)

2.2.4.7 The Sampling Theorem and the Aliasing Effect

As we have already mentioned, most practical signals are continuous signals. However,
digital signal processing is so advantageous that we prefer to convert the continuous
signals into digital form and then process it. This process involves sampling the signal
in time and in amplitude. The sampling in time involves observing the signal only at
discrete instants of time. By sampling a signal, we are reducing the number of samples
from infinite (of the continuous signal over any finite duration) to finite (of the
corresponding discrete signal over the same duration). This reduction in the number
of samples restricts the ability to represent rapid time variations of a signal and,
consequently, reduces the effective frequency range of discrete signals. Note that high-
frequency components of a signal provide its rapid variations. As practical signals have
negligible spectral values beyond some finite frequency range, the representation of a
continuous signal by a finite set of samples is possible, satisfying a required accuracy.
Therefore, we should be able to determine the sampling interval required for a specific
signal.

The sampling theorem states that a continuous signal x(t) can be uniquely de-
termined from its sampled version x(n) if the sampling interval Ts is less than
1/2fm, where fm is the cyclic frequency of the highest-frequency component of
x(t). The implies that there are more than two samples per cycle of the highest-
frequency component. That is, a sinusoid, which completes f cycles, has a distinct
set of 2f + 1 sample values. A cosine wave, however, can be represented with 2f
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samples. For example, the cyclic frequency of the sinusoid x(t) = cos(3(2π)t − π
3 )

is f = 3(2π)
2π

= 3 Hz and, therefore, Ts < 1
2(3) = 1

6 s and the minimum sampling fre-

quency is fs = 1
Ts

= 2f + 1 = 6 + 1 = 7 samples per second. In practice, due to
nonideal response of physical devices, the sampling frequency used is typically more
than twice the theoretical minimum.

Given a sampling interval Ts the cyclic frequency fm of the highest-frequency
component of x(t), for the unambiguous representation of its sampled version, must
be less than 1/2Ts. The corresponding angular frequency ωm is equal to 2πfm < π/Ts

radians per second. Therefore, the frequency range of the frequency components of
the signal x(t), for the unambiguous representation of its sampled version, must be
0 ≤ ω < π/Ts.

To find out why the frequency range is limited, due to sampling of a signal, consider
the sinusoid x(t) = cos(ω0t + θ) with 0 ≤ ω0 < π/Ts. The sampled version of x(t) is
x(n) = cos(ω0nTs + θ). Now, consider the sinusoid y(t) = cos((ω0 + 2πm/Ts)t + θ),
where m is any positive integer. The sampled version of y(t) is identical with that of
x(t), as

y(n) = cos
((

ω0 + 2πm

Ts

)
nTs + θ

)

= cos(ω0nTs + 2πnm + θ)

= cos(ω0nTs + θ) = x(n)

Therefore, the effective frequency range is limited to 2π/Ts.
Now, consider the sinusoid

z(t) = cos
((

2πm

Ts
− ω0

)
t − θ

)

where m is any positive integer. The sampled version of z(t) is identical with that of
x(t), as

z(n) = cos
((

2πm

Ts
− ω0

)
nTs − θ

)

= cos(2πnm − ω0nTs − θ)

= cos(ω0nTs + θ) = x(n)

We conclude that it is impossible to differentiate between the sampled versions
of two continuous sinusoids with the sum or difference of their angular frequencies
equal to an integral multiple of 2π/Ts. Therefore, the effective frequency range is
further limited to π/Ts, as given by the sampling theorem. The frequency π/Ts is
called the folding frequency, since higher frequencies are folded back and forth into
the frequency range from zero to π/Ts.



20 A Practical Approach to Signals and Systems
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Figure 2.6 The continuous sinusoids x(t) = cos(2πt + π

3 ) and x(t) = cos(5(2π)t + π

3 ), and their sam-
pled versions, with the sampling interval Ts = 1

4 seconds, x(n) = cos( 2π

4 n + π

3 ) and x(n) = cos(5 2π

4 n

+ π

3 ) = cos( 2π

4 n + π

3 )

Consider the continuous sinusoids x(t) = cos(2πt + π
3 ) and x(t) = cos(5(2π)t

+ π
3 ), and their sampled versions, obtained from the corresponding continuous

sinusoids by replacing t by nTs = n 1
4 with the sampling interval Ts = 1

4 s, x(n) =
cos( 2π

4 n + π
3 ) and x(n) = cos(5 2π

4 n + π
3 ), shown in Figure 2.6. We can easily distin-

guish one continuous sinusoid from the other, as they are clearly different. However, the
set of sample values, shown by dots, of the two discrete sinusoids are the same and it is
impossible to differentiate them. The sample values of both the sinusoids are the same,
since

cos
(

5
2π

4
n + π

3

)
= cos

(
(4 + 1)

2π

4
n + π

3

)
= cos

(
2π

4
n + π

3

)

With the sampling interval Ts = 1
4 s, the effective frequency range is limited to

π/Ts = 4π. Therefore, the continuous sinusoid cos(5(2π)t + π
3 ), with its angular fre-

quency 10π greater than the folding frequency 4π, appears as or impersonates a
lower-frequency discrete sinusoid. The impersonation of high-frequency continuous
sinusoids by low-frequency discrete sinusoids, due to an insufficient number of sam-
ples in a cycle (the sampling interval is not short enough), is called the aliasing effect.

As only scaling of the frequency axis is required for any other sampling interval,
most of the analysis of discrete signals is carried out assuming that the sampling
interval is 1 s. The effective frequency range becomes 0–π and it is referred to as half
the fundamental range. Low frequencies are those near zero and high frequencies
are those near π. The range, 0 to 2π or −π to π, is called the fundamental range of
frequencies.

2.3 Signal Operations

In addition to the arithmetic operations, time shifting, time reversal, and time scal-
ing operations are also commonly used in the analysis of discrete signals. The three
operations described in this section are with respect to the independent variable, n.
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Figure 2.7 The exponential signal x(n) = (0.7)nu(n), the right-shifted signal, x(n − 1) =
(0.7)(n−1)u(n − 1), and the left-shifted signal, x(n + 2) = (0.7)(n+2)u(n + 2)

2.3.1 Time Shifting

By replacing n by n + N, where N is an integer, we get the shifted version, x(n + N),
of the signal x(n). The value of x(n) at n = n0 occurs at n = n0 − N in x(n + N).
The exponential signal x(n) = (0.7)nu(n) is shown in Figure 2.7 by dots. The signal
x(n − 1), shown in Figure 2.7 by crosses, is the signal x(n) shifted by one sample
interval to the right (delayed by one sample interval, as the sample values of x(n)
occur one sample interval later). For example, the first nonzero sample value occurs at
n = 1 as (0.7)1−1u(1 − 1) = (0.7)0u(0) = 1. That is, the value of the function x(n) at
n0 occurs in the shifted signal one sample interval later at n0 + 1. The signal x(n + 2),
shown in Figure 2.7 by unfilled circles, is the signal x(n) shifted by two sample
intervals to the left (advanced by two sample intervals, as the sample values of x(n)
occur two sample intervals earlier). For example, the first nonzero sample value occurs
at n = −2 as (0.7)−2+2u(−2 + 2) = (0.7)0u(0) = 1. That is, the value of the function
x(n) at n0 occurs in the shifted signal two sample intervals earlier at n0 − 2.

2.3.2 Time Reversal

Forming the mirror image of a signal about the vertical axis at the origin is the time
reversal or folding operation. This is achieved by replacing the independent variable
n in x(n) by −n and we get x(−n). The value of x(n) at n = n0 occurs at n = −n0

in x(−n). The exponential signal x(n) = (0.7)nu(n) is shown in Figure 2.8 by dots.
The folded signal x(−n) is shown in Figure 2.8 by crosses. Consider the folded and
shifted signal x(−n + 2) = x(−(n − 2)), shown in Figure 2.8 by unfilled circles. This
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x(n) x(−n+2)

Figure 2.8 The exponential signal x(n) = (0.7)nu(n), the folded signal, x(−n) = (0.7)−nu(−n), and
the shifted and folded signal, x(−n + 2) = (0.7)(−n+2)u(−n + 2)
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signal can be formed by first folding x(n) to get x(−n) and then shifting it to the right
by two sample intervals (n is replaced by n − 2). This signal can also be formed by
first shifting x(n) to the left by two sample intervals to get x(n + 2) and then folding
it about the vertical axis (n is replaced by −n). That is, the value of the function x(n)
at n0 occurs in the reversed and shifted signal at −(n0 − 2).

2.3.3 Time Scaling

Replacing the independent variable n in x(n) by an or n/a results in the time-scaled
signal x(an) (time-compressed version of x(n)) or x(n/a) (time expanded version of
x(n)), with a �= 0 being an integer. The value of x(n) at n = n0 occurs at n = n0/a

(n0 being an integral multiple of a) in x(an) and at n = an0 in x(n/a). Consider the
signal x(n) = (0.8)nu(n), shown in Figure 2.9 by dots. The time-compressed ver-
sion with a = 2, y(n) = x(2n), is shown in Figure 2.9 by crosses. The values of
the signal y(n) = x(2n) are the even-indexed values of x(n). That is, y(0) = x(0),
y(1) = x(2), y(2) = x(4), and so on. The odd-indexed values of x(n) are lost in the
time compression operation. In general, x(an) is composed only of every ath sample
of x(n).

The time-expanded version with a = 2, y(n) = x(n/2), is shown in Figure 2.9 by
unfilled circles. The values of the time-expanded signal are defined from that of
x(n) only for the even-indexed values of y(n). That is, y(0) = x(0), y(2) = x(1),
y(4) = x(2), and so on. Odd-indexed values of y(n) are assigned the value zero. In
general, y(n) = x(n/a) is defined only for n = 0, ±a, ±2a, ±3a, . . . , and the rest
of the values of y(n) are undefined. Interpolation by assigning the value zero is often
used in practice. Of course, the undefined values can also be defined using a suitable
interpolation formula.

In general, the three operations described on a signal x(n) can be expressed as y(n) =
x(an − b) or y(n) = x[(n/a) − b]. The signal y(n) can be generated by replacing n by
(an − b) or [(n/a) − b] in x(n). However, it is instructive to consider it as the result of
a sequence of two steps: (i) first shifting the signal x(n) by b to get x(n − b), and then
(ii) time scaling (replace n by an or n/a) the shifted signal by a to get y(n) = x(an − b)
or y(n) = x[(n/a) − b]. Note that the time reversal operation is a special case of the
time scaling operation with a = −1.
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Figure 2.9 The exponential x(n) = (0.8)nu(n), x(2n), and x( n

2 )
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Figure 2.10 The sinusoid, x(n) = cos( π

5 n), x(−2n + 4), and x(− n

2 + 4)

Let x(n) = cos(π
5 n), shown in Figure 2.10 by dots. It is required to find x(−2n + 4).

The shifted signal is x(n + 4) = cos(π
5 (n + 4)). Now scaling this signal by −2

yields the signal x(−2n + 4) = cos(π
5 (−2n + 4)), shown in Figure 2.10 by crosses.

The value of the function x(n) at an even n0 occurs in the scaled and shifted signal at
−(n0 − 4)/2.

Let us find x(−n
2 + 4). Scaling the shifted signal by − 1

2 yields the signal x(−n
2 + 4)

= cos(π
5 (−n

2 + 4)), shown in Figure 2.10 by unfilled circles. The value of the function
x(n) at n0 occurs in the scaled and shifted signal at −2(n0 − 4).

2.4 Summary
• In this chapter, signal classifications, basic discrete signals, and signal operations

have been presented.
• Storage and processing requirements of a signal depend on its type.
• As practical signals have arbitrary amplitude profile, these signals are usually

decomposed and processed in terms of basic signals, such as the sinusoid or the
impulse.

• In addition to arithmetic operations, time shifting, time reversal, and time scaling
operations are also commonly used in the analysis of discrete signals.
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2003.
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Exercises

2.1 Is x(n) an energy signal, a power signal, or neither? If it is an energy signal, find
its energy. If it is a power signal, find its average power.
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2.1.1 x(0) = 2, x(−1) = 2, x(−2) = −2, x(−3) = −2, and x(n) = 0 other-
wise.

∗2.1.2 x(n) = 2(0.8)nu(n).
2.1.3 x(n) = 2n.
2.1.4 x(n) = Cej( 6πn

8 ).
2.1.5 x(n) = 3 cos

(
πn
2 + π

4

)
.

2.1.6 x(n) = u(n).
2.1.7 x(n) = 2.
2.1.8 x(n) = 2

n
u(n − 1).

2.1.9 x(n) = n.

2.2 Is x(n) even-symmetric, odd-symmetric, or neither? List the values of x(n) for
n = −3, −2, −1, 0, 1, 2, 3.
2.2.1 x(n) = 2 sin

(
π
5 n − π

3

)
.

2.2.2 x(n) = sin
(

π
5 n

)
.

2.2.3 x(n) = 2 cos
(

π
5 n

)
.

2.2.4 x(n) = 3.
2.2.5 x(n) = n.
2.2.6 x(n) = 2 sin( π

3 n)
n

.

2.2.7 x(n) = 2 sin2( π
3 n)

n
.

2.2.8 x(0) = 0 and x(n) = (−1)n

n
otherwise.

2.2.9 x(n) = 3δ(n)
2.3 Find the even and odd components of the signal. List the values of the signal

and its components for n = −3, −2, −1, 0, 1, 2, 3. Verify that the values of the
components add up to the values of the signal. Verify that the sum of the values
of the even component and that of the signal are equal.
2.3.1 x(0) = 1, x(1) = 1, x(2) = −1, x(3) = −1, and x(n) = 0 otherwise.
2.3.2 x(n) = 3 cos

(
π
5 n + π

6

)
∗2.3.3 x(n) = (0.4)nu(n)
2.3.4 x(n) = u(n + 1)
2.3.5 x(n) = e−j( π

3 n)

2.3.6 x(n) = n u(n)
2.4 Evaluate the summation.

2.4.1
∑∞

n=0 δ(n)(0.5)nu(n).
∗2.4.2

∑∞
n=0 δ(n + 1)(0.5)n.

2.4.3
∑∞

n=0 δ(n − 2)(0.5)nu(n).
2.4.4

∑∞
n=−∞ δ(n + 1)(0.5)n.

2.5 Express the signal in terms of scaled and shifted impulses.
2.5.1 x(0) = 2, x(1) = 3, x(2) = −1, x(3) = −4, and x(n) = 0 otherwise.
2.5.2 x(0) = 5, x(−1) = 3, x(2) = −7, x(−3) = −4, and x(n) = 0 other-

wise.
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2.6 If the waveform is periodic, what is its period?
2.6.1 x(n) = 4 cos(0.7πn).
2.6.2 x(n) = 2 cos(

√
2n).

2.6.3 x(n) = 43 + 2 cos
(

2π
7 n

)
.

2.6.4 x(n) = 2 cos
(

π

5
√

2
n
)

.
∗2.6.5 x(n) = 4 cos

(
4π
9 n

)
.

2.7 Find the rectangular form of the sinusoid. List the sample values of one cycle,
starting from n = 0, of the sinusoid.
2.7.1 x(n) = −2 sin

(
π
6 n − π

3

)
.

2.7.2 x(n) = −2 cos
(

π
6 n − π

4

)
.

2.7.3 x(n) = cos
(

π
6 n

)
.

2.7.4 x(n) = 3 sin
(

π
6 n + π

3

)
.

2.7.5 x(n) = − sin
(

π
6 n

)
.

∗2.7.6 x(n) = 4 cos
(

π
6 n − π

6

)
.

2.8 Find the polar form of the sinusoid. List the sample values of one cycle, starting
from n = 0, of the sinusoid.
2.8.1 x(n) = −2 sin

(
π
6 n

)
.

2.8.2 x(n) = −2 cos
(

π
6 n

)
− 2 sin

(
π
6 n

)
.

∗2.8.3 x(n) = 3 cos
(

π
6 n

)
+ √

3 sin
(

π
6 n

)
.

2.8.4 x(n) = −3 cos
(

π
6 n

)
.

2.8.5 x(n) = √
3 cos

(
π
6 n

)
− sin

(
π
6 n

)
.

2.9 Given x1(n) = A1e
j(ωn+θ1) and x2(n) = A2e

j(ωn+θ2), derive expressions for A and
θ of the complex sinusoid x(n) = x1(n) + x2(n) = Aej(ωn+θ) in terms of those
of x1(n) and x2(n).

2.10 Given the complex sinusoids x1(n) = A1e
j(ωn+θ1) and x2(n) = A2e

j(ωn+θ2), find
the complex sinusoid x(n) = x1(n) + x2(n) = Aej(ωn+θ), using the formulas de-
rived in Exercise 2.9. Find the sample values of one cycle, starting from n = 0,
of the complex sinusoids x1(n) and x2(n) and verify that the sample values of
x1(n) + x2(n) are the same as those of x(n).
2.10.1 x1(n) = −2ej( π

3 n+ π
3 ), x2(n) = 3ej( π

3 n− π
6 ).

2.10.2 x1(n) = 3e−j( π
3 n+ π

3 ), x2(n) = 2e−j( π
3 n− π

3 ).
2.10.3 x1(n) = 2ej( π

3 n), x2(n) = 3ej( π
3 n).

2.10.4 x1(n) = ej( π
3 n− π

2 ), x2(n) = ej( π
3 n).

∗2.10.5 x1(n) = 2ej( π
3 n+ π

6 ), x2(n) = 4ej( π
3 n+ π

4 ).
2.11 Find the corresponding exponential of the form an. List the values of the expo-

nential for n = 0, 1, 2, 3, 4, 5.
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2.11.1 x(n) = e0.6931n.
2.11.2 x(n) = en.

∗2.11.3 x(n) = e−0.6931n.
2.11.4 x(n) = e−0.3567n.

2.12 Give the sample values of the exponentially varying amplitude sinusoid for n =
−2, −1, 0, 1, 2, 3, 4.
2.12.1 x(n) = (0.8)n sin

(
2π
6 n − π

6

)
.

2.12.2 x(n) = (−0.6)n cos
(

2π
6 n + π

3

)
.

2.12.3 x(n) = (1.1)n sin
(

2π
6 n − π

4

)
.

2.12.4 x(n) = (−1.2)n cos
(

2π
6 n + π

6

)
.

2.12.5 x(n) = (0.7)n cos(πn).
2.13 Find the next three higher frequency sinusoids with the same set of sample values

as that of x(n).
2.13.1 x(n) = 2 cos

(
2 2π

9 n + π
6

)
.

2.13.2 x(n) = 4 sin
(

3 2π
7 n − π

3

)
.

2.13.3 x(n) = cos
(

4 2π
9 n − π

6

)
.

∗2.13.4 x(n) = 3 sin
(

3 2π
8 n − π

3

)
.

2.13.5 x(n) = 3 cos(πn).
2.13.6 x(n) = 5 cos(0n).

2.14 Find the minimum sampling rate required to represent the continuous signal
unambiguously.
2.14.1 x(t) = 3 cos(10πt).

2.14.2 x(t) = 3 cos
(

10πt + π
3

)
.

∗2.14.3 x(t) = 2 sin(10πt).

2.14.4 x(t) = 2 sin
(

10πt − π
6

)
.

2.15 The sinusoid x(n) and the value k are specified. Express the sinusoid x(n + k)
in polar form. List the sample values of one cycle, starting from n = 0, of the
sinusoids x(n) and x(n + k).
2.15.1 x(n) = 2 cos

(
2π
6 n − π

3

)
, k = 2.

2.15.2 x(n) = −3 sin
(

2π
6 n + π

6

)
, k = −1.

2.15.3 x(n) = cos
(

2π
6 n − π

6

)
, k = 3.

2.15.4 x(n) = − sin
(

2π
6 n + π

3

)
, k = 6.

∗2.15.5 x(n) = cos
(

2π
6 n + π

2

)
, k = −7.

2.15.6 x(n) = sin
(

2π
6 n + 2π

3

)
, k = 15.
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2.16 The sinusoid x(n) and the value k are specified. Express the sinusoid x(−n + k)
in polar form. List the sample values of one cycle, starting from n = 0, of the
sinusoids x(n) and x(−n + k).
2.16.1 x(n) = sin

(
2π
6 n − π

3

)
, k = 0.

2.16.2 x(n) = sin
(

2π
6 n + π

3

)
, k = −2.

∗2.16.3 x(n) = cos
(

2π
6 n − π

6

)
, k = 1.

2.16.4 x(n) = sin
(

2π
6 n + π

2

)
, k = −3.

2.16.5 x(n) = cos
(

2π
6 n − π

2

)
, k = 6.

2.16.6 x(n) = sin
(

2π
6 n + π

6

)
, k = 7.

2.16.7 x(n) = cos
(

2π
6 n + π

3

)
, k = 14.

2.17 The sinusoid x(n) and the values k and a are specified. List the sample values
of one cycle, starting from n = 0, of the sinusoid x(n) and x(an + k). Assume
interpolation using zero-valued samples, if necessary.
2.17.1 x(n) = − sin

(
2π
6 n + π

3

)
, a = −2, k = 0.

2.17.2 x(n) = 2 cos
(

2π
6 n − π

6

)
, a = 1

2 , k = −2.
∗2.17.3 x(n) = sin

(
2π
6 n + π

6

)
, a = −1, k = 1.

2.17.4 x(n) = 3 cos
(

2π
6 n + π

3

)
, a = 1

3 , k = 6.

2.17.5 x(n) = sin
(

2π
6 n − π

2

)
, a = −3, k = 7.

2.17.6 x(n) = cos
(

2π
6 n − π

6

)
, a = −1, k = 15.

2.18 The waveform x(n) and the values k and a are specified. List the sample values
with indices n = −3, −2, −1, 0, 1, 2, 3 of the waveforms x(n) and x(an + k).
Assume interpolation using zero-valued samples, if necessary.
2.18.1 x(0) = 2, x(1) = 3, x(2) = −4, x(3) = 1, and x(n) = 0 otherwise. a =

−2, k = 2.
2.18.2 x(0) = 2, x(1) = 3, x(2) = −4, x(3) = 1, and x(n) = 0 otherwise. a =

− 1
2 , k = 1.

2.18.3 x(n) = (0.8)n. a = −3, k = −1.
2.18.4 x(n) = (0.8)n. a = 1

3 , k = 2.
2.18.5 x(n) = (1.1)n. a = 2, k = 2.
2.18.6 x(n) = (1.1)n. a = − 1

2 , k = 1.

2.18.7 x(n) = −2 sin
(

2π
6 n + π

6

)
u(n). a = 1

2 , k = 3.
∗2.18.8 x(n) = −2 sin

(
2π
6 n + π

6

)
u(n). a = −2, k = 2.

2.18.9 x(n) = (0.7)n cos
(

2π
6 n − π

3

)
u(n). a = 1

3 , k = 3.

2.18.10 x(n) = (0.7)n cos
(

2π
6 n − π

3

)
u(n). a = −2, k = 2.





3
Continuous Signals

While the analysis of continuous signals remains essentially the same as that for the
discrete signals, there are differences due to the continuous nature. For example, the
summation operation on a discrete signal corresponds to the integration operation
on a continuous signal, the difference operation corresponds to the derivative, and
the continuous impulse signal is defined in terms of area, in contrast to the discrete
impulse signal defined by its amplitude. In this chapter, signal classifications, basic
signals, and signal operations of continuous signals are described in Sections 3.1, 3.2,
and 3.3, respectively.

3.1 Classification of Signals

Signals are classified into different types and the representation and analysis of a signal
depends on its type.

3.1.1 Continuous Signals

A continuous signal x(t) is specified at every value of its independent variable t.
Figures 3.1(a) and (b) show, respectively, the damped continuous real exponen-
tial, x(t) = e−0.1tu(t), and three cycles of the damped complex exponential, x(t) =
e(−0.1+j(3 2π

16 ))t . As the value of the exponential is decreasing with time, it is called a
damped or decaying exponential, characterized by the negative constant, −0.1, in its
exponent. An exponential eat , where a is a positive constant, is an example of a grow-
ing exponential, as its value is increasing with time. We denote a continuous signal,
using the independent variable t, as x(t). We call this representation the time-domain
representation, although the independent variable is not time for some signals. While
most signals, in practical applications, are real-valued, complex-valued signals are
often used in analysis. A complex-valued or complex signal is an ordered pair of
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Figure 3.1 (a) The damped continuous real exponential, x(t) = e−0.1tu(t); (b) the damped continuous
complex exponential, x(t) = e(−0.1+j(3 2π

16 ))t

real signals. The damped complex exponential signal, shown in Figure 3.1(b), can be
expressed, using Euler’s identity, in terms of damped cosine and sine signals as

x(t) = e(−0.1+j(3 2π
16 ))t = e(−0.1t) cos

(
3

2π

16
t

)
+ je(−0.1t) sin

(
3

2π

16
t

)

The real and imaginary parts of x(t) are, respectively, e(−0.1t) cos(3 2π
16 t) (shown by

the solid line in Figure 3.1(b)) and e(−0.1t) sin(3 2π
16 t) (shown by the dashed line in

Figure 3.1(b)).

3.1.2 Periodic and Aperiodic Signals

The smallest positive number T > 0 satisfying the condition x(t + T ) = x(t), for all
t, is the fundamental period of the continuous periodic signal x(t). The reciprocal of
the fundamental period is the fundamental cyclic frequency, f = 1/T Hz (cycles per
second). The fundamental angular frequency is ω = 2πf = 2π/T radians per second.
Over the interval −∞ < t < ∞, a periodic signal repeats its values over any interval
equal to its period, at intervals of its period. Cosine and sine waves are typical examples
of a periodic signal. A signal with constant value (dc) is periodic with any period. In
Fourier analysis, it is considered as A cos(ωt) or Aejωt with the frequency ω equal to
zero (period equal to ∞).

When the period of a periodic signal approaches infinity, it degenerates into an
aperiodic signal. The exponential signal, shown in Figure 3.1(a), is an aperiodic signal.

It is easier to decompose an arbitrary signal in terms of some periodic signals, such
as complex exponentials, and the input–output relationship of a LTI system becomes
a multiplication operation for this type of input signals. For these reasons, most of the
analysis of practical signals, which are mostly aperiodic, having arbitrary amplitude
profile, is carried out using periodic basic signals.
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3.1.3 Energy and Power Signals

The energy of a signal x(t) is expressed as the integral of the squared magnitude of its
values as

E =
∫ ∞

−∞
|x(t)|2dt

Aperiodic signals with finite energy are called energy signals. The energy of x(t) =
3e−t, t ≥ 0 is

E =
∫ ∞

0
|3e−t|2dt = 9

2

If the energy of a signal is infinite, then it may be possible to characterize it in terms
of its average power. The average power is defined as

P = lim
T→∞

1

T

∫ T
2

− T
2

|x(t)|2dt

For periodic signals, the average power can be computed over one period as

P = 1

T

∫ T
2

− T
2

|x(t)|2dt

where T is the period. Signals, periodic or aperiodic, with finite average power are
called power signals. Cosine and sine waveforms are typical examples of power sig-
nals. The average power of the cosine wave 3 cos(π

8 t) is

P = 1

16

∫ 8

−8

∣∣∣∣3 cos
(

π

8
t

) ∣∣∣∣
2

dt = 9

32

∫ 8

−8

(
1 + cos

(
2
π

8
t

))
dt = 9

2

A signal is an energy signal or a power signal, since the average power of an energy
signal is zero while that of a power signal is finite. Signals with infinite power and
infinite energy, such as x(t) = t, t ≥ 0, are neither power signals nor energy signals.
The measures of signal power and energy are indicators of the signal size, since the
actual energy or power depends on the load.

3.1.4 Even- and Odd-symmetric Signals

The analysis of a signal can be simplified by exploiting its symmetry. A signal x(t) is
even-symmetric, if x(−t) = x(t) for all t. The signal is symmetrical about the vertical
axis at the origin. The cosine waveform is an example of an even-symmetric signal.
A signal x(t) is odd-symmetric, if x(−t) = −x(t) for all t. The signal is asymmetrical
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about the vertical axis at the origin. For an odd-symmetric signal, x(0) = 0. The sine
waveform is an example of an odd-symmetric signal.

The sum (x(t) + y(t)) of two odd-symmetric signals, x(t) and y(t), is an odd-
symmetric signal, since x(−t) + y(−t) = −x(t) − y(t) = −(x(t) + y(t)). For exam-
ple, the sum of two sine signals is an odd-symmetric signal. The sum (x(t) + y(t))
of two even-symmetric signals, x(t) and y(t), is an even-symmetric signal, since
x(−t) + y(−t) = (x(t) + y(t)). For example, the sum of two cosine signals is an
even-symmetric signal. The sum (x(t) + y(t)) of an odd-symmetric signal x(t) and
an even-symmetric signal y(t) is neither even-symmetric nor odd-symmetric, since
x(−t) + y(−t) = −x(t) + y(t) = −(x(t) − y(t)). For example, the sum of cosine and
sine signals with nonzero amplitudes is neither even-symmetric nor odd-symmetric.

Since x(t)y(t) = (−x(−t))(−y(−t)) = x(−t)y(−t), the product of two odd-
symmetric or two even-symmetric signals is an even-symmetric signal. The product
z(t) = x(t)y(t) of an odd-symmetric signal y(t) and an even-symmetric signal x(t) is
an odd-symmetric signal, since z(−t) = x(−t)y(−t) = x(t)(−y(t)) = −z(t).

An arbitrary signal x(t) can be decomposed in terms of its even-symmetric and
odd-symmetric components, xe(t) and xo(t), respectively. That is, x(t) = xe(t) + xo(t).
Replacing t by −t, we get x(−t) = xe(−t) + xo(−t) = xe(t) − xo(t). Solving for xe(t)
and xo(t), we get

xe(t) = x(t) + x(−t)

2
and xo(t) = x(t) − x(−t)

2

As the integral of an odd-symmetric signal xo(t), over symmetric limits, is zero,

∫ t0

−t0

xo(t) dt = 0
∫ t0

−t0

x(t) dt =
∫ t0

−t0

xe(t) dt = 2
∫ t0

0
xe(t) dt

For example, the even-symmetric component of x(t) = ej( 2π
16 t+ π

3 ) is

xe(t) = x(t) + x(−t)

2
= ej( π

3 ) ej( 2π
16 t) + ej( 2π

16 (−t))

2
= ej( π

3 ) cos
(

2π

16
t

)

The odd-symmetric component is

xo(t) = x(t) − x(−t)

2
= ej( π

3 ) ej( 2π
16 t) − ej( 2π

16 (−t))

2
= jej( π

3 ) sin
(

2π

16
t

)

The complex exponential, its even component, and its odd component are shown,
respectively, in Figures 3.2(a), (b), and (c).
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Figure 3.2 (a) The complex exponential x(t) = ej( 2π
16 t+ π

3 ); (b) its even component xe(t) = ej( π
3 ) cos( 2π

16 t);

(c) its odd component xo(t) = jej( π
3 ) sin( 2π

16 t)

3.1.5 Causal and Noncausal Signals

Most signals, in practice, occur at some finite time instant, usually chosen as t = 0, and
are considered identically zero before this instant. These signals, with x(t) = 0 for t <

0, are called causal signals (for example, the exponential shown in Figure 3.1a). Sig-
nals, with x(t) �= 0 for t < 0, are called noncausal signals (for example, the complex
exponential shown in Figure 3.1b).

3.2 Basic Signals

While the input signal to a system, in practice, is arbitrary, some mathematically
well-defined and simple signals are used for testing systems and decomposition of the
arbitrary signals for analysis. These signals, for example, the sinusoid with infinite
duration and the impulse with infinite bandwidth, are mathematical idealizations and
are not practical signals. However, they are convenient in the analysis of signals and
systems. In practice, they can be approximated to a desired accuracy.

3.2.1 Unit-step Signal

A system is usually turned on by closing a switch. While practical switches have finite
switching time, in theoretical analysis, zero switching time is assumed for convenience.
This implies that the input signal is applied instantaneously. A function representing
such a signal does not exist in the normal function theory, since the derivative of
a function, at a discontinuity, is not defined. As this type of function is required
frequently in the analysis of systems, we define such a function and its derivative, and
denote them by special symbols. The unit-step function u(t), shown in Figure 3.3(a),
is defined as

u(t) =



1 for t > 0

0 for t < 0

undefined for t = 0
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Figure 3.3 (a) The unit-step signal, u(t); (b) the unit-impulse signal, δ(t); (c) the unit-ramp signal, r(t)

The unit-step signal has a value of one for t > 0 and has a value of zero for t < 0.
The value u(0), if required, can be assigned values such as 0, 1

2 , or 1 to suit a specific
application. For example, the value 1

2 is assigned in Fourier analysis.
The causal form of a signal x(t), x(t) is zero for t < 0, is obtained by multiplying

it by the unit-step signal as x(t)u(t). For example, cos( 2π
6 t) has nonzero values in the

range −∞ < t < ∞, whereas the values of cos( 2π
6 t)u(t) are zero for t < 0 and cos( 2π

6 t)
for t > 0. A time-shifted unit-step signal, for example u(t − 2), is u(t) shifted by two
units to the right (changes from 0 to 1 at t = 2). Using scaled and shifted unit-step
signals, a discontinuous signal, described differently over different intervals, can be
specified, for easier mathematical analysis, by a single expression, valid for all t. For
example, a signal that is identical to the first half period, beginning at t = 0, of the sine
wave sin(t) and is zero otherwise can be expressed as x(t) = sin(t) (u(t) − u(t − π))
or x(t) = sin(t) u(t) + sin(t − π) u(t − π). The first expression can be interpreted as
the sine wave multiplied by a pulse of unit height over the interval 0 < t < π. The
second expression can be interpreted as the sum of the causal form of the sine wave
and its right-shifted version by π (a half period). The time scaled and shifted unit-step
function u(±at − t0) is the same as u(±t − (t0/a)), where a �= 0 is a positive number.

3.2.2 Unit-impulse Signal

Consider a narrow unit-area rectangular pulse, δq(t), of width 2a and height 1/2a

centered at t = 0 and the function x(t) = 2 + e−t . The integral of their product, which
is the local average of x(t), is

∫ ∞

−∞
x(t)δq(t) dt = 1

2a

∫ a

−a

(2 + e−t) dt = 2 + ea − e−a

2a

The limiting value of the integral, as a → 0, is

lim
a→0

(
2 + ea − e−a

2a

)
= 2 + lim

a→0

(
ea + e−a

2

)
= 3 = x(0)
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In evaluating the limit, we used L’Hôpital’s rule. As long as a is not equal to zero,
the pulse is clearly defined by its width and height. The integral is an integral in the
conventional sense. As a → 0, the rectangular pulse, δq(t), degenerates into an impulse
δ(t) and it is characterized only by its unit area at t = 0. Then, the integral becomes a
definition

lim
a→0

∫ ∞

−∞
x(t)δq(t) dt =

∫ ∞

−∞
x(t)δ(t) dt = x(0)

∫ 0+

0−
δ(t) dt = x(0)

The pulse, δq(t), and the signal x(t) = 2 + e−t are shown in Figure 3.4(a) with
a = 1. Their product x(t)δq(t) is shown by the dotted line. The integral of the product
is 3.1752 with four-digit precision. Figures 3.4(b), and (c) show the functions with
a = 0.4, and a = 0.1, respectively. As the pulse width a is reduced, the variation in
the amplitude of the function x(t) = 2 + e−t is also reduced and the integral of the
product δq(t)x(t) (the local average of x(t)) approaches the value x(0), as shown in
Figure 3.4(d). The reason for associating the impulse in deriving the value of x(0),
rather than replacing t by 0 in x(t), is to express x(t) in terms of shifted and scaled
impulses, as we shall see later.

The continuous unit-impulse signal δ(t), located at t = 0, is defined, in terms of an
integral, as

∫ ∞

−∞
x(t)δ(t) dt = x(0)

Figure 3.4 (a) The pulse δq(t) (solid line) with width 2a = 2 and height 1/2a = 0.5. The function
x(t) = 2 + e−t (dashed line) and the product δq(t)x(t) (dotted line); (b) same as (a) with a = 0.4;
(c) same as (a) with a = 0.1; (d) the area enclosed by the product δq(t)x(t) for various values of a
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assuming that x(t) is continuous at t = 0 (so that the value x(0) is unique). The value of
the function x(t) at t = 0 has been sifted out or sampled by the defining operation. The
impulse function is called a generalized function, since it is defined by the result of its
operation (integration) on an ordinary function, rather than by its amplitude profile.
A time-shifted unit-impulse signal δ(t − τ), located at t = τ, sifts out the value x(τ),

∫ ∞

−∞
x(t)δ(t − τ) dt = x(τ),

assuming that x(t) is continuous at t = τ. As the amplitude profile of the impulse is
undefined, the unit-impulse is characterized by its unit area concentrated at t = 0 (in
general, whenever its argument becomes zero), called the strength of the impulse.
The unit-impulse is represented by a small triangle (pointing upwards for a positive
impulse and pointing downwards for a negative impulse), as shown in Figure 3.3(b).
The power or energy of the impulse signal is undefined.

The area enclosed by a function over some finite duration is easy to visualize. For
example, the distribution of mass along a line is defined by its density ρ(x) and the
mass between x = 0 and x = 1 is given by

∫ 1

0
ρ(x)dx

However, the symbol δ(t) stands for a function, whose shape and amplitude is such
that its integral at the point t = 0 is unity. This is the limiting case of the density ρ(x),
when unit mass is concentrated at a single point x = 0. It is difficult to visualize such a
function. But, it is easy to visualize a function of arbitrarily brief, but nonzero duration.
For example, the impulse can be considered, for practical purposes, as a sufficiently
narrow rectangular pulse of unit area. The width of the pulse �t should be so short
that the variation of any ordinary function x(t), appearing in an expression involving
an impulse, is negligible in �t s. Therefore, to understand any operation involving the
impulse, we start with a brief pulse, perform the operation, and take the limiting form
as the width of the pulse approaches zero. As only its area is specified, it is possible to
start with many functions of brief duration and apply the limiting process. The only
condition is that its area must be unity throughout the limiting process. Some other
functions, besides the rectangular pulse, that degenerate into the unit-impulse signal
in the limit are shown in Figure 3.5. For practical purposes, any of these functions
with a sufficiently brief duration is adequate. The point is that practical devices can
produce a pulse of finite width only, whereas, in theory, we use zero-width pulses for
the sake of mathematical convenience.

The product of an ordinary function x(t), which is continuous at t = τ, and δ(t − τ)
is given as x(t)δ(t − τ) = x(τ)δ(t − τ), since the impulse has unit area concentrated
at t = τ and the value of x(t) at that point is x(τ). That is, the product of an ordinary
function with the unit-impulse is an impulse with its area or strength equal to the
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Figure 3.5 Some functions that degenerate into unit-impulse signal, δ(t), in the limit. (a) δ(t) =
lima→∞

sin(at)
πt

; (b) δ(t) = lima→∞ ae−atu(t); (c) δ(t) = lima→0
t

2a2 (u(t) − u(t + 2a))

value of the function at the location of the impulse. As the impulse is defined by an
integral, any expression involving an impulse has to be eventually integrated to have
a numerical value. An expression such as the product given above implies that the
integral of the two sides are equal. For example,

∫ ∞

−∞
etδ(t)dt = 1

∫ ∞

−∞
etδ(t + 2)dt = e−2

∫ 2

−2
etδ(−t)dt = 1

∫ 4

2
etδ(t)dt = 0

∫ 0+

0−
etδ(t)dt = 1

∫ ∞

−∞
et−3δ(t − 3)dt = 1

In the fourth integral, the argument t of the impulse never becomes zero within the
limits of the integral.

3.2.2.1 The Impulse Representation of Signals

A major application of the impulse is to decompose an arbitrary signal x(t) into scaled
and shifted impulses, so that the representation and analysis of x(t) becomes easier.
In the well-known rectangular rule of numerical integration, an arbitrary signal x(t)
is approximated by a series of rectangles. Each rectangle is of fixed width, say a, and
height equal to a known value of x(t) in that interval. The area of the rectangle is an
approximation to that of x(t) in that interval. The sum of areas of all such rectangles
is an approximation of the area enclosed by the signal.

We can as well represent x(t) approximately, in each interval of width a, by the
area of the corresponding rectangle located at t = t0 multiplied by a unit-area rect-
angular pulse, δq(t − t0) of width a and height 1/a, since the amplitude of the pulse
x(t0)aδq(t − t0) is x(t0). For example, x(t) can be represented by (3.1752)(2)δq(t) in
Figure 3.4(a), shown by a dash–dot line. The sum of a succession of all such rectan-
gles is an approximation to x(t). As the width a is made smaller, the approximation
becomes better. For example, x(t) is represented by (3.0269)(0.8)δq(t) in Figure 3.4(b)
and (3.0017)(0.2)δq(t) in Figure 3.4(c). Eventually, as a→0, the pulse degenerates into
impulse and the representation becomes exact.
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Consider the product of a signal with a shifted impulse x(t)δ(t − τ) = x(τ)δ(t − τ).
Integrating both sides with respect to τ, we get

∫ ∞

−∞
x(t)δ(t − τ)dτ = x(t)

∫ ∞

−∞
δ(t − τ)dτ = x(t) =

∫ ∞

−∞
x(τ)δ(t − τ)dτ

The integrand x(τ)δ(t − τ)dτ, which is one of the constituent impulses of x(t), is a
shifted impulse δ(t − τ) located at t = τ with strength x(τ)dτ. The integration opera-
tion, with respect to τ, sums all these impulses to form x(t). It should be emphasized
that the integral, in this instance, represents a sum of a continuum of impulses (not an
evaluation of an area). Therefore, the signal x(t) is represented by the sum of scaled
and shifted continuum of impulses with the strength of the impulse at any t being
x(t)dt. The unit-impulse is the basis function and x(t)dt is its coefficient. As the area
enclosed by the integrand is nonzero only at the point t = τ, the integral is effective
only at that point. By varying the value of t, we can sift out all the values of x(t).

Let a quasi-impulse, δq(t), is defined by a rectangular pulse with its base of width a,
from t = 0 to t = a, and height 1/a. Assume that the signal, x(t) = e−1.2t(u(t) − u(t −
1.5)), is approximated by rectangles with width a and height equal to the value of x(t)
at the beginning of the corresponding rectangle. Figure 3.6 shows the approximation
of x(t) by rectangular pulses of width a = 0.5. We break up x(t) so that it is expressed
as a sum of sections of width a = 0.5.

x(t) = x0(t) + x1(t) + x2(t)

= e−1.2t(u(t) − u(t − 0.5))

+ e−1.2t(u(t − 0.5) − u(t − 1))

+ e−1.2t(u(t − 1) − u(t − 1.5))

By replacing each section by a function that is constant with a value equal to that
of x(t) at the beginning of the section, we get

x(t) ≈ xa(t) + xb(t) + xc(t)

= e−1.2(0)(0.5)(u(t) − u(t − 0.5))

+ e−1.2(1)(0.5)(u(t − 0.5) − u(t − 1))

+ e−1.2(2)(0.5)(u(t − 1) − u(t − 1.5))

By multiplying and dividing by a = 0.5, we get

x(t) ≈ xa(t) + xb(t) + xc(t)

= e−1.2(0)(0.5)
(

u(t) − u(t − 0.5)

0.5

)
(0.5)
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Figure 3.6 The approximation of a signal by a sum of scaled and shifted rectangular pulses. (a) xa(t) =
δq(t)(0.5), x0(t) = e−1.2t(u(t) − u(t − 0.5)); (b) xb(t) = e−0.6δq(t − 0.5)(0.5), x1(t) = e−1.2t(u(t −
0.5) − u(t − 1)); (c)xc(t) = e−1.2δq(t − 1)(0.5),x2(t) = e−1.2t(u(t − 1) − u(t − 1.5)); (d)x(t) = x0(t) +
x1(t) + x2(t) = e−1.2t(u(t) − u(t − 1.5)) ≈ δq(t)(0.5) + e−0.6δq(t − 0.5)(0.5) + e−1.2δq(t − 1)(0.5)

+ e−1.2(1)(0.5)
(

u(t − 0.5) − u(t − 1)

0.5

)
(0.5)

+ e−1.2(2)(0.5)
(

u(t − 1) − u(t − 1.5)

0.5

)
(0.5)

x(t) ≈ xa(t) + xb(t) + xc(t)

= δq(t)(0.5) + e−0.6δq(t − 0.5)(0.5) + e−1.2δq(t − 1)(0.5)

=
2∑

n=0

e−1.2(n)(0.5)δq(t − (n)(0.5))(0.5)
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In general, we approximate an arbitrary x(t) as

x(t) ≈
∞∑

n=−∞
x((n)(a))δq(t − (n)(a))(a)

which reverts to the exact representation of x(t)

x(t) =
∫ ∞

−∞
x(τ)δ(t − τ)dτ,

as a → 0 (a is replaced by the differential dτ and (n)(a) becomes the continuous
variable τ).

3.2.2.2 The Unit-impulse as the Derivative of the Unit-step

A function, which is the derivative of the unit-step function, must have its integral
equal to zero for t < 0 and one for t > 0. Therefore, such a function must be defined
to have unit area at t = 0 and zero area elsewhere. Figure 3.7(a) shows the quasi-
impulse δq(t) with width 1 and height 1/1 = 1 (solid line) and Figure 3.7(b) shows
its integral uq(t) (solid line), which is an approximation to the unit-step function. As
the width of δq(t) is reduced and its height correspondingly increased, as shown in
Figure 3.7(a) (dashed line with width 0.5 and dotted line with width 0.2), δq(t) is more
like an impulse, and the corresponding integrals, shown in Figure 3.7(b) (dashed and
dotted lines), become better approximations to the unit-step function. At any stage in
the limiting process, uq(t) remains the integral of δq(t) and δq(t) remains the derivative
(except at the corners) of uq(t) and is defined to be so even in the limit (for the sake of
mathematical convenience) as the width of δq(t) tends to zero. δq(t) and uq(t) become,
respectively, the unit-impulse and unit-step functions in the limit and

du(t)

dt
= δ(t) and

∫ t

−∞
δ(τ)dτ = u(t)

Figure 3.7 (a) The quasi-impulse δq(t) with width 1 and height 1/1 = 1 (solid line), and with width
0.5 and height 1/0.5 = 2 (dashed line), and with width 0.2 and height 1/0.2 = 5 (dotted line); (b) their
integrals uq(t), approaching the unit-step function as the width of the quasi-impulse tends to zero
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For example, the voltage across a capacitor is proportional to the integral of the
current through it. Therefore, a unit-impulse current passing through a capacitor of
1 F produces a unit-step voltage across the capacitor.

A signal x(t), with step discontinuities, for example, at t = t1 of height (x(t+1 ) −
x(t−1 )) and at t = t2 of height (x(t+2 ) − x(t−2 )), can be expressed as

x(t) = xc(t) + (x(t+1 ) − x(t−1 ))u(t − t1) + (x(t+2 ) − x(t−2 ))u(t − t2)

where xc(t) is x(t) with the discontinuities removed and x(t+1 ) and x(t−1 ) are, respec-
tively, the right- and left-hand limits of x(t) at t = t1. The derivative of x(t) is given
by generalized function theory as

dx(t)

dt
= dxc(t)

dt
+ (x(t+1 ) − x(t−1 ))δ(t − t1) + (x(t+2 ) − x(t−2 ))δ(t − t2)

where dxc(t)/dt is the ordinary derivative of xc(t) at all t except at t = t1 and t = t2.
Note that dxc(t)/dt may have step discontinuities. In the expression for dx(t)/dt, the
impulse terms serve as indicators of step discontinuities in its integral, that is x(t).
Therefore, the use of impulses in this manner prevents the loss of step discontinuities
in the integration operation and we get back x(t) exactly by integrating its derivative.
That is,

x(t) = x(t0) +
∫ t

t0

dx(t)

dt
dt

For example, the derivative of the signal x(t), shown in Figure 3.8(a) along with
xc(t) (dashed line)

x(t) = u(−t − 1) + e−t(u(t + 1) − u(t − 1)) + 2t(u(t − 1) − u(t − 2))

+ cos
(

π

2
t

)
u(t − 2)

= xc(t) + 1.7183u(t + 1) + 1.6321u(t − 1) − 5u(t − 2),

−2 −1 0 1 2 3
−1

0.3679
1
2

2.7183
4

t

x(
t)

(a)

x(t)

x
c
(t)

−2 −1 0 1 2 3
−5

−2.7183

0
2

t

dx
(t

)/
dt

(b)

Figure 3.8 (a) Signal x(t) with step discontinuities; (b) its derivative
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is

dx(t)

dt
= 0 − e−t(u(t + 1) − u(t − 1)) + 2(u(t − 1) − u(t − 2))

−
(

π

2

)
sin

(
π

2
t

)
u(t − 2)

+ 1.7183δ(t + 1) + 1.6321δ(t − 1) − 5δ(t − 2),

shown in Figure 3.8(b).

3.2.2.3 The Scaling Property of the Impulse

The area enclosed by a time-scaled pulse x(at) and that of its time-reversed version
x(−at) is equal to the area enclosed by x(t) divided by |a|. Therefore, the scaling
property of the impulse is given as

δ(at) = 1

|a|δ(t) a �= 0

With a = −1, δ(−t) = δ(t) implying that the impulse is an even-symmetric signal.
For example,

δ(2t + 1) = δ

(
2

(
t + 1

2

))
= 1

2
δ

(
t + 1

2

)
and δ

(
1

2
t − 1

)
= δ

(
1

2
(t − 2)

)

= 2δ(t − 2)

3.2.3 Unit-ramp Signal

The unit-ramp signal, shown in Figure 3.3(c), is defined as

r(t) =
{

t for t ≥ 0

0 for t < 0

The unit-ramp signal increases linearly, with unit slope, for positive values of its
argument and its value is zero for negative values of its argument.

The unit-impulse, unit-step, and unit-ramp signals are closely related. The unit-
impulse signal δ(t) is equal to the derivative of the unit-step signal du(t)/dt, according
to generalized function theory. The unit-step signal u(t) is equal to

∫ t
−∞ δ(τ)dτ. The

unit-step signal u(t) is equal to dr(t)/dt, except at t = 0, where no unique derivative
exists. The unit-ramp signal r(t) is equal to

∫ t
−∞ u(τ)dτ.
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3.2.4 Sinusoids

3.2.4.1 The Polar Form of Sinusoids

The polar form specifies a sinusoid, in terms of its amplitude and phase, as

x(t) = A cos(ωt + θ), −∞ < t < ∞

where A, ω, and θ are, respectively, the amplitude, the angular frequency, and the phase.
The amplitude A is the distance of either peak of the waveform from the horizontal
axis. Let the period of the sinusoid be T s. Then, as

cos(ω(t + T ) + θ) = cos(ωt + ωT + θ) = cos(ωt + θ) = cos(ωt + θ + 2π)

T = 2π/ω. The cyclic frequency, denoted by f , of a sinusoid is the number of cycles
per second and is equal to the reciprocal of the period, f = 1/T = ω/2π cycles per
second (Hz). The angular frequency, the number of radians per second, of a sinusoid
is 2π times its cyclic frequency, that is ω = 2πf radians per second. For example,
consider the sinusoid 3 cos(π

8 t + π
3 ), with A = 3. The angular frequency is ω = π/8

radians per second. The period is T = 2π
π
8

= 16 seconds. The cyclic frequency is
f = 1/T = 1/16 Hz. The phase is θ = π/3 radians. The phase can also be expressed
in terms of seconds, as cos(ωt + θ) = cos(ω(t + θ

ω
)). The phase of π/3 radians cor-

responds to 8/3 s. As it repeats a pattern over its period, the sinusoid remains the
same by a shift of an integral number of its period. A phase-shifted sine wave can be
expressed as a phase-shifted cosine wave, A sin(ωt + θ) = A cos(ωt + (θ − π

2 )). The
phase of the sinusoid

sin
(

2π

16
t + π

3

)
= cos

(
2π

16
t +

(
π

3
− π

2

))
= cos

(
2π

16
t − π

6

)

is −π/6 radians. A phase-shifted cosine wave can be expressed as a phase-shifted sine
wave, A cos(ωt + θ) = A sin(ωt + (θ + π

2 )).

3.2.4.2 The Rectangular Form of Sinusoids

An arbitrary sinusoid is neither even- nor odd-symmetric. The even component of a
sinusoid is the cosine waveform and the odd component is the sine waveform. That is,
a sinusoid is a linear combination of cosine and sine waveforms of the same frequency
as that of the sinusoid. Expressing a sinusoid in terms of its cosine and sine components
is called its rectangular form and is given as

A cos(ωt + θ) = A cos(θ) cos(ωt) − A sin(θ) sin(ωt) = C cos(ωt) + D sin(ωt),
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where C = A cos θ and D = −A sin θ. The inverse relation is A = √
C2 + D2 and

θ = cos−1(C
A

) = sin−1(−D
A

). For example,

cos
(

2π

16
t + π

3

)
= 1

2
cos

(
2π

16
t

)
−

√
3

2
sin

(
2π

16
t

)

3√
2

cos
(

2π

16
t

)
+ 3√

2
sin

(
2π

16
t

)
= 3 cos

(
2π

16
t − π

4

)

3.2.4.3 The Sum of Sinusoids of the Same Frequency

The sum of sinusoids of arbitrary amplitudes and phases, but with the same frequency,
is also a sinusoid of the same frequency. Let

x1(t) = A1 cos(ωt + θ1) and x2(t) = A2 cos(ωt + θ2)

Then, x(t) = x1(t) + x2(t) = A cos(ωt + θ), where

A =
√

A2
1 + A2

2 + 2A1A2 cos(θ1 − θ2)

θ = tan−1 A1 sin(θ1) + A2 sin(θ2)

A1 cos(θ1) + A2 cos(θ2)

Any number of sinusoids can be combined into a single sinusoid by repeatedly
using the formulas. Note that the formula for the rectangular form of the sinusoid is a
special case of the sum of two sinusoids, one sinusoid being the cosine and the other
being the sine.

3.2.4.4 The Complex Sinusoids

The complex sinusoid is given as

x(t) = Aej(ωt+θ) = Aejθejωt − ∞ < t < ∞
The term ejωt is the complex sinusoid with unit magnitude and zero phase. Its

complex (amplitude) coefficient is Aejθ. The amplitude and phase of the sinusoid is
represented by the single complex number Aejθ. By adding its complex conjugate,
Ae−j(ωt+θ) and dividing by two, due to Euler’s identity, we get

x(t) = A

2

(
ej(ωt+θ) + e−j(ωt+θ)

)
= A cos(ωt + θ)

The use of two complex sinusoids to represent a single real sinusoid requires four
real quantities instead of two. This redundancy in terms of storage and operations can
be avoided.
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Figure 3.9 (a) Exponentially decreasing amplitude cosine wave, x(t) = e−0.1t cos( 2π

8 t); (b) exponen-
tially increasing amplitude cosine wave, x(t) = e0.1t cos( 2π

8 t)

3.2.4.5 Exponentially Varying Amplitude Sinusoids

An exponentially varying amplitude sinusoid, Aeat cos(ωt + θ), is obtained by multi-
plying a sinusoid, A cos(ωt + θ), by a real exponential, eat . The more familiar constant
amplitude sinusoid results when a = 0. If ω is equal to zero, then we get a real expo-
nential. Sinusoids, x(t) = e−0.1t cos( 2π

8 t) and x(t) = e0.1t cos( 2π
8 t), with exponentially

varying amplitudes are shown, respectively, in Figures 3.9(a) and (b). The complex
exponential representation of an exponentially varying amplitude sinusoid is given
as

x(t) = A

2
eat

(
ej(ωt+θ) + e−j(ωt+θ)

)
= Aeat cos(ωt + θ)

Figure 3.1(b) shows exponentially varying amplitude complex sinusoid, x(t) =
e(−0.1+j(3 2π

16 ))t .

3.3 Signal Operations

In addition to the arithmetic operations, time shifting, time reversal, and time
scaling operations are also commonly used in the analysis of continuous signals.
The three operations described in this section are with respect to the independent
variable, t.

3.3.1 Time Shifting

A signal x(t) is time shifted by T s by replacing t by t + T . The value of x(t) at t = t0
occurs at t = t0 − T in x(t + T ). The rectangular pulse x(t) = u(t − 1) − u(t − 3),
shown in Figure 3.10 by a solid line, is a combination of two delayed unit-step signals.
The right-shifted pulse x(t − 1) = u(t − 2) − u(t − 4), shown in Figure 3.10 by a
dashed line, is x(t) shifted by 1 s to the right (delayed by one second, as the values of
x(t) occur 1 s late). For example, the first nonzero value occurs at t = 2 as u(2 − 2) −
u(2 − 4) = 1. That is, the value of x(t) at t0 occurs in the shifted pulse 1 s later at t0 + 1.
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t
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t)

x(t) x(t−1)x(t+1.5)

Figure 3.10 The rectangular pulse, x(t) = u(t − 1) − u(t − 3), the right-shifted pulse, x(t − 1), and the
left-shifted pulse, x(t + 1.5)

The pulse x(t + 1.5), shown in Figure 3.10 by a dotted line, is x(t) shifted by 1.5 s to
the left (advanced by 1.5 s, as the values of x(t) occur 1.5 s early). For example, the
first nonzero value occurs at t = −0.5 as u(−0.5 + 0.5) − u(−0.5 − 1.5) = 1. That
is, the value of x(t) at t0 occurs in the shifted pulse 1.5 s earlier at t0 − 1.5.

3.3.2 Time Reversal

Replacing the independent variable t in x(t) by −t results in the time-reversed or folded
signal x(−t). The value of x(t) at t = t0 occurs at t = −t0 in x(−t). The signal and its
time-reversed version are mirror images of each other. The signal x(t) = r(t + 1) −
r(t − 1), shown in Figure 3.11 by a solid line, is a combination of two shifted unit-ramp
signals. Consider the folded and shifted signal x(−t − 1) = x(−(t + 1)) = r(−t) −
r(−t − 2), shown in Figure 3.11 by a dashed line. This signal can be formed by first
folding x(t) to get x(−t) and then shifting it to the left by 1 s (t is replaced by (t + 1)).
This signal can also be formed by first shifting x(t) to the right by 1 s to get x(t − 1)
and then folding it about the vertical axis at the origin (t is replaced by −t). The value
of the signal x(t) at t0 occurs in the folded and shifted signal at −t0 − 1. Consider the
folded and shifted signal x(−t + 3) = x(−(t − 3)) = r(−t + 4) − r(−t + 2), shown
in Figure 3.11 by a dotted line. This signal can be formed by first folding x(t) to get
x(−t) and then shifting it to the right by 3 s (t is replaced by (t − 3)). This signal can
also be formed by first shifting x(t) to the left by 3 s to get x(t + 3) and then folding it
about the vertical axis at the origin (t is replaced by −t). The value of x(t) at t0 occurs
in the folded and shifted signal at −t0 + 3.

−2 −1 0 1 2 3 4
0

1

2

t

x(
t)

x(t)x(−t−1) x(−t+3)

Figure 3.11 The signal, x(t) = r(t + 1) − r(t − 1), the shifted and folded signal, x(−t − 1), and the
shifted and folded signal, x(−t + 3)
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Figure 3.12 The cosine wave, x(t) = cos( π

8 t), the compressed version x(2t), and the expanded version
x(0.5t)

3.3.3 Time Scaling

Replacing the independent variable t in x(t) by at, (a �= 0), results in the time-scaled
signal x(at). With |a| > 1, we get a time-compressed version of x(t). With |a| < 1,
we get a time-expanded version. The value of x(t) at t = t0 occurs at t = t0/a in x(at).
The signal x(t) = cos(π

8 t), shown in Figure 3.12 by a solid line, completes two cycles
during 32 s. The time-compressed version with a = 2, x(2t) = cos(π

8 (2t)), shown in
Figure 3.12 by a dashed line, completes four cycles during 32 s. The value of the signal
x(t) at t occurs at t/2 in x(2t). For example, the negative peak at t = 8 in x(t) occurs
at t = 4 in x(2t). The time-expanded version with a = 0.5, x(0.5t) = cos(π

8 (0.5t)),
shown in Figure 3.12 by a dotted line, completes one cycle during 32 s. The value of
the signal in x(t) at t occurs at t/0.5 in x(0.5t). For example, the negative peak at t = 8
in x(t) occurs at t = 16 in x(0.5t).

In general, the three operations described on a signal x(t) can be expressed as
y(t) = x(at − b). The signal y(t) can be generated by replacing t by (at − b). However,
it is instructive to consider it as the result of a sequence of two steps: (i) first shifting
the signal x(t) by b to get x(t − b); and then (ii) time scaling (replace t by at) the
shifted signal by a to get x(at − b). An alternate sequence of two steps is to : (i) first
time scale the signal x(t) by a to get x(at); and then (ii) shift (replace t by t − b/a) the
time-scaled signal by b/a to get x(a(t − b/a)) = x(at − b). Note that, time reversal
operation is a part of the time scaling operation with a negative.

Let x(t) = cos(π
8 t + π

4 ), shown in Figure 3.13 by a solid line. It is required to
find x(−2t + 4). The shifted signal is x(t + 4) = cos(π

8 (t + 4) + π
4 ). Now scaling this

signal by −2 yields the signal x(−2t + 4) = cos(π
8 (−2t + 4) + π

4 ) = cos( 2π
8 t − 3π

4 ),
shown in Figure 3.13 by a dashed line. The value of the signal x(t) at t0 occurs at

−7 −6 −5 −3 −2 −1 1 2 3 5 6 7
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0
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t
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x(t) x(−2t+4)

Figure 3.13 The sinusoid x(t) = cos( π

8 t + π

4 ) and x(−2t + 4)
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(−t0 + 4)/2 in x(−2t + 4). We could have done the time scaling operation by −2 first
to obtain x(−2t) = cos(π

8 (−2t) + π
4 ). Shifting this signal by 4/−2 = −2 (replace t

by t − 2), we get x(−2t + 4) = cos(π
8 (−2t + 4) + π

4 ).

3.4 Summary
• In this chapter, continuous signal classifications, basic signals, and signal operations

have been presented.
• The representation and analysis of a signal depends on its type.
• As practical signals have arbitrary amplitude profile, these signals are usually de-

composed and analyzed in terms of basic signals, such as the sinusoid or the impulse.
• In contrast to the characterization of the discrete impulse by its amplitude, the

continuous impulse is characterized by its area.
• In addition to the arithmetic operations, time shifting, time reversal, and time scaling

operations are also commonly used in the analysis of continuous signals.

Further Reading

1. Lathi, B. P., Linear Systems and Signals, Oxford University Press, New York, 2004.

Exercises

3.1 Is x(t) an energy signal, a power signal, or neither? If it is an energy signal, find
its energy. If it is a power signal, find its average power.
3.1.1 x(t) = 3, −1 < t < 1 and x(t) = 0 otherwise.
3.1.2 x(t) = 2t, 0 < t < 1 and x(t) = 0 otherwise.
3.1.3 x(t) = 4e−0.2tu(t).
3.1.4 x(t) = et .
3.1.5 x(t) = Cej( 2πt

T ).
3.1.6 x(t) = 2 cos

(
πt
4 + π

3

)
.

3.1.7 x(t) = u(t).
3.1.8 x(t) = t.

∗3.1.9 x(t) = 2 1
t
u(t − 1).

3.1.10 x(t) = 3ej( 2πt
6 ).

3.1.11 x(t) = 3.
3.1.12 x(t) = 3 sin

(
πt
4 + π

3

)
.

3.2 Is x(t) even-symmetric, odd-symmetric, or neither? List the values of x(t) at
t = −3, −2, −1, 0, 1, 2, 3.
3.2.1 x(t) = 3 cos

(
2π
6 t + π

6

)
.

3.2.2 x(t) = 2 sin
(

2π
6 t − π

3

)
.
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3.2.3 x(t) = 4 cos
(

2π
6 t

)
.

3.2.4 x(t) = 5.
3.2.5 x(t) = −2 sin

(
2π
6 t

)
.

3.2.6 x(t) = t.

3.2.7 x(t) = sin( π
3 t)

t
.

3.2.8 x(t) = sin2( π
3 t)

t
.

3.2.9 x(t) = e−t .
3.3 Find the even and odd components of x(t). Verify that the integral of the odd

component is zero. Verify that the integral of the even component and that of
x(t) are equal.
3.3.1 x(t) = 2, −1 < t < 1 and x(t) = 0 otherwise.
3.3.2 x(t) = 3, −1 < t < 2 and x(t) = 0 otherwise.
3.3.3 x(t) = 2t, −1 < t < 1 and x(t) = 0 otherwise.

∗3.3.4 x(t) = 3t, 0 < t < 1 and x(t) = 0 otherwise.
3.3.5 x(t) = 2 cos

(
2π
6 t − π

3

)
.

3.3.6 x(t) = e−0.2tu(t).
3.3.7 x(t) = u(t).
3.3.8 x(t) = ej( 2π

6 t).
3.3.9 x(t) = t u(t).
3.3.10 x(t) = sin

(
2π
6 t

)
.

3.4 Evaluate the integral.
3.4.1

∫ 0
−∞ u(3t + 1)dt.

3.4.2
∫ −2
−∞ u

(
1
3 t + 2

)
dt.

3.4.3
∫ 5
−∞ u

(
1
2 t − 4

)
dt.

∗3.4.4
∫ ∞
−11 u

(
− 1

2 t − 4
)

dt.
3.5 Assume that the impulse is approximated by a rectangular pulse, centered at

t = 0, of width 2a and height 1/2a. Using this quasi-impulse, the signal x(t)
is sampled. What are the sample values of x(t) at t = 0 with a = 1, a = 0.1,
a = 0.01, a = 0.001, and a = 0?
3.5.1 x(t) = 4e−3t .
3.5.2 x(t) = 2 cos(t).

∗3.5.3 x(t) = 3 sin(t − π
6 ).

3.5.4 x(t) = cos(t + π
3 ).

3.5.5 x(t) = sin(t + π
4 ).

3.6 Evaluate the integral.
3.6.1

∫ ∞
−1 δ(t)etdt.

3.6.2
∫ ∞

0 δ(t + 1)etdt.
∗3.6.3

∫ ∞
0 δ(t − 2)etdt.
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3.6.4
∫ ∞
−∞ δ(t + 1)etdt.

3.6.5
∫ ∞
−∞ δ(t + 1)etu(t)dt.

3.6.6
∫ 5

1 δ(t + 1)etdt.
3.6.7

∫ −1
−4 δ(t + 2)etdt.

3.6.8
∫ ∞

0 δ(t − 2)e(t−2)dt.
3.7 A quasi-impulse, δq(t), is defined by a rectangular pulse with its base of width a,

from t = 0 to t = a, and height 1/a. Assume that the signal x(t) is approximated
by a series of rectangles with the height of each rectangle equal to the value of
x(t) at the beginning of the corresponding rectangle and width a. Express the
signal x(t) in terms of the quasi-impulse with a = 1 and a = 0.5.
3.7.1 x(t) = et, 0 ≤ t ≤ 5 and x(t) = 0 otherwise.

∗3.7.2 x(t) = cos(π
6 t), 0 ≤ t ≤ 4 and x(t) = 0 otherwise.

3.7.3 x(t) = (t + 3), 0 ≤ t ≤ 3 and x(t) = 0 otherwise.
3.8 Find the derivative of the signal.

3.8.1 cos(πt)u(t).
3.8.2 sin(πt)u(t).

∗3.8.3 2e−3tu(t).
3.9 Evaluate the integral.

3.9.1
∫ ∞
−∞ δ(3t + 1)dt.

3.9.2
∫ ∞
−∞ δ

(
1
3 t + 2

)
dt.

3.9.3
∫ 3
−∞ δ

(
1
2 t − 2

)
dt.

∗3.9.4
∫ 4
−∞ δ

(
− 1

3 t + 2
)

dt.

3.9.5
∫ 4
−∞ δ

(
− 1

3 t − 2
)

dt.
3.10 Find the rectangular form of the sinusoid. Find the value of t > 0 where the first

positive peak of the sinusoid occurs. Find the values of t at which the next two
consecutive peaks, both negative and positive, occur.
3.10.1 x(t) = −3 cos

(
2π
8 t − π

3

)
.

3.10.2 x(t) = 2 sin
(

2π
6 t + π

6

)
.

∗3.10.3 x(t) = −5 sin
(
2πt + π

4

)
.

3.10.4 x(t) = 2 cos
(

2πt + π
3

)
.

3.10.5 x(t) = 4 cos
(

2π
5 t − 13π

6

)
.

3.11 Find the polar form of the sinusoid. Find the values of t > 0 of the first three
zeros of the sinusoid.
3.11.1 x(t) = −√

3 cos
(

2π
6 t

)
− sin

(
2π
6 t

)
.

3.11.2 x(t) = √
2 cos

(
2π
6 t

)
− √

2 sin
(

2π
6 t

)
.

3.11.3 x(t) = −2 cos
(

2π
6 t

)
+ 2

√
3 sin

(
2π
6 t

)
.
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∗3.11.4 x(t) = cos
(

2π
6 t

)
+ sin

(
2π
6 t

)
.

3.11.5 x(t) = 3 cos
(

2π
6 t

)
− √

3 sin
(

2π
6 t

)
.

3.11.6 x(t) = −2 sin
(

2π
6 t

)
.

3.12 Given the sinusoids x1(t) = A1 cos(ωt + θ1) and x2(t) = A2 cos(ωt + θ2), find
the sinusoid x(t) = x1(t) − x2(t) = A cos(ωt + θ). First add a phase of π or −π

to the sinusoid x2(t) and then use the summation formulas given in the book.
Find the sample values of the sinusoids x1(t) and x2(t) at t = 0, 1, 2 and verify
that the sample values of x1(t) − x2(t) are the same as those of x(t).
3.12.1 x1(t) = −2 cos

(
2π
6 t − π

3

)
, x2(t) = 3 sin

(
2π
6 t + π

3

)
.

3.12.2 x1(t) = sin
(

2π
6 t + π

4

)
, x2(t) = cos

(
2π
6 t + 5π

6

)
.

∗3.12.3 x1(t) = 3 cos
(

2π
6 t + π

3

)
, x2(t) = 4 cos

(
2π
6 t + π

4

)
.

3.12.4 x1(t) = 2 cos
(

2π
6 t + π

6

)
, x2(t) = 5 cos

(
2π
6 t + π

3

)
.

3.13 Give the sample values of the exponentially varying amplitude sinusoid for t =
−1, 0, 1.
3.13.1 x(t) = e−t sin

(
2π
6 t + π

6

)
.

3.13.2 x(t) = e2t cos
(

2π
6 t − π

3

)
.

3.13.3 x(t) = e−2t cos(πt).
3.13.4 x(t) = e2t sin

(
2π
6 t

)
.

3.14 The sinusoid x(t) and the value k are specified. Find the value of t > 0 where the
first positive peak of the sinusoid x(t) occur. From the sinusoid x(t + k), verify
that its first positive peak, after t > 0, occurs as expected from the value of k.
3.14.1 x(t) = 2 cos

(
2π
6 t − π

3

)
, k = 2.

∗3.14.2 x(t) = sin
(

2π
6 t + π

6

)
, k = −1.

3.14.3 x(t) = sin
(

2π
6 t − π

4

)
, k = 15.

3.14.4 x(t) = cos
(

2π
6 t + 5π

6

)
, k = 12.

3.14.5 x(t) = sin
(

2π
6 t

)
, k = 1.

3.15 The sinusoid x(t) and the value k are specified. Find the value of t > 0 where
the first positive peaks of the sinusoids x(t) and x(−t + k) occur.
3.15.1 x(t) = 3 sin

(
2π
6 t + π

6

)
, k = −1.

∗3.15.2 x(t) = 2 cos
(

2π
6 t − π

4

)
, k = 2.

3.15.3 x(t) = sin
(

2π
6 t − π

3

)
, k = −3.

3.15.4 x(t) = sin
(

2π
6 t + π

3

)
, k = −12.

3.15.5 x(t) = cos
(

2π
6 t + π

6

)
, k = 4.



52 A Practical Approach to Signals and Systems

3.16 The sinusoid x(t) and the values of a and k are specified. Find the value of t > 0
where the first positive peaks of the sinusoids x(t) and x(at + k) occur.
3.16.1 x(t) = cos

(
2π
8 t + π

3

)
, a = 2, k = 1.

3.16.2 x(t) = sin
(

2π
8 t + π

6

)
, a = − 1

3 , k = −2.

3.16.3 x(t) = cos
(

2π
8 t − π

4

)
, a = 3

2 , k = −1.
∗3.16.4 x(t) = sin

(
2π
8 t − π

3

)
, a = − 2

3 , k = 2.

3.16.5 x(t) = cos
(

2π
8 t

)
, a = 3, k = 1.

3.17 The waveform x(t) and the values k and a are specified. List the values at t =
−3, −2, −1, 0, 1, 2, 3 of the waveforms x(t), x(t + k), and x(at + k). Assume
that the value of the function is its right-hand limit at any discontinuity.
3.17.1 x(t) = e−0.1t . a = 2, k = −1.
3.17.2 x(t) = e−0.2t . a = 1

2 , k = 2.
3.17.3 x(t) = e1.05t . a = 3

2 , k = 2.
3.17.4 x(t) = e1.2t . a = 1

3 , k = −3.
∗3.17.5 x(t) = −2 sin

(
2π
6 t + π

3

)
u(t). a = 2, k = 3.

3.17.6 x(t) = −2 sin
(

2π
6 t + π

6

)
u(t). a = 1

2 , k = −1.

3.17.7 x(t) = e−0.3t cos
(

2π
6 t + π

4

)
u(t). a = −2, k = 1.

3.17.8 x(t) = e−0.4t cos
(

2π
6 t − π

6

)
u(t). a = 1

3 , k = 3.



4
Time-domain Analysis of Discrete
Systems

A system carries out some task in response to an input signal or produces an output sig-
nal that is an altered version of the input signal. For example, when we switch the power
on to an electric motor, it produces mechanical power. A filter produces an output signal
in which the various frequency components of the input signal are altered in a prede-
fined way. A system is realized using physical components (hardware realization) or
using a computer program (software realization) or a combination of both. In order to
analyze a system, a mathematical model of the system has to be derived using the laws
governing the behavior of its components and their interconnection. It is usually not
possible to develop an accurate model of a system. Therefore, a model, with minimum
mathematical complexity, is developed so that it is a sufficiently accurate representa-
tion of the actual system. Although systems can have multiple inputs and multiple out-
puts, we consider single-input and single-output systems only, for simplicity. Because
the frequency-domain methods, described in later chapters, are easier for the analysis
of higher-order systems, only first-order systems are considered in this chapter.

The difference equation model of a system is derived in Section 4.1. In Section 4.2,
the various classifications of systems are described. The convolution–summation
model of a system is developed in Section 4.3. In Section 4.4, the stability condi-
tion of a system is derived in terms of its impulse response. In Section 4.5, the basic
components used in the implementation of discrete systems, implementation of a
specific system, and the decomposition of higher-order systems are presented.

4.1 Difference Equation Model

The resistor–capacitor (RC) circuit, shown in Figure 4.1, is a lowpass filter, as the
impedance of the capacitor is smaller at higher frequencies and larger at lower

A Practical Approach to Signals and Systems D. Sundararajan
© 2008 John Wiley & Sons (Asia) Pte Ltd



54 A Practical Approach to Signals and Systems

Figure 4.1 An RC filter circuit.

frequencies. Therefore, the output voltage across the capacitor y(t) is a filtered ver-
sion of the input x(t). The relationship between the current through the capacitor and
the voltage across it is i(t) = Cdy(t)/dt. Then, due to Kirchhoff’s voltage law, we get
the differential equation (an equation that contains derivatives of functions) model of
the circuit

RC
dy(t)

dt
+ y(t) = x(t)

where R is in ohms and C is in farads. This model of the filter circuit can be
approximated by a difference equation (an equation that contains differences of
functions) by approximating the differential in the differential equation by a differ-
ence. One of the ways of this approximation is by replacing the term dy(t)/dt by
[y(nTs) − y((n − 1)Ts)/Ts], where Ts is the sampling interval. The continuous vari-
ables x(t) and y(t) become x(nTs) and y(nTs), respectively. As usual, the sampling
interval Ts in nTs is suppressed and we get the difference equation as

RC
y(n) − y(n − 1)

Ts
+ y(n) = x(n)

Let b1 = Ts/(Ts + RC) and a0 = −RC/(Ts + RC). Then, we get the difference
equation characterizing the circuit as

y(n) = b1x(n) − a0y(n − 1) (4.1)

Let us assume that the input voltage is applied to the circuit at n = 0. Then, the
output of the circuit at n = 0 is given by

y(0) = b1x(0) − a0y(0 − 1)

The voltage y(−1) across the capacitor at n = −1, called the initial condition of
the circuit, is required to find the output. The number of initial conditions required
to find the output indicates the number of independent storage devices in the system.
This number is also the order of the system. As only one value of initial condition is
required, the model of the RC circuit is a first-order difference equation. Given the
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initial condition and the input, using this model, we can approximate the response of
the circuit.

4.1.1 System Response

The response of a linear system is due to two independent causes, the input and
the initial condition of the system at the time the input is applied. The response
due to the initial condition alone is called the zero-input response, as the input is
assumed to be zero. The response due to the input alone is called the zero-state
response, as the initial condition or the state of the system is assumed to be zero.
The complete response of a linear system is the sum of the zero-input and zero-state
responses.

4.1.1.1 Zero-state Response

The difference equation characterizing a system has to be solved to get the system
response. One way of solving a difference equation is by iteration. With the given
initial condition y(−1) and the inputs x(0) and x(−1), we can find the output y(0) of a
first-order difference equation. Then, in the next iteration, using y(0), x(1), and x(0),
we can compute y(1). We repeat this process to get the desired number of outputs.
Note that this method is suitable for programming in a digital computer. We can also
deduce the closed-form solution by looking at the pattern of the expressions of the
first few iterations. Let us solve Equation (4.1) by iteration. Assume that the initial
condition is zero and the input signal is the unit-step, u(n).

y(0) = b1x(0) + (−a0)y(−1) = b1

y(1) = b1x(1) + (−a0)y(0) = b1(1 + (−a0))

...

y(n) = b1(1 + (−a0) + (−a0)2 + · · · + (−a0)n)

= b1

(
1 − (−a0)(n+1)

1 − (−a0)

)
, (−a0) �= 1, n = 0, 1, 2, . . .

4.1.1.2 Zero-input Response

Assume that the initial condition is y(−1) = 3. Since x(n) = 0 for all n, Equation (4.1)
reduces to y(n) = (−a0)y(n − 1), y(−1) = 3. Therefore,

y(0) = 3(−a0), y(1) = 3(−a0)2, · · · , y(n) = 3(−a0)(n+1)
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4.1.1.3 Complete Response

The complete response of the system is the sum of the zero-input and zero-state
responses.

y(n) =

zero-state︷ ︸︸ ︷
b1

(
1 − (−a0)(n+1)

1 − (−a0)

)
+

zero-input︷ ︸︸ ︷
3(−a0)n+1, n = 0, 1, 2, . . .

y(n) =

steady-state︷ ︸︸ ︷
b1

(
1

1 − (−a0)

)
+

transient︷ ︸︸ ︷
b1

(
−(−a0)(n+1)

1 − (−a0)

)
+ 3(−a0)(n+1)

4.1.1.4 Transient and Steady-state Responses

The transient response of the system is

b1

(
−(−a0)(n+1)

1 − (−a0)

)
+ 3(−a0)(n+1).

The steady-state response of the system,

b1

(
1

1 − (−a0)

)

is the response of the system after the transient response has decayed. The transient
response of a stable system always decays with time. The form of the transient response
depends solely on the characteristics of the system while that of the steady-state
response solely depends on the input signal.

Figure 4.2 shows the various components of the response of the first-order sys-
tem governed by the difference equation y(n) = 0.1x(n) + 0.9y(n − 1) with the ini-
tial condition y(−1) = 3 and the input x(n) = u(n), the unit-step signal. The zero-
input response, shown in Figure 4.2(a), is 3(0.9)(n+1)u(n). The zero-state response,
shown in Figure 4.2(b), is (1 − (0.9)(n+1))u(n). The sum of the zero-input and zero-
state responses is the complete response, shown in Figure 4.2(c), is 3(0.9)(n+1) + 1 −
(0.9)(n+1) = (1 + 2(0.9)(n+1))u(n). The transient response due to input alone, shown in
Figure 4.2(d), is −(0.9)(n+1)u(n). The total transient response, shown in Figure 4.2(e),
is 3(0.9)(n+1) − (0.9)(n+1) = 2(0.9)(n+1)u(n). The steady-state response, shown in Fig-
ure 4.2(f), is u(n). The sum of the transient and steady-state responses also forms the
complete response.
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Figure 4.2 The response of a first-order system for unit-step input signal. (a) Zero-input response; (b)
zero-state response; (c) complete response; (d) transient response due to input; (e) transient response; (f)
steady-state response

4.1.1.5 Zero-input Response by Solving the Difference Equation

Consider the Nth order difference equation of a causal LTI discrete system relating
the output y(n) to the input x(n)

y(n) + aN−1y(n − 1) + aN−2y(n − 2) + · · · + a0y(n − N)

= bNx(n) + bN−1x(n − 1) + · · · + b0x(n − N),

where N is the order of the system and the coefficients as and bs are real constants
characterizing the system. If the input is zero, the difference equation reduces to

y(n) + aN−1y(n − 1) + aN−2y(n − 2) + · · · + a0y(n − N) = 0

The solution to this equation gives the zero-input response of the system. This
equation is a linear combination of y(n) and its delayed versions equated to zero, for
all values of n. Therefore, y(n) and all its delayed versions must be of the same form.
Only the exponential function has this property. Therefore, the solution is of the form
Cλn, where C and λ are to be found. Substituting y(n) = Cλn, y(n − 1) = Cλn−1,
etc., we get

(1 + aN−1λ
−1 + aN−2λ

−2 + · · · + a0λ
−N)Cλn = 0

Multiplying both sides by λN , we get

(λN + aN−1λ
N−1 + aN−2λ

N−2 + · · · + a0)Cλn = 0
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Assuming that the solution Cλn is nontrivial (C �= 0),

(λN + aN−1λ
N−1 + aN−2λ

N−2 + · · · + a0) = 0 (4.2)

The characteristic polynomial on the left-hand side has N roots, λ1, λ2, . . . , λN .
Therefore, we get N solutions, C1λ

n
1, C2λ

n
2, . . . , CNλn

N . As the system is assumed to
be linear and the solution has to satisfy N independent initial conditions of the system,
the zero-input response of the system is given by

y(n) = C1λ
n
1 + C2λ

n
2 + · · · + CNλn

N

assuming all the roots of the characteristic polynomial are distinct. The constants can
be found using the N independent initial conditions of the system. The zero-input
response represents a behavior that is characteristic of the system. As the form of the
zero-input response of any Nth order system is the same, it is the set of roots of the char-
acteristic polynomial that distinguishes a specific system. Therefore, Equation (4.2) is
called the characteristic equation of the system and the roots, λ1, λ2, . . . , λN , are called
the characteristic roots of the system. The corresponding exponentials, λn

1, λn
2, . . . , λ

n
N ,

are called the characteristic modes of the system. The characteristic modes of a system
are also influential in the determination of the zero-state response.

Example 4.1. Find the zero-input response of the system by solving its difference
equation y(n) = 0.1x(n) + 0.9y(n − 1). The initial condition is y(−1) = 3.

Solution
The characteristic equation is λ − 0.9 = 0. The characteristic root of the system is
λ = 0.9. The characteristic mode of the system is (0.9)n. Therefore, the zero-input
response is of the form

y(n) = C (0.9)n

With y(−1) = 3 and letting n = −1, we get C = 2.7. Therefore, the zero-input
response, as shown in Figure 4.2(a), is

y(n) = 2.7 (0.9)n u(n) �

4.1.2 Impulse Response

The impulse response, h(n), of a system is its response for a unit-impulse input signal
with the initial conditions of the system zero. One way to find the impulse response of
a system is by iteration. Another method is to find the zero-input response by solving
the characteristic equation.
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Example 4.2. Find the closed-form expression for the impulse response h(n) of
the system governed by the difference equation, with input x(n) and output y(n),
y(n) = 2x(n) + 3x(n − 1) + 1

2y(n − 1) (i) by solving the difference equation and (ii)
by iteration. Find the first four values of h(n).

Solution
As the system is initially relaxed (initial conditions zero), we get from the difference
equation h(0) = 2 and h(1) = 4 by iteration. As the value of the impulse signal is
zero for n > 0, the response for n > 0 can be considered as zero-input response. The
characteristic equation is (

λ − 1

2

)
= 0

The zero-input response is of the form

h(n) = C

(
1

2

)n

u(n − 1)

As u(n − 1) = u(n) − δ(n), the response is also given by

h(n) = C

(
1

2

)n

u(n) − Cδ(n), n > 0

Letting n = 1, with h(1) = 4, we get C = 8. The impulse response is the sum of
the response of the system at n = 0 and the zero-input response for n > 0. Therefore,

h(n) = 2δ(n) + 8
(

1

2

)n

u(n) − 8δ(n) = −6δ(n) + 8
(

1

2

)n

u(n)

By iteration,

h(0) = 2

h(1) =
(

3 + 2
1

2

)
= 4

h(2) =
(

1

2

)
4

h(3) =
(

1

2

)2

4

...

h(n) =
(

1

2

)n−1

4



60 A Practical Approach to Signals and Systems

h(n) = 2δ(n) +
(

4
(

1

2

)n−1
)

u(n − 1) = −6δ(n) + 8
(

1

2

)n

u(n)

The first four values of h(n) are

{h(0) = 2, h(1) = 4, h(2) = 2, h(3) = 1} �

In general, the impulse response of a first-order system governed by the differ-
ence equation y(n) + a0y(n − 1) = b1x(n) + b0x(n − 1) is h(n) = b0

a0
δ(n) + (b1 −

b0
a0

)(−a0)nu(n).

4.1.3 Characterization of Systems by their Responses to Impulse
and Unit-step Signals

We can get information about the system behavior from the impulse and unit-step
responses. If the significant values of the impulse response are of longer duration, as
shown by filled circles in Figure 4.3(a), then the response of the system is sluggish.
The corresponding unit-step response is shown by filled circles in Figure 4.3(b). The
time taken for the unit-step response to rise from 10 to 90% of its final value is called
the rise time of the system. If the significant values of the impulse response are of
shorter duration, as shown by unfilled circles in Figure 4.3(a), then the response of the
system is faster, as shown by unfilled circles in Figure 4.3(b). A system with a shorter
impulse response has less memory and it is readily influenced by the recent values of
the input signal. Therefore, its response is fast. The faster is the rate of decay of the
impulse response, the faster the response approaches its steady-state value.
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Figure 4.3 (a) Typical monotonically decreasing impulse responses; (b) the corresponding unit-step
responses; (c) typical alternating sequence impulse responses; (d) the corresponding unit-step responses.
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The unit-step response, at n, is the sum of the first n + 1 terms of the impulse
response, y(n) = ∑n

m=0 h(m). As the final value tends to one in Figure 4.3(b) and
as the unit-step signal, ultimately, acts like a dc signal, the monotonically decreasing
impulse response indicates a system that passes low-frequency components of a signal
well.

Figure 4.3(c) shows typical alternating sequence impulse responses. The corre-
sponding unit-step responses are shown in Figure 4.3(d). In these cases also, the sys-
tem response time is faster with a short-duration impulse response. However, note that
the final value of the unit-step response approaches a very low value in Figure 4.3(d).
This indicates a system that does not pass low-frequency components of a signal well.

4.2 Classification of Systems

4.2.1 Linear and Nonlinear Systems

Let the response of a system to signal x1(n) be y1(n) and the response to x2(n) be y2(n).
Then, the system is linear if the response to the linear combination ax1(n) + bx2(n) is
ay1(n) + by2(n), where a and b are arbitrary constants. A general proof is required to
prove that a system is linear. However, one counterexample is enough to prove that a
system is nonlinear. Nonlinear terms, such as x2(n) or x(n)y(n − 1) (terms involving
the product of x(n), y(n), and their shifted versions) in the difference equation is an
indication that the system is not linear. Any nonzero constant term is also an indication
of a nonlinear system. The linearity condition implies that the total response of a linear
system is the sum of zero-input and zero-state components. The linearity of a system
with respect to zero-input and zero-state responses should be checked individually. In
most cases, zero-state linearity implies zero-input linearity.

Example 4.3. Given the difference equation of a system, with input x(n) and
output y(n), determine whether the system is linear. Verify the conclusion with the
inputs {x1(n), n = 0, 1, 2, 3} = {1, 4, 3, 2}, {x2(n), n = 0, 1, 2, 3} = {2, 3, 4, 1} and
x(n) = 2x1(n) − 3x2(n) by computing the first four values of the output. Assume that
the initial condition y(−1) is zero.

(a) y(n) = x(n) + y(n − 1) + 3
(b) y(n) = x(n) − (2n)y(n − 1)

Solution
(a) As the nonzero term indicates that the system is nonlinear, we try the counterex-

ample method. By iteration, the first four output values of the system to the input
signal x1(n) are

y1(0) = x1(0) + y1(0 − 1) + 3 = 1 + 0 + 3 = 4

y1(1) = x1(1) + y1(1 − 1) + 3 = 4 + 4 + 3 = 11
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y1(2) = x1(2) + y1(2 − 1) + 3 = 3 + 11 + 3 = 17

y1(3) = x1(3) + y1(3 − 1) + 3 = 2 + 17 + 3 = 22

The output to x2(n) is {y2(n), n = 0, 1, 2, 3} = {5, 11, 18, 22}. Now, y(n) =
{2y1(n) − 3y2(n), n = 0, 1, 2, 3} = {−7, −11, −20, −22}.

The system response to the combined input {2x1(n) − 3x2(n), n = 0, 1, 2, 3}
= {−4, −1, −6, 1} is {y(n), n = 0, 1, 2, 3} = {−1, 1, −2, 2}. As this output is dif-
ferent from that computed earlier, the system is nonlinear.

(b) The system output to x1(n) is y1(n) = x1(n) − (2n) y1(n − 1). The system output
to x2(n) is y2(n) = x2(n) − (2n) y2(n − 1). Then,

ay1(n) + by2(n) = ax1(n) − (2an) y1(n − 1) + bx2(n) − (2bn) y2(n − 1)

The system output to ax1(n) + bx2(n) is

ax1(n) + bx2(n) − (2n)(ay1(n − 1) + by2(n − 1))

As both the expressions for the output are the same, the system is linear. The
output to x1(n) is {y1(n), n = 0, 1, 2, 3} = {1, 2, −5, 32}. The output to x2(n)
is {y2(n), n = 0, 1, 2, 3} = {2, −1, 8, −47}. Now, y(n) = {2y1(n) − 3y2(n), n =
0, 1, 2, 3} = {−4, 7, −34, 205}.

The system response to the combined input {2x1(n) − 3x2(n), n = 0, 1, 2, 3}
= {−4, −1, −6, 1} is {y(n), n = 0, 1, 2, 3} = {−4, 7, −34, 205}. This output is
the same as that computed earlier. �

4.2.2 Time-invariant and Time-varying Systems

The output of a time-invariant system to the input x(n − m) must be y(n − m) for
all m, assuming that the output to the input x(n) is y(n) and the initial conditions are
identical. A general proof is required to prove that a system is time-invariant. However,
one counterexample is enough to prove that a system is time-variant. Terms, such as
x(2n) or x(−n), with a nonzero and nonunity constant associated with the index n

in the difference equation indicates a time-variant system. Any coefficient that is an
explicit function of n in the difference equation also indicates a time-variant system.

Example 4.4. Given the difference equation of a system, with input x(n) and output
y(n), determine whether the system is time-invariant. Verify the conclusion with the in-
puts {x(n), n = 0, 1, 2, 3} = {1, 4, 3, 2} and {x(n − 2), n = 2, 3, 4, 5} = {1, 4, 3, 2}
by computing the first four values of the output. Assume that the initial condition
y(−1) is zero.

(a) y(n) = nx(n)
(b) y(n) = 2x(n)
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Solution
(a) As the coefficient in the difference equation is the independent variable n, we

try the counterexample method. The output of the system to x(n) is {y(n), n =
0, 1, 2, 3} = {0, 4, 6, 6}. The output of the system to x(n − 2) is {y(n), n =
2, 3, 4, 5} = {2, 12, 12, 10}. As the two outputs are different, the system is time-
varying.

(b) The system output to x(n) is y(n) = 2x(n). By replacing n by (n − 2), we get
y(n − 2) = 2x(n − 2). The system output to x(n − 2) is 2x(n − 2). As the out-
puts are the same, the system is time-invariant. The output of the system to x(n)
is {y(n), n = 0, 1, 2, 3} = {2, 8, 6, 4}. The output of the system to x(n − 2) is
{y(n), n = 2, 3, 4, 5} = {2, 8, 6, 4}. �

Linear time-invariant (LTI) systems satisfy the linearity and time-invariant proper-
ties and are easier to analyze and design. Most practical systems, although not strictly
linear and time-invariant, can be considered as LTI systems with acceptable error
limits.

4.2.3 Causal and Noncausal Systems

Practical systems respond only to present and past input values, but not to future input
values. These systems are called causal or nonanticipatory systems. If the present
output y(n) depends on the input x(n + k) with k > 0, then the system is noncausal.
This implies that the impulse response of a causal system h(n) is zero for n < 0. Ideal
systems, such as ideal filters, are noncausal. However, they are of interest because
they set an upper bound for the system response. Practical systems approximate the
ideal response, while being causal (that is physically realizable).

Example 4.5. Given the difference equation of a system, with input x(n) and output
y(n), determine whether the system is causal. Find the impulse response.

(a) y(n) = x(n + 2) + 2x(n) − 3x(n − 1)
(b) y(n) = 2x(n) − x(n − 1) + 3x(n − 4).

Solution
(a) As the output y(n) is a function of the future input sample x(n + 2), the system is

noncausal. The impulse response of the system is obtained, by substituting x(n) =
δ(n) in the input-output relation, as y(n) = h(n) = δ(n + 2) + 2δ(n) − 3δ(n − 1).
That is, h(−2) = 1, h(−1) = 0, h(0) = 2, and h(1) = −3.

(b) The system is causal. The impulse response of the system is

{h(0) = 2, h(1) = −1, h(2) = 0, h(3) = 0, h(4) = 3} �
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4.2.4 Instantaneous and Dynamic Systems

With regard to system memory, systems are classified as instantaneous or dynamic. A
system is instantaneous (no memory) if its output at an instant is a function of the input
at that instant only. The system characterized by the difference equation y(n) = 2x(n)
is a system with no memory. An example is an electrical circuit consisting of resistors
only. Any system with storage elements, such as inductors and capacitors, is a dynamic
system, since the output at an instant of such systems is a function of past values of
the input also. The discrete model of this type of systems will have terms, such as
x(n − 1) or x(n − 2), that require memory units to implement. If the output depends
only on a finite number of past input samples, then it is called a finite memory system.
For example, y(n) = x(n − 1) + x(n − 2) is the difference equation of a system with
two memory units. Systems with capacitive or inductive elements are infinite memory
systems, since their output is a function of entire past history of the input. Instantaneous
systems are a special case of dynamic systems with zero memory.

4.2.5 Inverse Systems

A system is invertible if its input can be determined from its output. This implies that
each input has a unique output. Systems with an input–output relationship such as
y(n) = x2(n) are not invertible. If the impulse response of a system, made up of two
systems connected in cascade, is h(n) = δ(n), then the two systems are the inverses of
one another. For example, the inverse of the system with the input–output relationship
y(n) = 2x(n) is x(n) = 1

2y(n).

4.2.6 Continuous and Discrete Systems

In continuous systems, input, output, and all other signals are of continuous type
and they are processed using devices such as resistors, inductors, and capacitors. In
a discrete system, input, output, and all other signals are of discrete type and they
are processed using discrete devices such as a digital computer. While most naturally
occurring signals are of continuous type, they are usually analyzed and processed
using discrete systems, as it is advantageous, by converting the continuous signals to
discrete signals by sampling. These type of systems, in which both types of signals
appear, are called hybrid systems.

4.3 Convolution–Summation Model

In the difference equation model of a system, we used some output and input values in
formulating the model. In the convolution-summation model, the model is formulated
in terms of all the input values applied to the system, assuming that the initial conditions
are zero. The input signal is decomposed in terms of scaled and shifted unit-impulses.
Therefore, with the knowledge of the response of the system to just the unit-impulse
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(called the impulse response), we find the response to each of the constituent impulses
of an arbitrary input signal and sum the individual responses to find the total response.
As the initial conditions are assumed to be zero, the response obtained using this model
is the zero-state response.

Let us find the convolution of the impulse response {h(m), m = 0, 1, 2, 3} =
{5, 0, 3, 2} and the input {x(m), m = 0, 1, 2, 3} = {4, 1, 3, 2} shown in Figure 4.4.
The time-reversed impulse response, {h(0 − m), m = 3, 2, 1, 0}, is {2, 3, 0, 5}. There
is only one nonzero product, x(0)h(0) = 4 × 5 = 20, of x(m)h(0 − m) with m = 0
and the convolution output is y(0) = 20. The product x(0)h(0) is the response of the
system at n = 0 to the present input sample x(0). There is no contribution to the
output at n = 0 due to input samples x(1), x(2), and x(3) since the system is causal.
The time-reversed impulse response is shifted to the right by one sample interval to
get h(1 − m) = h(−m + 1)) = h(−(m − 1)). The convolution output y(1) at n = 1 is
the sum of products x(m)h(1 − m), m = 0, 1. That is, y(1) = x(0)h(1) + x(1)h(0) =
4 × 0 + 1 × 5 = 5. The product x(1)h(0) is the response of the system at n = 1 to
the present input sample x(1). The product x(0)h(1) is the response of the system at
n = 1 to the past input sample x(0). Repeating the process, we find the remaining five
output values. While x(n) and h(n) have four elements each, the output sequence y(n)
has seven elements. The duration of the convolution of two finite sequences of length
N and M is N + M − 1 samples, as the overlap of nonzero portions can occur only
over that length.

A more formal development of the convolution operation is as follows. An arbitrary
signal can be decomposed, in terms of scaled and shifted impulses, as

x(n) =
∞∑

m=−∞
x(m)δ(n − m)

The impulse response h(n) of a LTI system is its response to an impulse δ(n)
with the system initially relaxed (initial conditions zero). Due to the time-invariance
property, a delayed impulse δ(n − m) will produce the response h(n − m). Since a LTI

Figure 4.4 The linear convolution operation
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system is linear, a scaled and shifted impulse x(m)δ(n − m) will produce the response
x(m)h(n − m). Therefore, using both the linearity and time-invariance properties, the
system response y(n) to an arbitrary signal x(n) can be expressed as

y(n) =
∞∑

m=−∞
x(m)h(n − m) = x(n) ∗ h(n)

The convolution-summation of the sequences x(n) and h(n) is denoted as x(n) ∗
h(n). For a causal system, as its impulse response h(n) is zero for n < 0, the upper
limit of the summation is n, instead of ∞, as h(n − m) = 0, m > n.

y(n) =
∞∑

m=−∞
x(m)h(n − m) =

n∑
m=−∞

x(m)h(n − m)

If the signal x(n) starts at any finite instant n = n0, then the lower limit is equal
to n0. The effective range of the summation is easily determined by observing that
if x(m) or h(n − m) or both are zero in a certain range, the product x(m)h(n − m) is
zero in that range.

Essentially, the convolution operation finds the sum of products of two sequences,
each other’s index running in opposite directions. To summarize, the output of a system
is found by convolution with the repeated use of four operations (fold, shift, multiply,
and add).

1. One of the two sequences to be convolved (say h(m)) is time-reversed, that is folded
about the vertical axis at the origin to get h(−m).

2. The time-reversed sequence, h(−m), is shifted by n0 sample intervals (right-shift
for positive n0 and left-shift for negative n0), yielding h(n0 − m), to find the output
at n = n0.

3. The term by term products of the overlapping samples of the two sequences, x(m),
and h(n0 − m), are computed.

4. The sum of all the products is the output sample value at n = n0.

Two finite sequences to be convolved overlap only partly at the beginning and the
end of the convolution operation, as can be seen in Figure 4.4, and less arithmetic
is required to find the convolution output in these cases. The convolution expres-
sion, requiring minimum arithmetic, for two finite sequences is given as follows. Let
x(n), n = 0, 1, . . . , N − 1 and h(n), n = 0, 1, . . . , M − 1. Then,

y(n) =
Min(n,N−1)∑

m=Max(0,n−M+1)

x(m)h(n − m) =
Min(n,M−1)∑

m=Max(0,n−N+1)

h(m)x(n − m)

n = 0, 1, . . . , N + M − 2, (4.3)
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where Min and Max stand, respectively, for ‘minimum of’ and ‘maximum of’. Along
with the shift property of convolution presented shortly, this expression can be used
to evaluate the convolution of two finite sequences starting from any n.

Example 4.6. Find the linear convolution of the sequences {x(n), n = 0, 1, 2} =
{1, 2, 3} and {h(n), n = 0, 1} = {2, −3}.
Solution
Using Equation (4.3), we get

y(0) = (1)(2) = 2

y(1) = (1)(−3) + (2)(2) = 1

y(2) = (2)(−3) + (3)(2) = 0

y(3) = (3)(−3) = −9

The values of the convolution of x(n) and h(n) are

{y(0) = 2, y(1) = 1, y(2) = 0, y(3) = −9} �

Example 4.7. Find the closed-form expression of the convolution of the sequences
x(n) = (0.6)nu(n) and h(n) = (0.5)nu(n).

Solution

y(n) =
∞∑

l=−∞
x(l)h(n − l) =

n∑
l=0

(0.6)l(0.5)n−l, n ≥ 0

= (0.5)n
n∑

l=0

(
0.6

0.5

)l

= (0.5)n


1 −

(
0.6
0.5

)n+1

1 −
(

0.6
0.5

)



= (6(0.6)n − 5(0.5)n)u(n)

The first four values of the convolution of x(n) and h(n) are

{y(0) = 1, y(1) = 1.1, y(2) = 0.91, y(3) = 0.671} �

4.3.1 Properties of Convolution–Summation

Convolution–summation is commutative, that is the order of the two sequences to be
convolved is immaterial.

x(n) ∗ h(n) = h(n) ∗ x(n)
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Convolution–summation is distributive. That is the convolution of a sequence with
the sum of two sequences is the same as the sum of the individual convolution of the
first sequence with the other two sequences.

x(n) ∗ (h1(n) + h2(n)) = x(n) ∗ h1(n) + x(n) ∗ h2(n)

Convolution–summation is associative. That is the convolution of a sequence with
the convolution of two sequences is the same as the convolution of the convolution of
the first two sequences with the third sequence.

x(n) ∗ (h1(n) ∗ h2(n)) = (x(n) ∗ h1(n)) ∗ h2(n)

The shift property of convolution is that

if x(n) ∗ h(n) = y(n) then x(n − l) ∗ h(n − m) = y(n − l − m)

The convolution of two shifted sequences is the convolution of the two original
sequences shifted by the sum of the shifts of the individual sequences.

Convolution of a sequence x(n) with the unit-impulse leaves the sequence un-
changed, except for the translation of the origin of the sequence to the location of the
impulse.

x(n) ∗ δ(n − k) =
∞∑

m=−∞
δ(m − k)x(n − m) = x(n − k)

Example 4.8. Find the linear convolution of the sequences {x(n), n = 0, 1, 2} =
{3, 2, 4} and h(n) = δ(n + 3).

Solution
x(n) ∗ δ(n + 3) = {x(n + 3), n = −3, −2, −1} = {3, 2, 4} �

Convolution of x(n) with the unit-step is the running sum of x(n).

x(n) ∗ u(n) =
n∑

l=−∞
x(l)

4.3.2 The Difference Equation and Convolution–Summation

The difference equation and the convolution–summation are two different mathemat-
ical models of a LTI system producing the same output for the same input. Therefore,
these two models are related. Consider the first-order difference equation, with input
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x(n) and output y(n).

y(n) = b1x(n) + (−a0)y(n − 1)

As the initial conditions are assumed to be zero for the convolution–summation
model, y(−1) = 0. In order to derive the convolution–summation model, we have to
express the past output term in terms of input samples.

y(0) = b1x(0)

y(1) = b1x(1) + (−a0)y(0) = b1x(1) + (−a0)b1x(0)

y(2) = b1x(2) + (−a0)y(1) = b1x(2) + (−a0)b1x(1) + (−a0)2b1x(0)

...

y(n) = b1x(n) + (−a0)b1x(n − 1) + · · · + (−a0)nb1x(0)

Then, the impulse response, with x(n) = δ(n), is given as

h(0) = b1, h(1) = (−a0)b1, h(2) = (−a0)2b1, . . . , h(n) = (−a0)nb1

The output y(n), using h(n), can be expressed as

y(n) = h(0)x(n) + h(1)x(n − 1) + · · · + h(n)x(0) =
n∑

m=0

h(m)x(n − m),

which is the convolution-summation. For any n, h(0) determines the effect of the
current input x(n) on the output y(n). In general, h(m) determines the effect of the input
x(n − m), applied m iterations before, on the output y(n). A system, whose impulse
response is of finite duration, is called a finite impulse response system. A system,
whose impulse response is of infinite duration, is called an infinite impulse response
system. In the difference equation model of a system, a system is characterized by
the coefficients, as and bs, of its difference equation. In the convolution–summation
model of a system, the system is characterized by its impulse response h(n).

4.3.3 Response to Complex Exponential Input

A complex exponential with frequency jω0 is given as x(n) = ejω0n, −∞ < n < ∞.
Assuming a causal and stable system with impulse response h(n), the output of the
system is given by the convolution–summation as

y(n) =
∞∑

m=0

h(m)ejω0(n−m) = ejω0n
∞∑

m=0

h(m)e−jω0m
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As the second summation is independent of n and letting

H(ejω0 ) =
∞∑

m=0

h(m)e−jω0m

we get,

y(n) = H(ejω0 )ejω0n = H(ejω0 )x(n)

H(ejω0 ) is called the frequency response since it is a constant complex scale factor,
indicating the amount of change in the amplitude and phase of an input complex
exponential ejω0n with frequency jω0 at the output. Since the impulse response is
real-valued for practical systems, the scale factor for an exponential with frequency
−jω0 is H∗(ejω0 ), where the superscript ∗ indicates complex conjugation. The point is
that the input–output relationship of a LTI system becomes a multiplication operation
rather than the more complex convolution operation. As the complex exponential
is the only signal that has this property, it is used predominantly as the basis for
signal decomposition. Even if the exponent of the complex exponential input signal
has a real part, x(n) = e(σ+jω0)n, the response of the system is still related to the
input by the multiplication operation. A real sinusoidal input A cos(ω0n + θ) is also
changed at the output by the same amount of amplitude and phase of the complex scale
factor H(ejω0 ). That is, A cos(ω0n + θ) is changed to (|H(ejω0 )|A) cos[ω0n + (θ +
∠(H(ejω0 )]).

There was no transient component in the output expression y(n), since the exponen-
tial signal was applied at n = −∞. For finite values of n, any transient component in
the output of a stable system must have died out. However, if we apply the exponential
at any finite instant, say n = 0, there will be a transient component in the response, in
addition to the steady-state component H(ejω0 )ejω0nu(n).

Example 4.9. Let the input signal to a stable system with impulse response h(n) =
b1(−a0)nu(n) be x(n) = ejω0nu(n). Find the response of the system. Assume that
y(−1) = 0.

Solution
Using the convolution–summation, we get

y(n) =
n∑

m=0

h(m)ejω0(n−m) = b1e
jω0n

n∑
m=0

(−a0)me−jω0m

=
(

b1

1 − (−a0)e−jω0

) (
ejω0n − (−a0)(n+1)e−jω0

)
, n = 0, 1, . . .
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The first term, the steady-state component

(
b1

1 − (−a0)e−jω0

)
ejω0n,

is the same as the input complex exponential with a complex scale factor. The second
term (

b1

1 − (−a0)e−jω0

)
(−(−a0)(n+1)e−jω0 ),

is the transient component that will die for sufficiently large values of n. �

4.4 System Stability

One of the criteria for the stability of a system is that the system output is bounded if the
input is bounded. A sequence x(n) is bounded if |x(n)| ≤ M for all values of n, where
M is a finite positive number. For example, the sequence x(n) = (0.8)nu(n) is bounded
and x(n) = (1.2)nu(n) is unbounded. As convolution–summation is a sum of products,
the sum is bounded if the input signal is bounded and the sum of the magnitude of the
terms of the impulse response is finite. Let the sample values of the input signal x(n)
are bounded by the positive constant M. From the convolution–summation relation
for a causal system with impulse response h(n), we get

|y(n)| = |
∞∑

m=0

h(m)x(n − m)|

≤
∞∑

m=0

|h(m)x(n − m)| =
∞∑

m=0

|h(m)||x(n − m)|

|y(n)| ≤
∞∑

m=0

|h(m)|M = M

∞∑
m=0

|h(m)|

Therefore, if
∑∞

m=0 |h(m)| is bounded then |y(n)| is bounded. Consequently, a nec-
essary and sufficient stability condition is that the impulse response is absolutely
summable,

∞∑
m=0

|h(m)| < ∞

As we used the convolution–summation to derive the stability condition, the sta-
bility condition ensures a bounded zero-state response. The stability of the zero-input
response should be checked separately, and it is presented in Chapter 10.
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Example 4.10. Is the system governed by the difference equation, with input x(n)
and output y(n), stable?

(i) y(n) = 9x(n) + 2y(n − 1)
(ii) y(n) = 9x(n) + 0.8y(n − 1)

Solution
(i) The impulse response of the system is h(n) = 9(2)nu(n). As h(n) is not absolutely

summable, the system is unstable.
(ii) The impulse response of the system is h(n) = 9(0.8)nu(n). As h(n) is absolutely

summable, the system is stable. �

4.5 Realization of Discrete Systems

A discrete system can be realized in software or hardware or as a combination of both.
In any case, the three basic components required in the realization of discrete systems
are: (i) multiplier units; (ii) adder units; and (iii) delay units. A multiplier unit, shown in
Figure 4.5(a), produces an output sequence c x(n), in which each element is the product
of the corresponding element in the input sequence x(n) and the coefficient c. An adder
unit, shown in Figure 4.5(b), produces an output sequence x(n) + y(n), in which each
element is the sum of the corresponding elements in the input sequences x(n) and y(n).
By complementing the subtrahend and then adding it with the minuend, subtraction
can be realized by an adder unit. A delay unit, shown in Figure 4.5(c), produces an
output sequence x(n − 1), which is a delayed version of the input sequence x(n) by
one sampling interval.

By interconnecting the basic components, a discrete system is realized. Consider
the realization, shown in Figure 4.6, of the system governed by the difference equation,
with input x(n) and output y(n), y(n) = 2x(n) + 0.8y(n − 1). We get the delayed out-
put term y(n − 1) by passing y(n) through a delay unit. The product term 0.8y(n − 1)
is obtained by passing y(n − 1) through a multiplier unit with coefficient 0.8. The
product term 2x(n) is obtained by passing x(n) through a multiplier unit with coef-
ficient 2. The adder unit combines the two partial results 2x(n) and 0.8y(n − 1) to
produce the output signal y(n).

Figure 4.5 Basic components required in the realization of discrete systems. (a) multiplier unit; (b) adder
unit; (c) delay unit



Time-domain Analysis of Discrete Systems 73

Figure 4.6 The realization of a discrete system

4.5.1 Decomposition of Higher-order Systems

To meet a given specification, a higher-order system is often required. Due to sev-
eral advantages, a system is usually decomposed into first- and second-order systems
connected in cascade or parallel. Figure 4.7(a) shows two systems with impulse re-
sponses h1(n) and h2(n) connected in parallel. The same input is applied to each
system and the total response is the sum of the individual responses. The combined
response of the two systems for the input x(n) is y(n) = x(n) ∗ h1(n) + x(n) ∗ h2(n).
This expression, due to the distributive property of convolution, can be written as
y(n) = x(n) ∗ (h1(n) + h2(n)). That is, the parallel connection of the two systems is
equivalent to a single system with impulse response h(n) = h1(n) + h2(n), as shown
in Figure 4.7(b).

Figure 4.8(a) shows two systems with impulse responses h1(n) and h2(n) connected
in cascade. The output of one system is the input to the other. The response of the first
system for the input x(n) is y1(n) = x(n) ∗ h1(n). The response of the second system
for the input y1(n) = x(n) ∗ h1(n) is y(n) = (x(n) ∗ h1(n)) ∗ h2(n). This expression,
due to the associative property of convolution, can be written as y(n) = x(n) ∗ (h1(n) ∗
h2(n)). That is, the cascade connection of the two systems is equivalent to a single
system with impulse response h(n) = h1(n) ∗ h2(n), as shown in Figure 4.8(b). Due
to the commutative property of convolution, the order of the systems in the cascade
connection is immaterial, with respect to the input–output relationship.

Figure 4.7 (a) Two systems connected in parallel; (b) a single system equivalent to the system in (a)
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Figure 4.8 (a) Two systems connected in cascade; (b) a single system equivalent to the system in (a)

Figure 4.9 Two systems connected in a feedback configuration

4.5.2 Feedback Systems

Another configuration of systems, often used in control systems, is the feedback config-
uration shown in Figure 4.9. In feedback systems, a fraction of the output signal is fed
back and subtracted from the input signal to form the effective input signal. A feedback
signal r(n) is produced by a system with impulse response h(n) from the delayed sam-
ples of the output signal, y(n − 1), y(n − 2), etc. That is, r(n) = ∑∞

m=1 h(m)y(n − m).
This implies that h(0) = 0. The error signal e(n) is the difference between the input
signal x(n) and the feedback signal r(n), e(n) = x(n) − r(n). This error signal is the
input to a system with impulse response g(n), which produces the output signal y(n).
That is, y(n) = ∑∞

m=0 g(m)e(n − m).

4.6 Summary
• In this chapter, the time-domain analysis of LTI discrete systems has been presented.
• As discrete systems offer several advantages, they are mostly used instead of

continuous systems. These systems can be designed to approximate continu-
ous systems with a desired accuracy by selecting a sufficiently short sampling
interval.

• The zero-input component of the response of a LTI system is its response due to the
initial conditions alone with the input assumed to be zero. The zero-state component
of the response of a LTI system is its response due to the input alone with the initial
conditions assumed to be zero. The sum of the zero-input and zero-state responses
is the complete response of the system.

• Two of the commonly used system models for time-domain analysis are the differ-
ence equation and convolution–summation models.
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• The convolution–summation model gives the zero-state response of a LTI sys-
tem. Both the zero-input and zero-state responses can be found using the
difference equation model, either by solving the difference equation or by
iteration.

• The impulse response of a system is its response to the unit-impulse input signal
with zero initial conditions.

• The convolution–summation model is based on decomposing the input signal into
a set of shifted and scaled impulses. The total response is found by summing the
responses to all the constituent impulses of the input signal.

• The complete response of a system can also be considered as the sum of the tran-
sient component and the steady-state component. For a stable system, the transient
component always decays with time. The steady-state component is the response
after the transient response has decayed.

• A system is stable if its response is bounded for all bounded input signals. As the
convolution–summation is a sum of products of the input and the impulse response,
with the input bounded, the impulse response of a stable system must be absolutely
summable for the convolution sum to be bounded.

• By interconnecting adder, multiplier, and delay units, any discrete system can be
realized. A higher-order system is usually decomposed into a set of first- and second-
order systems connected in cascade or parallel. A feedback system is obtained by
feeding back some part of the output to the input.
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Exercises

4.1 Derive the closed-form expression for the impulse response h(n), by iteration,
of the system governed by the difference equation, with input x(n) and output
y(n). List the values of the impulse response h(n) at n = 0, 1, 2, 3, 4, 5.
4.1.1 y(n) = x(n) + 2x(n − 1) − 3y(n − 1).
4.1.2 y(n) = 2x(n) − 3x(n − 1) + 1

2y(n − 1).
∗4.1.3 y(n) = 3x(n) − 1

3y(n − 1).
4.1.4 y(n) = x(n) − 2x(n − 1) + 2y(n − 1).
4.1.5 y(n) = 3x(n) − 4x(n − 1) + y(n − 1).

4.2 Find the closed-form expression for the impulse response h(n) of the system by
solving its difference equation, with input x(n) and output y(n). List the values
of the impulse response h(n) at n = 0, 1, 2, 3, 4, 5.
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4.2.1 y(n) = 3x(n) − x(n − 1) + 2y(n − 1).
4.2.2 2y(n) = x(n) + x(n − 1) − y(n − 1).
4.2.3 y(n) = 2x(n) + 1

4y(n − 1).
∗4.2.4 y(n) = 4x(n) + 3x(n − 1) − y(n − 1).
4.2.5 y(n) = x(n) + x(n − 1) − y(n − 1).

4.3 Is the system governed by the given difference equation, with input x(n)
and output y(n), linear? Let {x1(n), n = 0, 1, 2, 3} = {1, 2, 3, 2}, {x2(n), n =
0, 1, 2, 3} = {2, 3, 0, 4} and x(n) = 2x1(n) − 3x2(n). Assuming that the initial
condition y(−1) is zero, compute the first four output values and verify the
conclusion.
4.3.1 y(n) = 3x(n) − 2y(n − 1) + 1.
4.3.2 y(n) = (x(n))2 + y(n − 1).

∗4.3.3 y(n) = x(n) − (n)y(n − 1) + 2 cos(π
2 ).

4.3.4 y(n) = x(n) + x(n)y(n − 1).
4.3.5 y(n) = |x(n)|.
4.3.6 y(n) = (n)x(n) + y(n − 1) − 3 cos(π).

4.4 Is the system governed by the given difference equation, with input
x(n) and output y(n), time-invariant? Let {x(n), n = 0, 1, 2, 3, 4, 5, 6, 7, 8} =
{2, 1, 3, 3, 4, 2, 5, 1, 3}. Assuming that the initial condition is zero, compute the
first four output values and verify the conclusion to the input {x(n − 2), n =
2, 3, 4, 5, 6, 7, 8, 9, 10} = {2, 1, 3, 3, 4, 2, 5, 1, 3}.
4.4.1 y(n) = x(2n) + 2y(n − 1).
4.4.2 y(n) = 2x(n) − sin(π

2 n)y(n − 1).
∗4.4.3 y(n) = (x(n))2 − 2 cos(6πn)y(n − 1).
4.4.4 y(n) = x(n) + (n)y(n − 1).
4.4.5 y(n) = x(8 − n).

4.5 Find the linear convolution of the sequences x(n) and h(n).
4.5.1 {x(n), n = 0, 1, 2} = {4, 2, 1} and {h(n), n = 0, 1} = {−2, −3} .
4.5.2 {x(n), n = −2, −1, 0} = {2, −1, 4} and {h(n), n = 3, 4, 5, 6} =

{2, 1, 4, 3} .
∗4.5.3 {x(n), n = −3, −2, −1, 0} = {2, 2, 1, 4} and {h(n), n = 2, 3, 4, 5} =

{3, 2, 3, 4}.
4.6 Find the closed-form expression for the convolution of the sequences x(n) and

h(n). List the values of the convolution output at n = 0, 1, 2, 3, 4, 5.
4.6.1 x(n) = u(n − 1) and h(n) = u(n − 3).
4.6.2 x(n) = (0.5)nu(n − 2) and h(n) = (0.7)nu(n − 1).
4.6.3 x(n) = (0.5)n−1u(n − 1) and h(n) = (0.7)n−2u(n − 2).
4.6.4 x(n) = (0.6)nu(n) and h(n) = x(n).

∗4.6.5 x(n) = (0.6)nu(n − 2) and h(n) = u(n − 1).
4.7 Find the linear convolution of the sequences x(n) and h(n).

4.7.1 {x(n), n = 1, 2, 3, 4} = {3, 2, 4, 1} and h(n) = δ(n) .
4.7.2 {x(n), n = −4, −3, −2} = {1, 3, 2} and h(n) = δ(n − 2) .
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4.7.3 {x(n), n = 3, 4, 5} = {5, 2, 3} and h(n) = δ(n + 3) .
4.7.4 x(n) = ej 2π

6 nu(n) and h(n) = δ(n + 4) .
4.7.5 x(n) = ej 2π

6 n and h(n) = δ(n − 6) .
4.7.6 x(n) = cos( 2π

6 n) and h(n) = δ(n) .
4.8 Verify the distributive and associative properties of convolution-summation

x(n) ∗ (h1(n) + h2(n)) = x(n) ∗ h1(n) + x(n) ∗ h2(n)
and
x(n) ∗ (h1(n) ∗ h2(n)) = (x(n) ∗ h1(n)) ∗ h2(n)
where {h1(n), n = 0, 1, 2, 3} = {1, 2, 3, 4}, {h2(n), n = 0, 1, 2, 3} =
{3, 2, 1, 5}, and {x(n), n = 0, 1, 2, 3} = {4, 4, 3, 2}.

4.9 Find the steady-state response of the system, with the impulse response

h(n) = −5

3
δ(n) + 11

3
(−0.6)nu(n), n = 0, 1, 2, . . . ,

to the input x(n) = 3 sin( 2π
6 n − π

6 )u(n). Deduce the response to the input ej 2π
6 n.

∗4.10 Find the steady-state response of the system, with the impulse response

h(n) = −4δ(n) + 7(0.5)nu(n), n = 0, 1, 2, . . . ,

to the input x(n) = 2 cos( 2π
5 n + π

4 )u(n). Deduce the response to the input ej 2π
5 n.

4.11 Derive the closed-form expression for the complete response (by finding the
zero-state response using the convolution–summation and the zero-input re-
sponse) of the system governed by the difference equation

y(n) = 2x(n) − x(n − 1) + 1

3
y(n − 1)

with the initial condition y(−1) = 2 and the input x(n) = u(n), the unit-step
function. List the values of the complete response y(n) at n = 0, 1, 2, 3, 4, 5.
Deduce the expressions for the transient and steady-state responses of the sys-
tem.

4.12 Derive the closed-form expression for the complete response (by finding the
zero-state response using the convolution–summation and the zero-input re-
sponse) of the system governed by the difference equation

y(n) = x(n) − 2x(n − 1) − 1

2
y(n − 1)

with the initial condition y(−1) = −3 and the input x(n) = (−1)nu(n). List the
values of the complete response y(n) at n = 0, 1, 2, 3, 4, 5. Deduce the expre-
ssions for the transient and steady-state responses of the system.

∗4.13 Derive the closed-form expression for the complete response (by finding the
zero-state response using the convolution–summation and the zero-input re-
sponse) of the system governed by the difference equation

y(n) = 3x(n) − 2x(n − 1) + 1

4
y(n − 1)

with the initial condition y(−1) = 1 and the input x(n) = nu(n). List the values
of the complete response y(n) at n = 0, 1, 2, 3, 4, 5. Deduce the expressions
for the transient and steady-state responses of the system.
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4.14 Derive the closed-form expression for the complete response (by finding the
zero-state response using the convolution–summation and the zero-input re-
sponse) of the system governed by the difference equation

y(n) = x(n) + 3x(n − 1) − 3

5
y(n − 1)

with the initial condition y(−1) = −2 and the input x(n) = ( 2
5 )nu(n). List the

values of the complete response y(n) at n = 0, 1, 2, 3, 4, 5. Deduce the expres-
sions for the transient and steady-state responses of the system.

4.15 Derive the closed-form expression for the complete response (by finding the
zero-state response using the convolution–summation and the zero-input re-
sponse) of the system governed by the difference equation

y(n) = 2x(n) − 4x(n − 1) + 1

3
y(n − 1)

with the initial condition y(−1) = −3 and the input x(n) = 2 sin( 2π
6 n + π

3 )u(n).
List the values of the complete response y(n) at n = 0, 1, 2, 3, 4, 5. Deduce the
expressions for the transient and steady-state responses of the system.

4.16 The impulse response of a LTI system is given. Is the system stable?
4.16.1 h(0) = 0, h(n) = (−1)n+1

n
, n = 1, 2, . . ..

4.16.2 h(0) = 0, h(n) = 1
n
, n = 1, 2, . . ..

4.16.3 h(0) = 0, h(n) = 1
n2 , n = 1, 2, . . ..

4.17 Derive the closed-form expression of the impulse response h(n) of the
combined system consisting of systems governed by the given difference
equations, with input x(n) and output y(n), if the systems are connected (i) in
parallel and (ii) in cascade. List the first four values of the impulse response
of the combined system.
4.17.1

y1(n) = 3x1(n) + 2x1(n − 1) − 1

3
y1(n − 1) and

y2(n) = 2x2(n) − 3x2(n − 1) − 1

4
y2(n − 1)

∗4.17.2

y1(n) = x1(n) − x1(n − 1) + 1

5
y1(n − 1) and y2(n)

= x2(n) + 2x2(n − 1) − 3

5
y2(n − 1)

4.17.3

y1(n) = 2x1(n) + 2x1(n − 1) + 2

5
y1(n − 1) and y2(n)

= 3x2(n) − x2(n − 1) + 5

6
y2(n − 1)



5
Time-domain Analysis
of Continuous Systems

While discrete systems, in general, are advantageous, we still need to study continuous
systems. Continuous systems offer higher speed of operation. Even if we decide to
use a discrete system, as the input and output signals are mostly continuous, we still
need continuous systems for the processing of signals before and after the interface
between the two types of system. The design of a discrete system can be made by
first designing a continuous system and then using a suitable transformation of that
design. As discrete systems usually approximate the continuous systems, comparing
the exact analysis results of the continuous systems with that of the actual performance
of the corresponding discrete system gives a measure of the approximation. For these
reasons, the study of continuous systems is as much required as that of the discrete
systems. In this chapter, we study two time-domain models of LTI continuous systems.
We consider only first-order systems in this chapter as frequency-domain methods,
described in later chapters, are easier for the analysis of higher-order systems. The
analysis procedure remains essentially the same as that of discrete systems except that
continuous systems are modeled using differential equation and convolution-integral
methods, as the signals are of continuous type.

In Section 5.1, the various classifications of LTI continuous systems are described.
In Sections 5.2 and 5.3, we develop the differential equation and convolution-integral
models of a system, respectively. Using these models, in Section 5.4, the various com-
ponents of the system response are derived. The important property of an exponential
input signal to remain in the same form at the output of a stable LTI system is demon-
strated. In Section 5.5, the stability of a system in terms of its impulse response is estab-
lished. In Section 5.6, the basic components used in the implementation of continuous
systems are presented and an implementation of a specific system is given. The decom-
position of a higher-order system into a set of lower-order systems is also presented.

A Practical Approach to Signals and Systems D. Sundararajan
© 2008 John Wiley & Sons (Asia) Pte Ltd
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5.1 Classification of Systems

5.1.1 Linear and Nonlinear Systems

A system is linear if its response to a linear combination of input signals is the same
linear combination of the individual responses to the inputs. Let the response of a
system to signal x1(t) be y1(t) and the response to x2(t) be y2(t). Then, the system
is linear if the response to a linear combination, ax1(t) + bx2(t), is ay1(t) + by2(t),
where a and b are arbitrary constants. Nonlinear terms, such as x2(t) or x(t)y(t) (the
products involving x(t), y(t), and their derivatives), in the differential equation is an
indication that the system is not linear. Any nonzero constant term is also an indication
of a nonlinear system. The linearity condition implies that the total response of a linear
system is the sum of zero-input and zero-state components. The zero-input component
of the response of a system is its response due to the initial conditions alone with the
input assumed to be zero. The zero-state component of the response of a system is its
response due to the input alone with the initial conditions assumed to be zero. The
linearity of a system with respect to zero-input and zero-state responses should be
checked individually. In most cases, zero-state linearity implies zero-input linearity.

Example 5.1. Given the differential equation of a system, with output y(t) and input
x(t), determine whether the system is linear. Assume that the initial condition y(0) is
zero.

(a) y(t) = x(t) + t
dy(t)

dt

(b) y(t) = x(t) +
(

dy(t)
dt

)2

Solution
(a) Let y1(t) be the output to x1(t) and y2(t) be the output to x2(t). The system dif-

ferential equation with x1(t) is y1(t) = x1(t) + tdy1(t)/dt. The system differential
equation with x2(t) is y2(t) = x2(t) + tdy2(t)/dt. Then,

ay1(t) + by2(t) = ax1(t) + at
dy1(t)

dt
+ bx2(t) + bt

dy2(t)

dt

= ax1(t) + bx2(t) + t
d

dt
(ay1(t) + by2(t))

The system output to x(t) = ax1(t) + bx2(t) is y(t) = ay1(t) + by2(t) for a linear
system. Substituting in the differential equation, we get

ay1(t) + by2(t) = ax1(t) + bx2(t) + t
d

dt
(ay1(t) + by2(t))

As both the differential equations are the same, the system is linear.



Time-domain Analysis of Continuous Systems 81

(b) The system differential equation with x1(t) is y1(t) = x1(t) + (dy1(t)/dt)2. The
system differential equation with x2(t) is y2(t) = x2(t) + (dy2(t)/dt)2. Then,

ay1(t) + by2(t) = ax1(t) + a

(
dy1(t)

dt

)2

+ bx2(t) + b

(
dy2(t)

dt

)2

The system output to x(t) = ax1(t) + bx2(t) is y(t) = ay1(t) + by2(t) for a linear
system. Substituting in the differential equation, we get

ay1(t) + by2(t) = ax1(t) + bx2(t) +
(

a
dy1(t)

dt
+ b

dy2(t)

dt

)2

As the differential equations are different, the system is nonlinear. �

5.1.2 Time-invariant and Time-varying Systems

The output of a time-invariant system to the input x(t − t0) must be y(t − t0) for all t0,
assuming that the output to the input x(t) is y(t) and the initial conditions are identical.
Terms, such as x(2t) or x(−t), with a nonzero and nonunit constant associated with the
argument t in the differential equation indicates a time-variant system. Any coefficient
that is an explicit function of t in the differential equation also indicates a time-variant
system.

Example 5.2. Given the differential equation of a system, with output y(t) and input
x(t), determine whether the system is time-invariant. Assume that the initial condition
is zero.

(a) y(t) = x(t) + t(dy(t)/dt)
(b) y(t) = x(t) + (dy(t)/dt)2

Solution
(a) By replacing t by (t − a) in the differential equation, we get

y(t − a) = x(t − a) + (t − a)
dy(t − a)

dt

The system output to x(t − a) is y(t − a) for a time-invariant system. Substitut-
ing in the differential equation, we get

y(t − a) = x(t − a) + t
dy(t − a)

dt

As the differential equations are different, the system is time-varying.
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(b) By replacing t by (t − a) in the differential equation, we get

y(t − a) = x(t − a) +
(

dy(t − a)

dt

)2

The system output to x(t − a) is y(t − a) for a time-invariant system. Substitut-
ing in the differential equation, we get

y(t − a) = x(t − a) +
(

dy(t − a)

dt

)2

As both the differential equations are the same, the system is time-invariant.
�

Linear time-invariant (LTI) systems satisfy the linearity and time-invariant proper-
ties and are easier to analyze and design. Most practical systems, although not strictly
linear and time-invariant, can be considered as LTI systems with acceptable error
limits.

5.1.3 Causal and Noncausal Systems

Practical systems respond only to present and past input values, but not to the future
input values. These systems are called causal or nonanticipatory systems. This implies
that the impulse response of a causal system h(t) is zero for t < 0. If the present output
y(t) depends on the input x(t + t0) with t0 > 0, then the system is noncausal. Ideal
systems, such as ideal filters, are noncausal. However, they are of interest because
they set an upper bound for the system response. Practical systems approximate the
ideal response, while being causal (that is physically realizable).

Example 5.3. Given the differential equation of a system, with output y(t) and input
x(t), determine whether the system is causal. Find the impulse response.

(a) y(t) = x(t + 1) + 2x(t) − 3x(t − 1)
(b) y(t) = 2x(t) − x(t − 1) + 3x(t − 2).

Solution
(a) As the output y(t) is a function of the future input sample x(t + 1), the system is

noncausal. The impulse response of the system is obtained, by substituting x(t) =
δ(t) in the differential equation, as y(t) = h(t) = δ(t + 1) + 2δ(t) − 3δ(t − 1).

(b) The system is causal. The impulse response of the system is y(t) = h(t) = 2δ(t) −
δ(t − 1) + 3δ(t − 2). �
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5.1.4 Instantaneous and Dynamic Systems

With regard to system memory, systems are classified as instantaneous or dynamic.
A system is instantaneous (no memory) if its output at an instant is a function of the
input at that instant only. An example is an electrical circuit consisting of resistors
only, with input–output relationship such as v(t) = Ri(t). Any system with storage
elements, such as inductors and capacitors, is called a dynamic system, since the
output at an instant of such systems is also a function of past values of the input.
If the output depends only on the input during T s of the immediate past, then it is
called finite memory system. Systems with capacitive or inductive elements are infinite
memory systems, since their output is a function of entire past history of the input.
Instantaneous systems are a special case of the dynamic systems with zero memory.

5.1.5 Lumped-parameter and Distributed-parameter Systems

If the propagation time of a signal through a system is negligible, then that system
is called a lumped-parameter system. For example, the current through a resistor in
such a system is a function of time only, but not on the dimensions of the resistor.
Such systems are modeled using ordinary differential equations. If the dimensions of a
component are large compared with the wavelength of the highest frequency of interest,
then the signal through that component is a function of time and the dimensions
of the component. A system with that type of components is called a distributed-
parameter system. Such systems, for example transmission lines, are modeled using
partial differential equations.

5.1.6 Inverse Systems

A system is invertible if its input can be determined from its output. This implies that
each input has a unique output. Systems with an input–output relationship such as
y(t) = x2(t) are not invertible. If the impulse response of a system, made up of two
systems connected in cascade, is h(t) = δ(t), then the two systems are the inverses of
one another. For example, the inverse of the system with the input–output relationship
y(t) = 4x(t) is x(t) = 1

4y(t).

5.2 Differential Equation Model

Differential equations are used in one type of time-domain modeling of continuous
systems. The input–output relationship of commonly used components of a system,
such as inductors and capacitors, is governed by differential equations. Therefore,
differential equations naturally arise in modeling systems. The interconnection of
several elements leads to a model represented by higher-order differential equations.
Consider the Nth-order differential equation of a causal LTI continuous system relating
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the output y(t) to the input x(t)

dNy(t)

dtN
+ aN−1

dN−1y(t)

dtN−1
+ · · · + a1

dy(t)

dt
+ a0y(t)

= bN

dNx(t)

dtN
+ bN−1

dN−1x(t)

dtN−1
+ · · · + b1

dx(t)

dt
+ b0x(t)

where N is the order of the system and the coefficients as and bs are real constants
characterizing the system. If the input is zero, the differential equation reduces to

dNy(t)

dtN
+ aN−1

dN−1y(t)

dtN−1
+ · · · + a1

dy(t)

dt
+ a0y(t) = 0

Denoting d/dt = D, we get

(DN + aN−1D
N−1 + · · · + a1D + a0)y(t) = 0

The solution to this equation gives the zero-input response of the system. This
equation is a linear combination of y(t) and its N successive derivatives equated to
zero, for all values of t. Therefore, y(t) and all its N successive derivatives must be
of the same form. Only the exponential function has this property. Therefore, the
solution is of the form Ceλt , where C and λ are to be found. Substituting y(t) = Ceλt ,
dy(t)/dt = Cλeλt , etc., we get

(λN + aN−1λ
N−1 + · · · + a1λ + a0)Ceλt = 0

Assuming that the solution is nontrivial (C �= 0),

(λN + aN−1λ
N−1 + · · · + a1λ + a0) = 0 (5.1)

The characteristic polynomial on the left-hand side has N roots, λ1, λ2, . . . , λN .
Therefore, we get N solutions, C1e

λ1t , C2e
λ2t, . . . , CNeλNt . As the system is assumed

to be linear and the solution has to satisfy N independent initial conditions of the
system, the zero-input response of the system is given by

y(t) = C1e
λ1t + C2e

λ2t + · · · + CNeλNt,

assuming all the roots are distinct. The constants can be found using the N independent
initial conditions of the system. The zero-input response represents a behavior that
is characteristic of the system. As the form of the zero-input response of any Nth-
order system is the same, it is the set of roots of the characteristic polynomial that
distinguishes a specific system. Therefore, Equation (5.1) is called the characteristic
equation of the system and the roots, λ1, λ2, . . . , λN , are called the characteristic
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roots of the system. The corresponding exponentials, eλ1t , eλ2t, . . . , eλNt , are called
the characteristic modes of the system. The characteristic modes of a system are also
influential in the determination of the zero-state response.

5.3 Convolution-integral Model

We have shown, in Chapter 3, that an arbitrary signal x(t) can be decomposed into
scaled and shifted impulses as

x(t) =
∫ ∞

−∞
x(τ)δ(t − τ)dτ

Let the response of a system to the impulse δ(t) be h(t). Then, the system response
of a LTI system to x(τ)δ(t − τ)dτ is x(τ)h(t − τ)dτ. The total response y(t) of the
system to the signal x(t) is the sum of responses of all the constituent continuum of
impulse components of x(t),

y(t) =
∫ ∞

−∞
x(τ)h(t − τ)dτ = x(t) ∗ h(t)

This relation is the convolution-integral of the signals x(t) and h(t) denoted as
x(t) ∗ h(t). As the impulse response h(t) of a causal system is zero for t < 0, the
upper limit of the integral will be t in this case, instead of ∞, as h(t − τ) = 0, τ > t.
If the signal x(t) starts at the instant t = t0 then the lower limit is equal to t0. The
convolution output is the integral of products of two signals, each other’s argument
running in opposite directions.

To summarize, the output of a system is found by convolution with the repeated use
of four operations (fold, shift, multiply, and integrate).

1. One of the two signals to be convolved (say h(τ)) is time-reversed, that is folded
about the vertical axis at the origin to get h(−τ).

2. The time-reversed signal, h(−τ), is shifted by t0 (right-shift for positive t0 and
left-shift for negative t0), yielding h(t0 − τ), to find the output at t = t0.

3. The product of the two signals, x(τ) and h(t0 − τ), is found.
4. The integral of the product is the output value at t = t0.

Example 5.4. Find the convolution of the signals x(t) = e−2tu(t) and h(t) = e−3tu(t).

Solution

y(t) =
∫ t

0
e−2τe−3(t−τ)dτ = e−3t

∫ t

0
eτdτ = (e−2t − e−3t)u(t) �
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Figure 5.1 (a) x(t) = e−2tu(t), x(τ) = e−2τu(τ); (b) h(t) = e−3tu(t), h(τ) = e−3τu(τ); (c) x(τ) =
e−2τu(τ) and the time-reversed signal h(−τ) = e3τu(−τ); (d) x(τ) = e−2τu(τ) and the time-reversed
and advanced signal h(−(τ + 1)) = e3(τ+1)u(−(τ + 1)); (e) x(τ) = e−2τu(τ) and the time-reversed
and delayed signal h(−(τ − 1)) = e3(τ−1)u(−(τ − 1)); (f) the product of x(τ) and h(−(τ − 1)),
e−2τu(τ)e3(τ−1)u(−(τ − 1)); (g) the convolution output of x(t) = e−2tu(t) and h(t) = e−3tu(t), y(t) =
(e−2t − e−3t)u(t)

Figures 5.1(a) and (b) show the two signals to be convolved. These signals and
the convolution output, shown in Figure 5.1(g), have the same independent variable
t. However, the convolution-integral, for each value of t, is evaluated with respect
to the dummy variable τ (a dummy variable exists only during the operation).
Therefore, the two signals to be convolved are also shown with respect to τ in
Figures 5.1(a) and (b). Figure 5.1(c) shows x(τ) = e−2τu(τ) and the time-reversed
signal h(−τ) = e3τu(−τ). The convolution output at t = 0 is zero, since the area en-
closed by the signal e−2τu(τ)e3τu(−τ) is zero (there is no overlap of nonzero portions of
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the signals). Figure 5.1(d) shows x(τ) = e−2τu(τ) and the time-reversed and advanced
signal h(−(τ + 1)) = e3(τ+1)u(−(τ + 1)). The convolution output at t = −1 is zero,
since there is no overlap of nonzero portions of the signals. Figure 5.1(e) shows x(τ) =
e−2τu(τ) and the time-reversed and delayed signal h(−(τ − 1)) = e3(τ−1)u(−(τ − 1)).
The nonzero portions of the two signals overlap in the interval from τ = 0 and τ = 1.
The product of the signals, e−2τu(τ)e3(τ−1)u(−(τ − 1)), in this interval is shown in
Figure 5.1(f). The area enclosed by this signal is the convolution output at t = 1. The
convolution output of x(t) = e−2tu(t) and h(t) = e−3tu(t) is y(t) = (e−2t − e−3t)u(t),
and is shown in Figure 5.1(g).

5.3.1 Properties of the Convolution-integral

The convolution-integral is commutative, that is the order of the two signals to be
convolved is immaterial.

x(t) ∗ h(t) = h(t) ∗ x(t)

The convolution-integral is distributive. That is the convolution of a signal with the
sum of two signals is the same as the sum of the individual convolutions of the first
signal with the other two signals.

x(t) ∗ (h1(t) + h2(t)) = x(t) ∗ h1(t) + x(t) ∗ h2(t)

The convolution-integral is associative. That is the convolution of a signal with the
convolution of two signals is the same as the convolution of the convolution of the
first two signals with the third signal.

x(t) ∗ (h1(t) ∗ h2(t)) = (x(t) ∗ h1(t)) ∗ h2(t)

The shift property of convolution is that

if x(t) ∗ h(t) = y(t) then x(t − t1) ∗ h(t − t2) = y(t − t1 − t2)

The convolution of two shifted signals is the convolution of the two original signals
shifted by the sum of the shifts of the individual signals.

The duration of the convolution of two finite length signals of duration T1 and T2 is
T1 + T2, as the overlap of nonzero portions can occur only over that length.

Convolution of a signal x(t) with the unit-impulse leaves the signal unchanged,
except for the translation of the origin of the signal to the location of the impulse.

x(t) ∗ δ(t − t1) =
∫ ∞

−∞
δ(τ − t1)x(t − τ)dτ = x(t − t1)
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Convolution of x(t) with the unit-step is the running integral of x(t).

x(t) ∗ u(t) =
∫ t

−∞
x(τ)dτ

5.4 System Response

As the amplitude profile of practical signals is usually arbitrary, the output of a sys-
tem to such signals is found by decomposing the input signals into mathematically
well-defined impulse or sinusoidal (in general, exponential) signals. While we are
interested in the response of a system to a specific input signal, we use the impulse
and the sinusoidal signals as intermediaries. In the convolution-integral model of a
system, the impulse signal is used as an intermediary. While these intermediary sig-
nals are mathematical idealizations, they can be approximated to a required accuracy
for practical purposes. Therefore, it is important to find the response of systems to
these signals. In addition, system characteristics, such as rise time, time constant, and
frequency selectivity, can be obtained from these responses.

5.4.1 Impulse Response

The impulse response, h(t), of a system is its response to the unit-impulse input signal
with the initial conditions of the system zero.

Example 5.5. Find the closed-form expression for the impulse response of the system
governed by the differential equation, with output y(t) and input x(t),

dy(t)

dt
+ a0y(t) = b1

dx(t)

dt
+ b0x(t)

Solution
The input signal x(t) = δ(t) is effective only at the instant t = 0 and establishes nonzero
initial conditions in the system, by storing energy in system components such as
capacitor, at the instant immediately after t = 0. Therefore, for t > 0, this problem can
be considered as finding the zero-input response of the system with the initial condition
y(0+). The symbol y(0+) indicates the value of y(t) at the instant immediately after
t = 0 and y(0−) indicates the value of y(t) at the instant immediately before t = 0.
Therefore, we have to find the initial condition y(0+) first and then the response to δ(t).
The response to the input b1(dδ(t)/dt) + b0δ(t) is found using the linearity property
of the system. The value y(0+) is obtained by integrating the differential equation

dy(t)

dt
+ a0y(t) = δ(t)



Time-domain Analysis of Continuous Systems 89

from t = 0− to t = 0+.

∫ 0+

0−

dy(t)

dt
dt +

∫ 0+

0−
a0y(t)dt =

∫ 0+

0−
δ(t)dt

The right-hand side is equal to one. The first term on the left-hand side reduces to
y(0+) as y(0−) = 0. Remember that the impulse response is defined as the response
of a system to the unit-impulse input with the initial conditions zero. An impulse on
the right-hand side implies an impulse on the left-hand side. This impulse must occur
in the highest derivative, dy(t)/dt, of y(t) since an impulse in y(t) requires the first
term to contain the derivative of the impulse and the input does not contain any such
function. Therefore, the second term reduces to zero, since the function y(t) is known
to be finite (a step function as it the integral of the first term) in the infinitesimal
interval of integration. Therefore, the equation reduces to y(0+) = 1. In general, the
integrals of all the lower order derivative terms of an Nth-order differential equation
evaluate to zero at t = 0+ and the only nonzero initial condition is

dN−1y(t)

dtN−1

∣∣∣∣∣
t=0+

= 1

For a first-order system, the zero-input response is of the form Ce−a0t . With the initial
condition y(0+) = 1, we get the zero-input response as e−a0tu(t). For the input b0δ(t),
the response is b0e

−a0tu(t). For the input b1(dδ(t)/dt), by differentiating b1e
−a0tu(t),

we get the response as b1δ(t) − b1a0e
−a0tu(t). Note that, for linear systems, if y(t)

is the output to x(t), then dy(t)/dt is the output to dx(t)/dt. Therefore, the impulse
response of the system is

h(t) = b0e
−a0tu(t) + b1δ(t) − b1a0e

−a0tu(t) = b1δ(t) + (b0 − b1a0)e−a0tu(t) �

5.4.2 Response to Unit-step Input

Example 5.6. Find the complete response of the system characterized by the differ-
ential equation

dy(t)

dt
+ 4y(t) = 3x(t)

with x(t) = u(t), the unit-step input signal. Assume that y(0−) = 2.

Solution
Zero-input response. The characteristic equation of the system is λ + 4 = 0. The
zero-input response is of the form Ce−4t . Using the given initial condition, we get
C = 2 and the zero-input response is 2e−4t .
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Zero-state response. The impulse response of the system is h(t) = 3e−4tu(t). Using
the convolution-integral, we get the zero-state response as

y(t) =
∫ t

0
u(t − τ)3e−4τdτ = 3

∫ t

0
e−4τdτ = 3

4
(1 − e−4t)u(t)

As the unit-step signal is the integral of the unit-impulse, the unit-step response is
the integral of the of the unit-impulse response. The unit-impulse response h(t) is the
derivative of the unit-step response y(t).
Complete response. The complete response of the system is the sum of the zero-input
and zero-state responses.

y(t) =

zero-state︷ ︸︸ ︷
3

4
− 3

4
e−4t +

zero-input︷ ︸︸ ︷
2e−4t t ≥ 0

y(t) =

steady-state︷︸︸︷
3

4

transient︷ ︸︸ ︷
−3

4
e−4t + 2e−4t = 3

4
+ 5

4
e−4t

Transient and steady-state responses. The transient response of the system is
(5/4)e−4t . The steady-state response of the system, 3/4, is the response of the system
after the transient response has decayed. The transient response of a stable system
always decays with time. The form of the transient response depends solely on the
characteristics of the system while the form of the steady-state response depends
solely on the input signal. The various components of the response are shown in
Figure 5.2. �
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Figure 5.2 The response of the system for unit-step signal: (a) zero-input response; (b) zero-state
response; (c) complete response; (d) transient response due to input; (e) transient response; (f) steady-
state response
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5.4.3 Characterization of Systems by their Responses to Impulse
and Unit-step Signals

We can get information about the system behavior from the impulse and unit-step
responses. If the significant portions of the impulse response is of longer duration,
as shown by solid line in Figure 5.3(a), then the response of the system is sluggish.
The corresponding unit-step response is shown by solid line in Figure 5.3(b). The
time taken for the unit-step response to rise from 10 to 90% of its final value is
called the rise time of the system. If the significant portions of the impulse response
is of shorter duration, as shown by dashed line in Figure 5.3(a), then the response
of the system is faster, as shown by dashed line in Figure 5.3(b). A system with a
shorter impulse response has less memory and it is readily influenced by the recent
values of the input signal. Therefore, its response is fast. The faster is the rate of
decay of the impulse response, the faster the response approaches its steady-state
value.

The unit-step response is the integral of the unit-impulse response, y(t) = ∫ t
0 h(τ)dτ.

As the final value tends to one in Figure 5.3(b) and as the unit-step signal, ultimately,
acts like a dc signal, the monotonically decreasing impulse response indicates a system
that passes low-frequency components of a signal well.

Figure 5.3(c) shows the impulse response δ(t) − e−tu(t). The corresponding unit-
step response is shown in Figure 5.3(d). Note that the final value of the unit-step
response approaches a very low value in Figure 5.3(d). This indicates a system that
does not pass low-frequency components of a signal well.
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Figure 5.3 (a) Typical monotonically decreasing impulse responses; (b) the corresponding unit-step
responses; (c) an impulse response that is a combination of an impulse and an exponential; (d) the
corresponding unit-step response
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5.4.4 Response to Complex Exponential Input

A complex exponential with frequency jω0 is given as x(t) = ejω0t, −∞ < t < ∞.
Assuming a causal and stable system with impulse response h(t), the output is given
by the convolution-integral as

y(t) =
∫ ∞

0
h(τ)ejω0(t−τ)dτ = ejω0t

∫ ∞

0
h(τ)e−jω0τdτ

Note that the second integral is independent of t. Let

H(jω0) =
∫ ∞

0
h(τ)e−jω0τdτ

Then,

y(t) = H(jω0)ejω0t = H(jω0)x(t)

H(jω0) is called the frequency response since it is a constant complex scale factor,
indicating the amount of change in the amplitude and phase of an input complex
exponential ejω0t with frequency jω0 at the output. The point is that the input–output
relationship of a LTI system becomes a multiplication operation rather than the more
complex convolution operation. As the complex exponential is the only signal that has
this property, it is used predominantly as the basis for signal decomposition. Even if
the exponent of the exponential input signal has a real part, x(t) = e(σ+ω0)t = es0t , the
response of the system is still related to the input by the multiplication operation. A
real sinusoid input A cos(ω0t + θ) is also changed at the output by the same amount
of amplitude and phase of the complex scale factor H(jω0). That is, A cos(ω0t + θ)
is changed to (|H(jω0)|A) cos(ω0t + (θ + ∠(H(jω0))).

There was no transient component in the output expression y(t), since the exponen-
tial signal was applied at t = −∞. For finite values of t, any transient component in
the output of a stable system must have died out. However, if we apply the exponential
at any finite instant, say t = 0, there will be transient component, in addition to the
steady-state component H(jω0)ejω0tu(t).

Example 5.7. Let the input signal to a stable system with impulse response h(t) =
e−tu(t) be x(t) = es0tu(t). Find the response y(t) of the system. Assume that y(0−) = 0.

Solution
Using the convolution-integral, we get

y(t) =
∫ t

0
e−τes0(t−τ)dτ = es0t

∫ t

0
e−τ(1+s0)dτ

=
(

1

s0 + 1

) (
es0t − e−t

)
u(t), s0 �= −1
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The steady-state component, (1/(s0 + 1))(es0t)u(t), is the same as the input complex
exponential with a complex scale factor. The second term, (−e−t/(s0 + 1))u(t), is the
transient component that will die for sufficiently large values of t. �

5.5 System Stability

One of the criteria for the stability of a system is that the system output is bounded if
the input is bounded. A signal x(t) is bounded if |x(t)| ≤ P for all values of t, where
P is a finite positive number. For example, the signal x(t) = e−0.8tu(t) is bounded and
x(t) = e0.8tu(t) is unbounded. As convolution-integral is an integral of products, its
value is bounded if the input signal is bounded and the value of the integral of the
magnitude of the impulse response is bounded. Let the input signal x(t) be bounded
by the positive constant P . From the convolution-integral relation for a causal system
with impulse response h(t), we get

|y(t)| = |
∫ ∞

0
h(τ)x(t − τ)dτ|

≤
∫ ∞

0
|h(τ)x(t − τ)dτ| =

∫ ∞

0
|h(τ)||x(t − τ)|dτ

|y(t)| ≤
∫ ∞

0
|h(τ)|Pdτ = P

∫ ∞

0
|h(τ)|dτ

Therefore, if
∫ ∞

0
|h(τ)|dτ is bounded then |y(t)| is bounded. Consequently, a nec-

essary and sufficient stability condition is that the impulse response is absolutely
integrable,

∫ ∞

0
|h(τ)|dτ < ∞

As we used the convolution-integral to derive the stability condition, the stabil-
ity condition ensures a bounded zero-state response. The stability of the zero-input
response should be checked separately and it is presented in Chapter 11.

Example 5.8. Find the condition so that the causal LTI system governed by the
differential equation, with output y(t) and input x(t),

dy(t)

dt
+ a0y(t) = b0x(t)

is stable.
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Solution
As the impulse response of this system, h(t) = b0e

−a0tu(t), is an exponential signal,
the condition a0 > 0 ensures that h(t) is absolutely integrable. �

5.6 Realization of Continuous Systems

The three basic components required in the realization of continuous systems are:
(i) multiplier unit; (ii) adder unit; and (iii) integrator unit. A multiplier unit, shown in
Figure 5.4(a), produces an output signal c x(t), which is the product of the input signal
x(t) with the coefficient c. An adder unit, shown in Figure 5.4(b), produces an output
signal x(t) + y(t), which is the sum of the input signals x(t) and y(t). By changing the
sign of the subtrahend and then adding it with the minuend, the subtraction operation
can be realized by an adder unit. An integrator unit, shown in Figure 5.4(c), produces
an output

∫ t
−∞ x(τ) dτ for an input x(t). The output is the integral of the input.

The realization of a continuous system is an interconnection of the basic compo-
nents. Consider the realization, shown in Figure 5.5, of a first-order system governed
by the differential equation, with output y(t) and input x(t),

dy(t)

dt
+ 3y(t) = 2x(t)

A multiplier unit with coefficient −3 and input y(t) produces −3y(t). A multiplier
unit with coefficient 2 and input x(t) produces 2x(t). The adder unit combines the two
partial results to produce the signal −3y(t) + 2x(t), which is equal to dy(t)/dt. By
passing this signal through an integrator unit, we get y(t).

5.6.1 Decomposition of Higher-order Systems

To meet a given specification, an higher-order system is often required. Due to several
advantages, a system is usually decomposed into first- and second-order systems
connected in cascade or parallel. Consider two systems with impulse responses h1(t)
and h2(t) connected in parallel, shown in Figure 5.6. The same input is applied to each
system and the total response is the sum of the individual responses. The combined

Figure 5.4 Basic components required in the realization of continuous systems: (a) multiplier unit;
(b) adder unit; (c) integrator unit
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Figure 5.5 A continuous system realization

response of the two systems for the input x(t) is y(t) = x(t) ∗ h1(t) + x(t) ∗ h2(t).
This expression, due to the distributive property of convolution, can be written as
y(t) = x(t) ∗ (h1(t) + h2(t)). That is, the parallel connection of the two systems is
equivalent to a single system with impulse response h(t) = h1(t) + h2(t), as shown in
Figure 5.6.

Consider two systems with impulse responses h1(t) and h2(t) connected in cas-
cade, shown in Figure 5.7. The output of one system is the input to the other. The
response of the first system for the input x(t) is y1(t) = x(t) ∗ h1(t). The response
of the second system for the input y1(t) = x(t) ∗ h1(t) is y(t) = (x(t) ∗ h1(t)) ∗ h2(t).
This expression, due to the associative property of convolution, can be written as
y(t) = x(t) ∗ (h1(t) ∗ h2(t)). That is, the cascade connection of the two systems is
equivalent to a single system with impulse response h(t) = h1(t) ∗ h2(t), as shown
in Figure 5.7. Due to the commutative property of convolution, the order of the
systems in the cascade connection is immaterial, with respect to the input–output
relationship.

5.6.2 Feedback Systems

Another configuration of systems, often used in control systems, is the feedback con-
figuration shown in Figure 5.8. In feedback systems, a fraction of the output signal
is fed back and subtracted from the input signal to form the effective input signal. A

Figure 5.6 (a) Two systems connected in parallel; (b) a single system equivalent to the system in (a)
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Figure 5.7 (a) Two systems connected in cascade; (b) a single system equivalent to the system in (a)

Figure 5.8 Two systems connected in a feedback configuration

feedback signal r(t) is produced by a causal system with impulse response h(t) from
the the output signal, y(t). That is, r(t) = ∫ ∞

0 h(τ)y(t − τ)dτ. The error signal e(t) is
difference between the input signal x(t) and the feedback signal r(t), e(t) = x(t) − r(t).
This error signal is the input to a causal system with impulse response g(t), which
produces the output signal y(t). That is, y(t) = ∫ ∞

0 g(τ)e(t − τ)dτ.

5.7 Summary
• In this chapter, the time-domain analysis of LTI continuous systems has been pre-

sented.
• The zero-input component of the response of a LTI system is its response due to the

initial conditions alone with the input assumed to be zero. The zero-state component
of the response of a LTI system is its response due to the input alone with the initial
conditions assumed to be zero. The sum of the zero-input and zero-state responses
is the complete response of the system.

• Two of the commonly used system models for time-domain analysis are the differ-
ential equation and convolution-integral models.

• The convolution-integral model gives the zero-state response of a LTI system. Both
the zero-input and zero-state responses can be found by solving the differential
equation.

• The impulse response of a system is its response to the unit-impulse input signal
with the initial conditions zero.

• The convolution-integral model is based on decomposing the input signal into con-
tinuum of shifted and scaled impulses. The total response is found by the integral
of the responses to all the constituent impulses of the input signal.
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• The complete response of a system can also be considered as the sum of transient
and steady-state components. For a stable system, the transient component decays
with time. The steady-state component is the response after the transient response
has decayed.

• A system is stable if its response is bounded for all bounded input signals. As the
convolution-integral is an integral of the product of input and impulse responses,
with the input bounded, the impulse response of a stable system must be absolutely
integrable for the value of the convolution-integral to be bounded.

• By interconnecting adder, multiplier, and integrator units, any continuous sys-
tem can be realized. A higher-order system is usually decomposed into a set
of first- and second-order systems connected in cascade or parallel. A feed-
back system is obtained by feeding back some part of the output to the
input.

Further Reading

1. Lathi, B. P., Linear Systems and Signals, Oxford University Press, New York, 2004.

Exercises

5.1 Is the system governed by the given differential equation, with output y(t) and
input x(t), linear?
5.1.1 dy(t)

dt + 2y(t) + 2 = x(t).

5.1.2
(

dy(t)
dt

)2 + y(t) = dx(t)
dt

+ x(t).

5.1.3 dy(t)
dt

+ ty(t) = 3 dx(t)
dt

+ 2x(t).
5.1.4 dy(3t)

dt
+ y(3t) = x(t).

5.1.5 dy(t)
dt

+ y(t) + sin(π) = x(t).
5.1.6 dy(t)

dt
+ y(t) + cos(π) = x(t).

5.1.7 dy(t)
dt

+ y(t) = x(t) dx(t)
dt

.
5.1.8 dy(t)

dt
+ ey(t) = x(t).

∗5.1.9 dy(t)
dt

= |x(t)|.
5.2 Is the system governed by the given differential equation, with output y(t) and

input x(t), time-invariant?
5.2.1 dy(t)

dt
+ y(2t) = x(t).

5.2.2 dy(t)
dt

+ cos
(

π
2 t

)
y(t) = x(t).

5.2.3 dy(t)
dt

+ y(t) = tx(t).
∗5.2.4 y(t) = x(t − 5).
5.2.5 dy(t)

dt
+ ty(t) = x(t).

5.2.6 dy(t)
dt

+ y(t) = x(t) dx(t)
dt

.
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5.2.7 dy(t)
dt

+ ey(t) = x(t).
5.2.8 dy(t)

dt
+ y(−t) = x(t).

5.3 Find the closed-form expression for the convolution of the signals x(t) and h(t).
List the values of the convolution output at t = 0, 1, 2, 3, 4, 5.
5.3.1 x(t) = 3u(t + 1) and h(t) = 2u(t − 3).
5.3.2 x(t) = 2e−2tu(t − 1) and h(t) = 2e−2tu(t + 3).
5.3.3 x(t) = 4u(t − 1) and h(t) = 2e−2(t+2)u(t + 2).

∗5.3.4 x(t) = (u(t) − u(t − 3)) and h(t) = (u(t) − u(t − 3)).
5.4 Find the convolution of the signals x(t) and h(t).

5.4.1 x(t) = ej 2π
6 tu(t) and h(t) = δ(t + 4) .

5.4.2 x(t) = ej 2π
6 t and h(t) = δ(t + 12) .

5.4.3 x(t) = cos
(

2π
6 t

)
and h(t) = δ(t).

5.5 Verify the distributive property of convolution integral, x(t) ∗ (h1(t) + h2(t)) =
x(t) ∗ h1(t) + x(t) ∗ h2(t).
5.5.1 h1(t) = 2e−2tu(t), h2(t) = 3e−2tu(t), x(t) = u(t).
5.5.2 h1(t) = 3e−3tu(t), h2(t) = 5e−3tu(t), x(t) = e−tu(t).

5.6 Verify the associative property of convolution integral, x(t) ∗ (h1(t) ∗ h2(t)) =
(x(t) ∗ h1(t)) ∗ h2(t).
5.6.1 h1(t) = e−2tu(t), h2(t) = e−3tu(t), x(t) = u(t).
5.6.2 h1(t) = e−2tu(t), h2(t) = e−3tu(t), x(t) = e−tu(t).

5.7 Find the closed-form expression for the impulse response h(t) of the system
characterized by the differential equation, with output y(t) and input x(t). De-
duce the closed-form expression for the unit-step response y(t) of the system.
5.7.1 dy(t)

dt
+ 2y(t) = − dx(t)

dt
+ x(t).

∗5.7.2 dy(t)
dt

− y(t) = 2 dx(t)
dt

+ 3x(t).
5.7.3 dy(t)

dt
+ 3y(t) = 2x(t).

5.7.4 dy(t)
dt

+ 4y(t) = −2 dx(t)
dt

+ x(t).
5.7.5 dy(t)

dt
+ 2y(t) = 4x(t).

5.8 Derive the closed-form expression for the complete response (by finding the
zero-state response by convolution and the zero-input response) of the system
governed by the differential equation

dy(t)

dt
+ y(t) = 3

dx(t)

dt
+ 2x(t)

with the initial condition y(0−) = 2 and the input x(t) = u(t), the unit-step
function. Deduce the expressions for the transient and steady-state responses
of the system.

5.9 Derive the closed-form expression for the complete response (by finding the
zero-state response by convolution and the zero-input response) of the system
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governed by the differential equation

dy(t)

dt
− 2y(t) = −3

dx(t)

dt
+ x(t)

with the initial condition y(0−) = 1 and the input x(t) = tu(t), the unit-ramp
function. Deduce the expressions for the transient and steady-state responses
of the system.

5.10 Derive the closed-form expression for the complete response (by finding the
zero-state response by convolution and the zero-input response) of the system
governed by the differential equation

dy(t)

dt
+ 4y(t) = 2

dx(t)

dt
− 3x(t)

with the initial condition y(0−) = 2 and the input x(t) = e−3tu(t). Deduce the
expressions for the transient and steady-state responses of the system.

∗5.11 Derive the closed-form expression for the complete response (by finding the
zero-state response by convolution and the zero-input response) of the system
governed by the differential equation

dy(t)

dt
+ y(t) = −dx(t)

dt
+ x(t)

with the initial condition y(0−) = 3 and the input x(t) = 2 cos(t)u(t). De-
duce the expressions for the transient and steady-state responses of the
system.

5.12 Derive the closed-form expression for the complete response (by finding the
zero-state response by convolution and the zero-input response) of the system
governed by the differential equation

dy(t)

dt
+ 5y(t) = 3

dx(t)

dt
− x(t)

with the initial condition y(0−) = −2 and the input x(t) = sin(t)u(t). De-
duce the expressions for the transient and steady-state responses of the
system.

5.13 Find the steady-state response of the system, with the impulse response

h(t) = 3δ(t) − 2e−2tu(t),

to the input x(t) = 3 cos( 2π
8 t + π

3 )u(t). Deduce the response for the input ej 2π
8 t .
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∗5.14 Find the steady-state response of the system, with the impulse response

h(t) = 2δ(t) − 4e−tu(t),

to the input x(t) = 2 sin( 2π
6 t − π

6 )u(t). Deduce the response for the input

ej 2π
6 t .

5.15 The impulse response of a LTI system is given. Use the bounded input bounded
output test to find whether the system is stable?
5.15.1 h(t) = e−2tu(t) .
5.15.2 h(t) = u(t) .
5.15.3 h(t) = sin(2t)

t
u(t).

5.15.4 h(t) =
(

sin(2t)
t

)2
u(t).

5.15.5 h(t) = −e3tu(t) .
5.16 Derive the closed-form expression of the impulse response h(t) of the combined

system consisting of systems with impulse responses h1(t) and h2(t), if the
systems are connected in: (i) parallel; and (ii) cascade.
5.16.1 h1(t) = e−2tu(t) and h2(t) = e−5tu(t).
5.16.2 h1(t) = δ(t) + e−3tu(t) and h2(t) = δ(t) − e−2tu(t).
5.16.3 h1(t) = 2δ(t) − e−4tu(t) and h2(t) = e−3tu(t).



6
The Discrete Fourier Transform

In this chapter, the most often used tools for the transformation of signals from the time-
to the frequency-domain and back again, the DFT and the IDFT, are presented. The
frequency-domain representation of signals and systems is introduced in Section 6.1.
In Section 6.2, a brief review of Fourier analysis is presented. The DFT and the IDFT
are derived in Section 6.3. The properties of the DFT are presented in Section 6.4.
Some applications of the DFT are presented in Section 6.5.

6.1 The Time-domain and the Frequency-domain

The independent variable, in the time-domain representation of signals and systems,
is time. In this domain, we analyze arbitrary signals in terms of scaled and shifted
impulses. A system is characterized in terms of its impulse response (Chapters 4
and 5). We still look for simple signals that provide more efficient signal and system
analysis. This leads us to an alternate representation of signals and systems, called the
frequency-domain representation. In this representation (which can be considered as
the transformation of the independent variable), the variation of a signal with respect
to the frequency of its constituent sinusoids is used in its characterization. At each
frequency, the amplitude and phase or, equivalently, the amplitudes of the cosine
and sine components of the sinusoid, are used for representing a signal. Systems
are characterized in terms of their responses to sinusoids. Both the time-domain and
frequency-domain representations completely specify a signal or a system. In the
frequency-domain, the independent variable is frequency, thereby explicitly specifying
the frequency components of a signal. While there are other basic signals, the sinusoid
is mostly used for signal and LTI system analysis because it provides ease of signal
decomposition, simpler system analysis, and more insight into the signal and system
characteristics. Except for the fact that the independent variable is frequency, the
system analysis is very similar to that used in the time-domain. That is, we decompose

A Practical Approach to Signals and Systems D. Sundararajan
© 2008 John Wiley & Sons (Asia) Pte Ltd



102 A Practical Approach to Signals and Systems

an input signal in terms of sinusoids, find the response of the system to each sinusoid,
and, using the linearity and time-invariant properties of LTI systems, sum up all the
responses to find the complete response of the system. The big advantage of the
sinusoids is that the steady-state output of a stable LTI system for a sinusoidal input
is of the same form. Therefore, the output of a system can be found using the much
simpler multiplication operation compared with the convolution operation required
using the impulse signal.

A set of complex exponentials or sinusoids is used as the basis signals in the prin-
cipal transforms used in signal and LTI system analysis. While sinusoidal waveforms
are easy to visualize, the complex exponential, which is a functionally equivalent
mathematical representation of a sinusoid, is often used in signal and system analy-
sis, due to its compact form and ease of manipulation. In Fourier analysis, sinusoids
with constant amplitudes (or exponentials with pure imaginary exponents) are used as
basis signals. Sinusoids with exponentially varying amplitudes (or exponentials with
complex exponents) are used in Laplace and z-transforms. Each transform is more
suitable for the analysis of certain classes of signals and systems.

6.2 Fourier Analysis

The theory of Fourier analysis is that any periodic signal satisfying certain conditions,
which are met by most signals of practical interest, can be represented uniquely as the
sum of a constant value and an infinite number of harmonics. Harmonically related
sinusoids, called harmonics, are a set of sinusoids consisting a fundamental harmonic
with frequency f and other harmonics having frequencies those are integral multiples
of f . The sum of a set of harmonically related sinusoids is not a sinusoid, but is a
periodic waveform with period the same as that of the fundamental. Given a waveform,
finding the amplitude of its constituent sinusoids is called the Fourier analysis. To sum
up a set of sinusoids to synthesize an arbitrary waveform is called the Fourier synthesis.
Consider the discrete periodic waveform, x(n) = 2 + 3 sin( 2π

4 n) + cos(2 2π
4 n), with

period 4 samples, shown in Figure 6.1(a). The independent variable n (actually nTs,
where Ts is the sampling interval) is time and the dependent variable is amplitude.
Figure 6.1(b) shows the frequency-domain representation of the waveform in (a). It
shows the complex amplitude, multiplied by 4, of its constituent complex exponentials.
To find the real sinusoids, shown in Figure 6.1(c), those constitute the signal, we add
up the complex exponentials.

x(n) = 1

4

(
8ej0 2π

4 n − j6ej 2π
4 n + 4ej2 2π

4 n + j6ej3 2π
4 n

)

= 2 + 3 sin
(

2π

4
n

)
+ cos

(
2

2π

4
n

)
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Figure 6.1 (a) A periodic waveform, x(n) = 2 + 3 sin( 2π

4 n) + cos(2 2π

4 n), with period 4 samples; (b)
its frequency-domain representation; (c) the frequency components of the waveform in (a); (d) the square
error in approximating the waveform in (a) using only the dc component with different amplitudes

As can be seen from this example, Fourier analysis represents a signal as a linear
combination of sinusoids or, equivalently, complex exponentials with pure imaginary
exponents.

The Fourier reconstruction of a waveform is with respect to the least-squares error
criterion. That is, the mean value for power signals or the total value for the energy
signals of the integral or sum of the squared magnitude of the error between the given
waveform and the corresponding Fourier reconstructed waveform is guaranteed to
be the minimum if part of the constituent sinusoids of a waveform is used in the
reconstruction and will be zero if all the constituent sinusoids are used. The reason
this criterion, based on signal energy or power, is used rather than a minimum uniform
deviation criterion is that: (i) it is acceptable for most applications; and (ii) it leads to
closed-form formulas for the analytical determination of Fourier coefficients.

Let xa(n) be an approximation to a given waveform x(n) of period N, using fewer
harmonics than required. The square error between x(n) and xa(n) is defined as

error =
N−1∑
n=0

|x(n) − xa(n)|2

For a given number of harmonics, there is no better approximation for the signal than
that provided by the Fourier approximation when the least-squares error criterion is
applied. Assume that, we are constrained to use only the dc component to approximate
the waveform in Figure 6.1(a). Let the optimal value of the dc component be a. To
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minimize the square error,

(3 − a)2 + (4 − a)2 + (3 − a)2 + (−2 − a)2

must be minimum. Differentiating this expression with respect to a and equating it to
zero, we get

2(3 − a)(−1) + 2(4 − a)(−1) + 2(3 − a)(−1) + 2(−2 − a)(−1) = 0

Solving this equation, we get a = 2 as given by the Fourier analysis. The square
error, for various values of a, is shown in Figure 6.1(d).

6.2.1 Versions of Fourier Analysis

Fourier analysis has four different versions, each of them using a set of constant-
amplitude sinusoids, differing in some respect, as the basis signals. Continuous peri-
odic signals are analyzed using an infinite number of harmonically related continuous
sinusoids in FS, described in Chapter 7. Discrete aperiodic signals are analyzed using
a continuum of discrete sinusoids over a finite frequency range in the DTFT, presented
in Chapter 8. Continuous aperiodic signals are analyzed using a continuum of con-
tinuous sinusoids over an infinite frequency range in the FT, described in Chapter 9.
The topic of the present chapter is the DFT, which analyzes the periodic extension of
a finite duration discrete signal using a finite number of harmonically related discrete
sinusoids. The DFT, because of its finite and discrete nature, is the simplest of the four
different versions of Fourier analysis to visualize the analysis and synthesis of wave-
forms. Problems in understanding the concepts in other versions of Fourier analysis
may be resolved by considering an equivalent DFT version.

6.3 The Discrete Fourier Transform

6.3.1 The Approximation of Arbitrary Waveforms with a Finite Number
of Samples

We need a minimum of 2k + 1 samples to represent a sinusoid uniquely, which com-
pletes k cycles in a period, as presented in Chapter 2. To approximate a periodic
waveform in terms of dc, we need a minimum of one sample in a period. If we use
the fundamental or first harmonic, which has the same period as that of the wave-
form to be analyzed, we need a minimum of three samples (2k + 1 = 2(1) + 1 = 3)
in a period, since the first harmonic completes one cycle. In the frequency-domain,
we need one value to represent the dc and two values (the amplitude and the phase
or the amplitudes of its cosine and sine components) to specify the first harmonic.
That is, three samples are required in the both the time- and frequency-domains. With
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N independent values in one domain, we can generate only N independent values in the
other domain. Therefore, we need 2k + 1 samples in both the time- and frequency-
domains to represent a waveform with the dc and the first k harmonically related
sinusoids.

In general, an infinite number of sinusoids is required to represent a waveform
exactly. The concept of using a finite number of sinusoids is based on the fact that
the waveforms encountered in practice can be approximated by a finite number of
sinusoids with a finite but arbitrarily small tolerance, since, beyond some range,
the spectral values become negligible. That is, all practical signals can be consid-
ered as band-limited. If the magnitude of the frequency components of a signal is
identically zero outside some finite frequency range, then the signal is called band-
limited. In addition, the waveforms are generally aperiodic. In order to make it fi-
nite duration, we have to truncate some part of it. Then, a periodic extension of
the waveform is represented by discrete sinusoids. The truncation is acceptable be-
cause waveforms, in practice, have negligible values beyond a certain range. That is,
all practical signals can be considered as time-limited. If the amplitude of a signal
is identically zero outside some finite time interval, then the signal is called time-
limited. Therefore, we can represent any waveform, encountered in practice, by a
finite number of samples in both the time- and frequency-domains with adequate ac-
curacy. This representation, using a finite number of samples in both the domains,
is the feature of the DFT version of Fourier analysis. That is to make the essen-
tial information, characterizing a waveform, available in any one period, in both the
domains, with sufficient accuracy. The point is that, while the representation of a
waveform can be made adequate, the discrete and finite nature of the DFT makes it
inherently suitable for numerical analysis. And, finally, the fact that Fourier analy-
sis plays a central part in signal and system analysis, and fast algorithms are avail-
able for computing the DFT makes the DFT the heart of practical signal and system
analysis.

6.3.2 The DFT and the IDFT

In the DFT, a set of N samples represents a waveform in both the time- and frequency-
domains, whether the waveform is periodic or aperiodic and continuous or discrete. It
is understood that the number of samples is adequate to represent the waveform with
sufficient accuracy. The set of N samples is periodically extended and N harmonically
related complex exponentials are used to represent the waveform. That is, for a real-
valued signal with N samples, we are using real sinusoids with frequency indices
0, 1, 2, . . . , N/2 only. Frequency index zero represents the dc and N/2 represents a
cosine waveform, assuming N is even.

The frequency components of a waveform are separated using the orthogonality
property of the exponentials. For two complex exponentials ej 2π

N
ln and ej 2π

N
kn over a
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period of N samples, the orthogonality property is defined as

N−1∑
n=0

ej 2π
N

(l−k)n =
{

N for l = k

0 for l �= k

where l, k = 0, 1, . . . , N − 1. If l = k, the summation is equal to N as ej 2π
N

(l−k)n =
e0 = 1. Otherwise, by using the closed-form expression for the sum of a geometric
progression, we get

N−1∑
n=0

ej 2π
N

(l−k)n = 1 − ej2π(l−k)

1 − ej
2π(l−k)

N

= 0, for l �= k

That is, in order to find the coefficient, with a scale factor N, of a complex expo-
nential, we multiply the samples of a signal with the corresponding samples of the
complex conjugate of the complex exponential. Using each complex exponential in
turn, we get the frequency coefficients of all the components of a signal as

X(k) =
N−1∑
n=0

x(n)Wnk
N , k = 0, 1, . . . , N − 1 (6.1)

where WN = e−j 2π
N . This is the DFT equation analyzing a waveform with harmonically

related discrete complex sinusoids. X(k) is the coefficient, scaled by N, of the complex
sinusoid ej 2π

N
kn with a specific frequency index k (frequency (2π/N)k radians per

sample). The summation of the sample values of the N complex sinusoids multiplied
by their respective frequency coefficients X(k) is the IDFT operation. The N-point
IDFT of the frequency coefficients X(k) is defined as

x(n) = 1

N

N−1∑
k=0

X(k)W−nk
N , n = 0, 1, . . . , N − 1 (6.2)

The sum of the sample values is divided by N in Equation (6.2) as the coefficients
X(k) have been scaled by the factor N in the DFT computation.

The DFT equation can also be written using matrices. With N = 4, the DFT is given
by




X(0)

X(1)

X(2)

X(3)


 =




W0
4 W0

4 W0
4 W0

4

W0
4 W1

4 W2
4 W3

4

W0
4 W2

4 W4
4 W6

4

W0
4 W3

4 W6
4 W9

4







x(0)

x(1)

x(2)

x(3)
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If we use the definition of the DFT, we need N complex multiplications and (N − 1)
complex additions for computing each of the N coefficients. The computational com-
plexity of computing all the N coefficients is of the order of N2. Fast algorithms reduce
this computational complexity to the order of N log2 N. Because of these algorithms,
the use of the DFT is more efficient in most applications compared with alternate
methods.

Let us compute the DFT of {x(0) = 3, x(1) = 4, x(2) = 3, x(3) = −2}. The DFT
of this set of data is computed as




X(0)

X(1)

X(2)

X(3)


 =




1 1 1 1

1 −j −1 j

1 −1 1 −1

1 j −1 −j







3

4

3

−2


 =




8

−j6

4

j6




The DFT spectrum is {X(0) = 8, X(1) = −j6, X(2) = 4, X(3) = j6}, as shown in
Figure 6.1(b). Now, let us compute the sample values of the waveform from its DFT
coefficients using the IDFT.




x(0)

x(1)

x(2)

x(3)


 = 1

4




1 1 1 1

1 j −1 −j

1 −1 1 −1

1 −j −1 j







8

−j6

4

j6


 =




3

4

3

−2




We get back the time-domain sample values, confirming that the DFT and IDFT
form a transform pair. What one operation does the other undoes.

6.3.3 DFT of Some Basic Signals

While the primary purpose of the DFT is to approximate the spectra of arbitrary signals
using numerical procedures, it is useful, for understanding, to derive the DFT of some
simple signals analytically. The DFT of the impulse signal x(n) = 2δ(n) is simply
X(k) = 2. As the impulse signal is nonzero only at n = 0, the DFT equation reduces
to x(0) for any value of k. A signal and its DFT form a transform pair and is denoted as
x(n) ⇐⇒ X(k). For the specific example, the transform pair is denoted as 2δ(n) ⇐⇒
2. The DFT, with N = 16, is shown in Figure 6.2(a). A plot of the complex coefficients
X(k) of the constituent complex sinusoids of a signal x(n) versus k is called the
complex spectrum of x(n). The spectral value of two for all the frequency components
imply that the impulse signal, with a value of two, is the sum of all the exponentials
2
16e

j 2π
16 kn, k = 0, 1, . . . , 15. In terms of real sinusoids, this impulse signal is the sum

of dc component 2
16 , cosine waves 2

8 cos( 2π
16 kn), k = 1, 2, . . . , 7, and 2

16 cos(πn).
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Figure 6.2 (a) The spectrum of the impulse x(n) = 2δ(n) with N = 16; (b) the spectrum of the dc signal
x(n) = 3 with N = 16; (c) the complex sinusoid x(n) = ej 2π

16 n; (d) its spectrum; (e) the complex sinusoid
x(n) = ej(2 2π

16 n− π
6 ) and (f) its spectrum; (g) the sinusoids x(n) = cos( 2π

16 n) and x(n) = sin(2 2π

16 n), and (h)
their spectra; (i) the sinusoid x(n) = cos(2 2π

16 n − π

3 ); (j) its spectrum

The DFT of the dc signal x(n) = 3, with N samples, is X(k) = 3Nδ(k). That is
3 ⇐⇒ 3Nδ(k). As the dc signal has a constant value, its DFT evaluation essentially
reduces to the summation of the sample values of the various complex exponentials.
This sum is zero for all the complex exponentials with nonzero frequency index k.
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For k = 0,

X(0) = 3
N−1∑
n=0

e−j 2π
N

n0 = 3
N−1∑
n=0

1 = 3N

The complex exponential with k = 0 is the dc signal. The DFT of the dc signal
x(n) = 3, with 16 samples, is shown in Figure 6.2(b).

The frequency range of the spectral components of a signal is called its bandwidth.
The essential bandwidth of a signal is the frequency range of its spectral components
containing most of its energy. The longer is the duration of a signal in the time-domain,
the shorter is the essential bandwidth in its frequency-domain representation and vice
versa. This is called reciprocal spreading and is well demonstrated in the case of the dc
and impulse signals. The impulse signal is nonzero only at n = 0 in the time-domain
and its spectrum is spread with significant values throughout the whole frequency
range. The reverse is the case for the dc signal.

The complex exponential signal, although of no physical significance, is the standard
unit in the frequency-domain representation and analysis of signals and systems, as it is
easier to manipulate and the sum of its conjugate with itself is capable of representing
a physical signal. Due to the orthogonality property, the complex exponential x(n) =
ej 2π

N
np with frequency index p has the transform pair ej 2π

N
np ⇐⇒ Nδ(k − p). The dc

case presented earlier is a specific case with p = 0. The complex exponential signal
x(n) = ej 2π

16 n with N = 16 and its spectrum with X(1) = 16 are shown in Figures 6.2(c)
and (d), respectively.

The complex exponential signal x(n)=ej(2 2π
16 n− π

6 ) with N = 16 and its spectrum
are shown in Figures 6.2(e) and (f), respectively. This signal can be expressed as
x(n)=e−j π

6 ej2 2π
16 n. Therefore, the DFT coefficient is that of x(n)=ej2 2π

16 n, which is 16 at
k = 2, multiplied by the complex constant e−j π

6 =
√

3
2 − j 1

2 , as shown in Figure 6.2(f).
A real sinusoid, x(n) = cos( 2π

N
np + θ), is the sum of two complex sinusoids,

x(n) = cos
(

2π

N
np + θ

)
= 1

2

(
ejθej 2π

N
np + e−jθe−j 2π

N
np

)

Using the DFT of complex exponentials, we get

cos
(

2π

N
np + θ

)
⇐⇒ N

2
(ejθδ(k − p) + e−jθδ(k − (N − p)))

Note that, due to periodicity, e−j 2π
N

np = ej 2π
N

n(N−p). We get the transform pairs for
the cosine and sine waves, with θ = 0 and θ = −π

2 , as

cos
(

2π

N
np

)
⇐⇒ N

2
(δ(k − p) + δ(k − (N − p)))
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sin
(

2π

N
np

)
⇐⇒ N

2
(−jδ(k − p) + jδ(k − (N − p)))

The cosine and sine waves x(n) = cos( 2π
16 n) and x(n) = sin(2 2π

16 n) with N = 16, and
their spectra are shown in Figures 6.2(g) and (h), respectively. The sinusoid x(n) =
cos(2 2π

16 n − π
3 ) with N = 16 and its spectrum are shown in Figures 6.2(i) and (j),

respectively.

6.4 Properties of the Discrete Fourier Transform

In signal and system analysis, it is often required to carry out operations such as
shifting, convolution etc., in both the domains. We know the effect, in the other domain,
of carrying out an operation in one domain through properties. We repeatedly use the
properties in applications of the DFT and in deriving DFT algorithms. In addition,
new transform pairs can be derived from existing ones.

6.4.1 Linearity

If a sequence is a linear combination of a set of sequences, each of the same length N,
then the DFT of that combined sequence is the same linear combination of the DFT
of the individual sequences. That is,

x(n) ⇐⇒ X(k) y(n) ⇐⇒ Y (k) ax(n) + by(n) ⇐⇒ aX(k) + bY (k),

where a and b are arbitrary constants.

6.4.2 Periodicity

As the complex exponential Wnk
N is periodic in both the variables n and k with period

N (Wnk
N = W

n(k+N)
N = W

(n+N)k
N ), a sequence x(n) of N samples and its DFT X(k) are

periodic with period N. By substituting k + aN for k in the DFT equation and n + aN

for n in the IDFT equation, we get X(k) = X(k + aN) and x(n) = x(n + aN), where
a is any integer.

6.4.3 Circular Shift of a Sequence

As any periodic sequence is completely specified by its elements over a period, the
shifted version of a periodic sequence can be obtained by circularly shifting its ele-
ments over a period. As the time-domain sequence x(n) and its DFT X(k) are consid-
ered periodic, the shift of these sequences are called as circular shift. For example,
the delayed sequence (x − 1) is obtained by moving the last sample of x(n) to the
beginning of the sequence. Similarly, the advanced sequence (x + 2) is obtained by
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moving the first two samples of x(n) to the end of the sequence. Only (N − 1) unique
shifts are possible for a sequence with N samples.

The distance between two samples of a sinusoid completing k cycles in its period
of N samples is (2π/N)k radians. Therefore, a shift of the sinusoid by m sample
intervals to the right amounts to changing its phase by −(2π/N)mk radians, with its
amplitude unchanged. The change in the phase is (2π/N)mk radians for a left shift.
Let x(n) ⇐⇒ X(k). Then,

x(n ± m) ⇐⇒ e±j 2π
N

mkX(k) = W∓mk
N X(k)

The cosine waveform x(n) = cos( 2π
16 n) with N = 16 and its DFT are shown, respec-

tively, in Figures 6.2(g) and (h). By shifting x(n) to the right by two sample intervals,
we get x(n) = cos( 2π

16 (n − 2)). The spectral value X(1) of the delayed waveform is ob-
tained by multiplying X(1) = 8 in Figure 6.2(h) by e−j 2π

16 (2)(1) = e−j π
4 = 1√

2
(1 − j1).

The result is X(1) = 8√
2
(1 − j1). Similarly, X(15) = 8√

2
(1 + j1).

6.4.4 Circular Shift of a Spectrum

The spectrum, X(k), of a signal, x(n), can be shifted by multiplying the signal by
a complex exponential, e±jk0

2π
N

n, where k0 is an integer and N is the length of x(n).
The new spectrum is X(k ∓ k0), since a spectral component X(ka)ejka

2π
N

n of the signal,
multiplied by ejk0

2π
N

n, becomes X(ka)ej((ka+k0) 2π
N

n) and the corresponding spectral value
occurs at k = (ka + k0), after a delay of k0 samples. The spectrum is circularly shifted
by k0 sample intervals. For example, if k0 = 1 or k0 = N + 1, then the dc spectral
value of the original signal appears at k = 1. With k0 = −1 or k0 = N − 1, it appears
at k = N − 1. Let x(n) ⇐⇒ X(k). Then,

e∓j 2π
N

k0nx(n) = W
±k0n
N x(n) ⇐⇒ X(k ± k0)

The complex exponential x(n) = e(j 2π
16 n) with N = 16 and its spectrum X(1) = 16

are shown, respectively, in Figures 6.2(c) and (d). By multiplying x(n) with e(j 2π
16 2n),

we get x(n) = e(j 2π
16 3n). Then, the spectrum becomes X(3) = 16.

6.4.5 Symmetry

Symmetry of a signal can be used to reduce its storage and computational requirements.
The DFT symmetry properties for various types of signals are shown in Table 6.1.
In this table, Re stands for ‘real part of’ and Im stands for ‘imaginary part of’. The
symbol ∗ indicates the complex conjugation operation. Note that the even symme-
try condition x(n) = x(−n) is the same as x(n) = x(N − n) for a periodic signal of
period N.
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Table 6.1. DFT symmetry properties

Signal x(n), n = 0, 1, . . . , N − 1 DFT X(k)

Real, Im(x(n)) = 0 Hermitian X(k) = X∗(N − k)
Real and even Real and even
Im(x(n)) = 0 and x(n) = x(N − n) Im(X(k)) = 0 and X(k) = X(N − k)
Real and odd Imaginary and odd
Im(x(n)) = 0 and x(n) = −x(N − n) Re(X(k)) = 0 and X(k) = −X(N − k)
Real and even half-wave Hermitian and even-indexed only
Im(x(n)) = 0 and x(n) = x(n ± N

2 ) X(k) = X∗(N − k) and X(2k + 1) = 0
Real and odd half-wave Hermitian and odd-indexed only
Im(x(n)) = 0 and x(n) = −x(n ± N

2 ) X(k) = X∗(N − k) and X(2k) = 0

Imaginary, Re(x(n)) = 0 Antihermitian X(k) = −X∗(N − k)
Imaginary and even Imaginary and even
Re(x(n)) = 0 and x(n) = x(N − n) Re(X(k)) = 0 and X(k) = X(N − k)
Imaginary and odd Real and odd
Re(x(n)) = 0 and x(n) = −x(N − n) Im(X(k)) = 0 and X(k) = −X(N − k)
Imaginary and even half-wave Antihermitian and even-indexed only
Re(x(n)) = 0 and x(n) = x(n ± N

2 ) X(k) = −X∗(N − k) and X(2k + 1) = 0
Imaginary and odd half-wave Antihermitian and odd-indexed only
Re(x(n)) = 0 and x(n) = −x(n ± N

2 ) X(k) = −X∗(N − k) and X(2k) = 0

Complex and even, x(n) = x(N − n) Even, X(k) = X(N − k)
Complex and odd, x(n) = −x(N − n) Odd, X(k) = −X(N − k)
Complex and even half-wave Even-indexed only
x(n) = x(n ± N

2 ) X(2k + 1) = 0
Complex and odd half-wave Odd-indexed only
x(n) = −x(n ± N

2 ) X(2k) = 0

6.4.6 Circular Convolution of Time-domain Sequences

Let x(n) and h(n) be two periodic time-domain sequences of the same period N. Then,
the circular convolution of the sequences is defined as

y(n) =
N−1∑
m=0

x(m)h(n − m) =
N−1∑
m=0

h(m)x(n − m), n = 0, 1, . . . , N − 1

The principal difference of this type of convolution from that of the linear con-
volution (Chapter 4) is that the range of the summation is restricted to a single
period.

The convolution of h(n) with a complex exponential ejk0ω0n, ω0 = 2π/N is given as

N−1∑
m=0

h(m)ejk0ω0(n−m) = ejk0ω0n
N−1∑
m=0

h(m)e−jk0ω0m = H(k0)ejk0ω0n
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As an arbitrary x(n) is reconstructed by the IDFT as

x(n) = 1

N

N−1∑
k=0

X(k)W−nk
N

the convolution of x(n) and h(n) is given by

y(n) = 1

N

N−1∑
k=0

X(k)H(k)W−nk
N ,

where X(k) and H(k) are, respectively, the DFT of x(n) and h(n). The IDFT of
X(k)H(k) is the circular convolution of x(n) and h(n).

Example 6.1. Convolve x(n) = {2, 1, 3, 3} and h(n) = {1, 0, 2, 4}.
Solution

X(k) = {9, −1 + j2, 1, −1 − j2} and H(k) = {7, −1 + j4, −1, −1 − j4}
X(k)H(k) = {63, −7 − j6, −1, −7 + j6}

The product X(k)H(k) is obtained by multiplying the corresponding terms in
the two sequences. The IDFT of X(k)H(k) is the convolution sum, y(n) = {12, 19,

19, 13} �

6.4.7 Circular Convolution of Frequency-domain Sequences

Let X(k) and H(k) be two periodic frequency-domain sequences of the same period
N. Then, the circular convolution of the sequences, divided by N, is given as

x(n)h(n) ⇐⇒ 1

N

N−1∑
m=0

X(m)H(k − m) = 1

N

N−1∑
m=0

H(m)X(k − m)

where x(n) and h(n), are the IDFT, respectively, of X(k) and H(k).

Example 6.2. Convolve X(k) = {9, −1 + j2, 1, −1 − j2} and H(k) = {7, −1 +
j4, −1, −1 − j4}.
Solution

x(n) = {2, 1, 3, 3} and h(n) = {1, 0, 2, 4}
x(n)h(n) = {2, 0, 6, 12}
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The product x(n)h(n) is obtained by multiplying the corresponding terms in the two
sequences. The DFT of x(n)h(n) multiplied by four is the convolution sum of X(k)
and H(k), 4{20, −4 + j12, −4, −4 − j12} �

6.4.8 Parseval’s Theorem

This theorem expresses the power of a signal in terms of its DFT spectrum. Let
x(n) ⇐⇒ X(k) with sequence length N. The sum of the squared magnitude of the
samples of a complex exponential with amplitude one, over the period N, is N. Re-
member that these samples occur on the unit-circle. The DFT decomposes a signal in
terms of complex exponentials with coefficients X(k)/N. Therefore, the power of a
complex exponential is (|X(k)|2/N2)N = (|X(k)|2)/N. The power of the signal is the
sum of the powers of its constituent complex exponentials and is given as

N−1∑
n=0

|x(n)|2 = 1

N

N−1∑
k=0

|X(k)|2

Example 6.3. Consider the DFT pair

{2, 1, 3, 3} ⇐⇒ {9, −1 + j2, 1, −1 − j2}

The sum of the squared magnitude of the data sequence is 23 and that of the DFT
coefficients divided by 4 is also 23. �

6.5 Applications of the Discrete Fourier Transform

The DFT is extensively used to approximate the forward and inverse transforms of
the other versions of the Fourier analysis as described in other chapters. In addition,
important operations such as convolution, interpolation, and decimation are carried
out efficiently using the DFT as presented in this section.

6.5.1 Computation of the Linear Convolution Using the DFT

Circular convolution assumes two periodic sequences of the same period and results
in a periodic sequence with that period. Using the DFT, circular convolution can be
efficiently carried out, as the DFT assumes a finite length sequence is periodically
extended. However, the linear convolution is of prime interest in LTI system analysis.
The linear convolution of two finite sequences of length N and M is a sequence of
length (N + M − 1).

The basis of using the DFT to evaluate the linear convolution operation, as well as
approximating other versions of Fourier analysis, is to make the period of the DFT so
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that all the essential information required is available in any one period with sufficient
accuracy. Therefore, both the sequences to be convolved must be zero-padded to
make them of length (N + M − 1), at the least. This prevents the wrap-around effect
of the circular convolution and makes one period output of the circular convolution
the same as that of the linear convolution.

The linear convolution of {2, 1} and {3, 4} is {6, 11, 4}. The DFT of the sequences
are, respectively, {3, 1} and {7, −1}. The term by term product of these DFT is
{21, −1}. The IDFT of this product yields the periodic convolution output {10, 11}. The
last value 4 of the linear convolution is added to the first value 6 to make the first value of
the circular convolution 10. The last value of the circular convolution is unaffected by
aliasing in the time-domain. The DFT of the 4-point zero-padded sequences {2, 1, 0, 0}
and {3, 4, 0, 0}, respectively, are {3, 2 − j, 1, 2 + j} and {7, 3 − j4, −1, 3 + j4}. The
term-by-term product of these DFT is {21, 2 − j11, −1, 2 + j11}. The IDFT of this
product yields the linear convolution output with one zero appended {6, 11, 4, 0}. We
could have avoided the zero at the end by zero-padding the signals to make their length
three. As fast DFT algorithms with high regularity are available only for data lengths
those are an integral power of two, the input sequences are usually zero padded to make
the length of the sequences an integral power of two. Of course, this length must be
greater than or equal to the sum of the lengths of the two given sequences minus one.

6.5.2 Interpolation and Decimation

Changing the sampling rate of a signal is required for efficient signal processing. For
example, reconstructing a signal is easier with a higher sampling rate while a lower
sampling rate may be adequate for processing, requiring a shorter computation time.
Changing the sampling rate of a signal by reconstructing the corresponding analog
signal and resampling it at the new sampling rate introduces large errors. Therefore,
sampling rate is usually changed in the discrete form itself. An analog signal sampled
with an adequate sampling rate results in its proper discrete form. Sampling rate can be
increased (interpolation) or decreased (decimation) to suit the processing requirements
as long as the sampling theorem is not violated.

6.5.2.1 Interpolation

Increasing the sampling rate of a signal by a factor I is called interpolation or upsam-
pling. First, the signal is zero padded with (I − 1) samples with value zero between
successive samples. In the frequency-domain, the operation of zero-padding corre-
sponds to duplicating the spectrum of the given waveform (I − 1) times, due to the
periodicity of the complex exponential Wnk

N . This signal is passed through a lowpass
filter with a cutoff frequency π/I radians and a passband gain I. The resulting spec-
trum corresponds to that of the interpolated version of the given waveform. Note that
all the frequency components of the given signal lies in the range from zero to π/I
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Figure 6.3 (a) A real signal; (b) its spectrum; (c) the signal shown in (a) with zero padding in between
the samples; (d) its spectrum, which is the same as that shown in (b), but repeats; (e) the spectrum
shown in (d) after lowpass filtering; (f) the corresponding time-domain signal, which is an interpolated
version of that shown in (a)

radians of the duplicated spectrum. Frequency π corresponds to half the sampling
frequency and the frequency with index N/2 in the DFT spectrum.

The signal, x(n) = cos( 2π
8 n − π

3 ), is shown in Figure 6.3(a) and its spectrum is
shown in Figure 6.3(b). With the interpolation factor I = 2, we want twice the number
of samples in a cycle than that in Figure 6.3(a). This requires the insertion of one sample
with zero value in between the samples, as shown in Figure 6.3(c). The DFT of the
zero padded signal is shown in Figure 6.3(d). Except for the repetition, this spectrum
is the same as that in Figure 6.3(b). This spectrum has two frequency components with
frequency indices k = 1 and k = 7. We have to filter out the frequency component
with k = 7. Therefore, lowpass filtering of this signal with the filter cutoff frequency
π/2 radians and gain two yields the the spectrum shown in Figure 6.3(e) and the
corresponding interpolated signal, x(n) = cos( 2π

16 n − π
3 ), is shown in Figure 6.3(f).

The spectrum in Figure 6.3(b) is the DFT of the sinusoid with 8 samples in a cycle,
whereas that in Figure 6.3(e) is the DFT of the sinusoid with 16 samples in a cycle.

6.5.2.2 Decimation

Reducing the sampling rate of a signal by a factor D is called decimation or down-
sampling. As we reduce the sampling rate, we have to filter the high-frequency
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Figure 6.4 (a) A real signal; (b) its spectrum; (c) the spectrum shown in (b) after lowpass filtering; (d)
the corresponding time-domain signal; (e) the signal shown in (d) with decimation of alternate samples;
(f) its spectrum, which is the same as that shown in (c), but compressed

components of the signal first, by a filter with a cutoff frequency π/D and a pass-
band gain 1, to eliminate aliasing. Then, we take every Dth sample. It is assumed
that the filtered out high-frequency components are of no interest. The signal, x(n) =
cos( 2π

16 n − π
6 ) + cos(5 2π

16 n), is shown in Figure 6.4(a) and its spectrum is shown in Fig-
ure 6.4(b). With the decimation factor D = 2, we want half the number of samples in a
cycle than that in Figure 6.4(a). The signal is passed through a lowpass filter with cutoff
frequency π/2 and gain of 1. The spectrum of the filter output is shown in Figure 6.4(c)
and the filtered signal, x(n) = cos( 2π

16 n − π
6 ), is shown in Figure 6.4(d). Now, the dec-

imated signal, x(n) = cos( 2π
8 n − π

6 ), is obtained by taking every second sample. The
decimated signal is shown in Figure 6.4(e) and its spectrum is shown in Figure 6.4(f).

6.5.2.3 Interpolation and Decimation

A sampling rate converter, which is a cascade of an interpolator and a decimator, can
be used to convert the sampling rate by any rational factor, I/D. A single lowpass
filter, with a cutoff frequency that is the smaller of π/I and π/D, and gain of I, is
adequate. The signal, x(n) = cos( 2π

4 n − π
3 ), is shown in Figure 6.5(a) and its spectrum

is shown in Figure 6.5(b). With I = 3, D = 2, and I/D = 3/2 we want one and a half
times the number of samples in a cycle than that in Figure 6.5(a). The insertion of
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Figure 6.5 (a) A real signal; (b) its spectrum; (c) the signal shown in (a) with zero padding in between
the samples; (d) its spectrum, which is the same as that shown in (b), but repeats twice; (e) the spectrum
shown in (d) after lowpass filtering; (f) the corresponding time-domain signal, which is an interpolated
version of that shown in (a); (g) the signal shown in (f) with decimation of alternate samples; (h) its
spectrum, which is the same as that shown in (e), but compressed

two samples with zero value is required, as shown in Figure 6.5(c). The spectrum
of this signal, which repeats twice, is shown in Figure 6.5(d). A lowpass filter, with
cutoff frequency π/3 and gain of 3, eliminates the two high-frequency components.
The resulting spectrum is shown in Figure 6.5(e) and the interpolated signal, x(n) =
cos( 2π

12 n − π
3 ), is shown in Figure 6.5(f). Now, by taking alternate samples, we get

the decimated signal, x(n) = cos( 2π
6 n − π

3 ), shown in Figure 6.5(g). Its spectrum is
shown in Figure 6.5(h). Sampling rate conversion by a factor 3/2 resulted in six
samples in a cycle, as shown in Figure 6.5(g), compared with four samples in a cycle in
Figure 6.5(a).
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6.6 Summary
• In this chapter, the DFT, its properties, and some of its applications have been

presented.
• Frequency-domain analysis uses sinusoids or complex exponentials as basis signals

to represent signals and systems, in contrast to impulse in the time-domain analysis.
• The basis functions used in Fourier analysis are constant amplitude sinusoids or

exponentials with pure imaginary arguments. Fourier analysis has different versions,
each version suitable for different type of signals. The sinusoidal basis functions
differ, in each case, in characteristics such as discrete or continuous and finite or
infinite in number.

• In all versions of Fourier analysis, the signal is represented with respect to the
least-squares error criterion.

• The DFT version of Fourier analysis uses a finite number of harmonically related
discrete sinusoids as basis functions. Therefore, both the input data and its spec-
trum are periodic and discrete. This fact makes it naturally suitable for numerical
computation.

• The input to the DFT is a finite sequence of samples and it is assumed to be peri-
odically extended. The DFT coefficients are the coefficients of the basis complex
exponentials whose superposition sum yields the periodically extended discrete
signal. The IDFT carries out this sum.

• The DFT is extensively used in the approximation of the other versions of Fourier
analysis, in addition to efficient evaluation of important operations such as convo-
lution, interpolation, and decimation.

• The periodicity property of the DFT is the key factor in deriving fast algorithms for
its computation. These algorithms make the use of the DFT more efficient in most
applications compared with alternate methods.

Further Reading

1. Sundararajan, D., Discrete Fourier Transform, Theory, Algorithms, and Applications, World Scientific,
Singapore, 2001.

2. Sundararajan, D., Digital Signal Processing, Theory and Practice, World Scientific, Singapore, 2003.

Exercises

6.1 Given the DFT spectrum X(k), express the corresponding time-domain signal
x(n) in terms of its constituent real sinusoids.
6.1.1 {X(0) = 3, X(1) = 1√

2
− j 1√

2
, X(2) = −2, X(3) = 1√

2
+ j 1√

2
}.

6.1.2 {X(0) = −2, X(1) = √
3 + j1, X(2) = 3, X(3) = √

3 − j1}.
∗6.1.3 {X(0) = 1, X(1) = 2 − j2

√
3, X(2) = −3, X(3) = 2 + j2

√
3}.

6.1.4 {X(0) = 3, X(1) = 4, X(2) = 1, X(3) = 4}.
6.1.5 {X(0) = −5, X(1) = j8, X(2) = 2, X(3) = −j8}.
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6.2 Find the four samples of x(n) over one period, and then use the DFT matrix
equation to compute the spectrum X(k).
6.2.1 x(n) = 2 + 3 sin

(
2π
4 n − π

6

)
− cos(πn).

∗6.2.2 x(n) = −1 − 2 cos
(

2π
4 n + π

3

)
+ 2 cos(πn).

6.2.3 x(n) = 3 + cos
(

2π
4 n − π

4

)
− 3 cos(πn).

6.2.4 x(n) = 1 − 2 sin
(

2π
4 n + π

4

)
+ 4 cos(πn).

6.2.5 x(n) = −2 + 3 cos
(

2π
4 n + π

6

)
− 2 cos(πn).

6.3 Find the IDFT of the given spectrum X(k) using the IDFT matrix equation.
6.3.1 {X(0) = −12, X(1) = 2 − j2

√
3, X(2) = 8, X(3) = 2 + j2

√
3}.

6.3.2 {X(0) = 4, X(1) = −4
√

3 + j4, X(2) = −4, X(3) = −4
√

3 − j4}.
6.3.3 {X(0) = 8, X(1) = 3 − j3

√
3, X(2) = 8, X(3) = 3 + j3

√
3}.

∗6.3.4 {X(0) = −16, X(1) = −3
√

2 − j3
√

2, X(2) = 8, X(3) = −3
√

2 +
j3

√
2}.

6.3.5 {X(0) = 12, X(1) = −2 − j2
√

3, X(2) = −12, X(3) = −2 + j2
√

3}.
6.4 Find the sample values of the waveform over one period first, and then use the

matrix equation to find its DFT spectrum. Verify that the spectral values are the
same as the corresponding coefficients of the exponentials multiplied by four.
6.4.1 x(n) = (1 + j

√
3)ej0 2π

4 n + (2 − j2
√

3)ej 2π
4 n + (1 − j1)ej2 2π

4 n − (1 + j1)
ej3 2π

4 n.
6.4.2 x(n) = (2 + j1)ej0 2π

4 n + (3 − j2)ej 2π
4 n + (4 − j1)ej2 2π

4 n − (3 + j2)
ej3 2π

4 n.
6.4.3 x(n) = (1 − j2)ej0 2π

4 n + (2 + j2)ej 2π
4 n + (3 − j3)ej2 2π

4 n + (1 − j4)
ej3 2π

4 n.
6.4.4 x(n) = (1 + j2)ej0 2π

4 n + (2 + j3)ej 2π
4 n + (4 + j4)ej2 2π

4 n + (3 − j2)
ej3 2π

4 n.
6.4.5 x(n) = (2 − j2)ej0 2π

4 n + (1 − j4)ej 2π
4 n + (2 + j1)ej2 2π

4 n + (1 − j2)
ej3 2π

4 n.
6.5 Find the IDFT of the given spectrum X(k) using the matrix IDFT equation.

∗6.5.1 {X(0) = 1 − j1, X(1) = 3 − j2, X(2) = 4 + j1, X(3) = 1 + j2}.
6.5.2 {X(0) = 3 + j3, X(1) = 1 − j1, X(2) = 2 + j3, X(3) = 1 − j4}.
6.5.3 {X(0) = 2 − j3, X(1) = 1 + j5, X(2) = 2 + j3, X(3) = 2 + j4}.
6.5.4 {X(0) = 1 − j4, X(1) = 4 + j2, X(2) = 3 + j1, X(3) = 2 + j2}.
6.5.5 {X(0) = 3 − j4, X(1) = 2 + j5, X(2) = 1 − j3, X(3) = 2 − j4}.

6.6 Find the DFT X(k) of the given x(n). Using the periodicity property of the DFT
and the IDFT, find the required x(n) and X(k).
6.6.1 x(n) = {2 + j3, 1 − j2, 2 + j1, 3 + j4}. Find x(13), x(−22), X(10), and

X(−28).
∗6.6.2 x(n) = {1 + j2, 2 − j3, 2 + j2, 1 − j4}. Find x(−14), x(43), X(12), and

X(−7).
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6.7 Find the DFT X(k) of x(n) = {2 − j2, 1 + j3, 4 + j2, 1 − j2}. Using the time-
domain shift property and X(k), deduce the DFT of x(n + 1), x(n − 2), and
x(n + 3).

6.8 Find the IDFT x(n) of X(k) = {12 + j4, 8 − j4, 4 + j4, 4 + j8}. Using the
frequency-domain shift property, deduce the IDFT of X(k + 1), X(k − 2), and
X(k + 3).

6.9 Find the circular convolution of two frequency-domain sequences X(k) and H(k)
using the DFT and the IDFT.
6.9.1 X(k) = {8 − j4, 4 + j4, 12 − j8, 8 − j12} and H(k) = {12 − j4, 8 −

j4, 4 + j8, 2 + j12}.
∗6.9.2 X(k) = {8, 4, 8, 4} and H(k) = {12, 8, 4, 12}.
6.9.3 X(k) = {0, j4, 0, −j4} and H(k) = {0, 4, 0, −4}.

6.10 Find the DFT of x(n) and verify the Parseval’s theorem.
6.10.1 x(n) = {2, 4, 3, 1}.
6.10.2 x(n) = {−2, 4, 2, 5}.
6.10.3 x(n) = {4, −1, 3, 1}.

6.11 Find the linear convolution of the sequences x(n) and y(n) using the DFT and
the IDFT.
6.11.1 {x(0) = 2, x(1) = 4, x(2) = 3} and {y(0) = 1, y(1) = −2}.
6.11.2 {x(0) = 2, x(1) = −4, x(2) = 3} and {y(0) = 1, y(1) = 2}.

∗6.11.3 {x(0) = 1, x(1) = 4, x(2) = −3} and {y(0) = −4, y(1) = 3}.





7
Fourier Series

Continuous periodic signals are analyzed using an infinite set of harmonically related
sinusoids and a dc component in the FS frequency-domain representation. Increasing
the number of samples in a period, by decreasing the sampling interval, results in a
densely sampled time-domain waveform and a broader DFT periodic spectrum. As
the sampling interval tends to zero, the time-domain waveform becomes a continuous
function and the discrete spectrum becomes aperiodic. As the period of the waveform
remains the same, the fundamental frequency and the harmonic spacing of the spectrum
is fixed. Therefore, the discrete nature of the spectrum is unchanged. In Section 7.1,
we derive the exponential form of the FS, starting from the defining equations of the
DFT and the IDFT. Then, two equivalent trigonometric forms of the FS are deduced
from the expressions of the exponential form. The properties of the FS are described
in Section 7.2. The approximation of the FS coefficients by the DFT is presented in
Section 7.3. Typical applications of the FS are presented in Section 7.4.

7.1 Fourier Series

A continuous periodic signal, x(t), with period T is expressed as a sum of an infinite
set of harmonically related sinusoids and a dc component in the FS. The frequency
of the fundamental or first harmonic is the frequency of the waveform under analysis.
That is, ω0 = 2π/T . The frequency of the second harmonic is 2ω0, that of the third
harmonic is 3ω0, and so on.

7.1.1 FS as the Limiting Case of the DFT

While the FS can be derived using the orthogonality property of sinusoids, it is instruc-
tive to consider it as the limiting case of the DFT with the sampling interval tending
to zero. Consider the continuous periodic signal x(t), with period T = 5 s, and its five
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Figure 7.1 (a) Samples, at intervals of 1 s, of a periodic continuous signal x(t) with period 5 s; (b) its
scaled DFT spectrum; (c) samples of x(t) at intervals of 0.125 s; (d) its scaled DFT spectrum

sample values, with a sampling interval of Ts = 1 s, shown in Figure 7.1(a). The scaled
DFT spectrum of this sample set is shown in Figure 7.1(b). The frequency increment
of the spectrum is ω0 = 2π/5 radians per second and one period of the DFT spec-
trum corresponds to (2π/5) × 5 = 2π radians. The samples of the same signal, with a
sampling interval of Ts = 0.125 s, are shown in Figure 7.1(c). Reducing the sampling
interval results in a densely sampled time-domain waveform. The scaled DFT spec-
trum of this sample set is shown in Figure 7.1(d). As the frequency increment is fixed
at 2π/5, the larger number of spectral values corresponds to a broader spectrum of
width (2π/5) × 40 = 16π radians. Eventually, as the sampling interval tends to zero,
the time-domain waveform becomes continuous and the discrete spectrum becomes
aperiodic.

The mathematical presentation of the foregoing argument is as follows. The IDFT
of X(k), −N ≤ k ≤ N is defined as

x(n) = 1

2N + 1

N∑
k=−N

X(k)ej 2π
(2N+1) nk

, n = 0, ±1, ±2, . . . ,±N

Substituting the DFT expression for X(k), we get

x(n) = 1

2N + 1

N∑
k=−N

(
N∑

l=−N

x(l)e−j 2π
(2N+1) lk

)
e
j 2π

(2N+1) nk

The frequency index k represents the discrete frequency [2π/(2N + 1)]k. If the
periodic signal, with period T , is sampled with a sampling interval of Ts seconds in
order to get the samples, then the corresponding continuous frequency is given by
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[2π/(2N + 1)Ts]k = (2π/T )k = kω0. The time index n corresponds to nTs s. The
number of samples in a period is (2N + 1) = T/Ts. With these substitutions, we get

x(nTs) =
N∑

k=−N

(
1

T

N∑
l=−N

x(lTs)e
−j 2π

T
lTskTs

)
ej 2π

T
nTsk

As Ts is reduced, the number of samples (2N + 1) increases, but the product
(2N + 1)Ts = T remains constant. Hence, the fundamental frequency ω0 also re-
mains constant. As Ts → 0, nTs and lTs become continuous time variables t and τ,
respectively, the inner summation becomes an integral over the period T , N → ∞,
and differential dτ formally replaces Ts. Therefore, we get

x(t) =
∞∑

k=−∞

(
1

T

∫ T
2

− T
2

x(τ)e−j 2π
T

τkdτ

)
ej 2π

T
tk

The exponential form of the FS for a signal x(t) is

x(t) =
∞∑

k=−∞
Xcs(k)ejkω0t (7.1)

where the FS coefficients Xcs(k) are given as

Xcs(k) = 1

T

∫ t1+T

t1

x(t)e−jkω0t dt, k = 0, ±1, ±2, . . . (7.2)

and t1 is arbitrary. Because of periodicity of the FS with period T , the integral from t1
to (t1 + T ) will have the same value for any value of t1. Since sinusoids are represented
in terms of exponentials, Equation (7.1) is called the exponential form of the FS.

7.1.2 The Compact Trigonometric Form of the FS

The form of the FS, with sinusoids represented in polar form, is called the compact
trigonometric form. Equation (7.1) can be rewritten as

x(t) = Xcs(0) +
∞∑

k=1

(Xcs(k)ejkω0t + Xcs(−k)e−jkω0t)
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Since Xcs(k)ejkω0t and Xcs(−k)e−jkω0t form complex conjugate pair for real signals
and their sum is twice the real part of either of the terms, we get

x(t) = Xp(0) +
∞∑

k=1

Xp(k) cos(kω0t + θ(k)), (7.3)

where

Xp(0) = Xcs(0), Xp(k) = 2|Xcs(k)|, θ(k) = ∠ (Xcs(k)), k = 1, 2, . . . ,∞

7.1.3 The Trigonometric Form of the FS

The form of the FS, with sinusoids represented in rectangular form, is called the
trigonometric form. Expressing the sinusoid in Equation (7.3) in rectangular form,
we get

x(t) = Xc(0) +
∞∑

k=1

(Xc(k) cos(kω0t) + Xs(k) sin(kω0t)), (7.4)

where, Xc(0)=Xp(0) = Xcs(0), Xc(k) =Xp(k) cos(θ(k)) = 2 Re(Xcs(k)), and Xs(k) =
−Xp(k) sin(θ(k)) = −2 Im(Xcs(k)).

7.1.4 Periodicity of the FS

The FS is a periodic waveform of period that is the same as that of the fundamental,
T = 2π/ω0. Replacing t by t + T in Equation (7.3), we get

x(t) = Xp(0) +
∞∑

k=1

Xp(k) cos(kω0(t + T ) + θk)

= Xp(0) +
∞∑

k=1

Xp(k) cos(kω0t + 2kπ + θk) = x(t)

If the waveform to be analyzed is defined only over the interval T , the FS represents
the waveform only in that interval. On the other hand, if the waveform is periodic of
period T , then the FS is valid for all t.

7.1.5 Existence of the FS

Any signal satisfying the Dirichlet conditions, which are a set of sufficient conditions,
can be expressed in terms of a FS. The first of these conditions is that the signal x(t)
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is absolutely integrable over one period, that is
∫ T

0 |x(t)|dt < ∞. From the definition
of the FS, we get

|Xcs(k)| ≤ 1

T

∫ t1+T

t1

|x(t)e−jkω0t| dt = 1

T

∫ t1+T

t1

|x(t)||e−jkω0t| dt

Since |e−jkω0t| = 1,

|Xcs(k)| ≤ 1

T

∫ t1+T

t1

|x(t)| dt

The second condition is that the number of finite maxima and minima in one period
of the signal must be finite. The third condition is that the number of finite discon-
tinuities in one period of the signal must be finite. Most signals of practical interest
satisfy these conditions.

Example 7.1. Find the three forms of the FS for the signal

x(t) = −1 − 2 cos
(

2π

6
t − π

3

)

Solution
As this signal can be expressed in terms of sinusoids easily, we do not need to evaluate
any integral. The fundamental frequency of the waveform is ω0 = 2π/6, which is the
same as that of the sinusoid. Note that the dc component is periodic with any period.

Compact trigonometric form

x(t) = −1 − 2 cos
(

2π

6
t − π

3

)
= −1 + 2 cos

(
2π

6
t + 2π

3

)

Comparing this expression with the definition, Equation (7.3), we get the compact
trigonometric form of the FS coefficients as

Xp(0) = −1, Xp(1) = 2, θ(1) = 2π

3

A plot of the amplitude Xp(k) of the constituent sinusoids of a signal x(t) versus k

or kω0 is called the amplitude spectrum of x(t). Similarly, the plot of the phase θ(k)
is called the phase spectrum. The FS amplitude spectrum and the phase spectrum of
the signal in compact trigonometric form are shown, respectively, in Figures 7.2(a)
and (b).
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Figure 7.2 (a) The FS amplitude spectrum; (b) the phase spectrum of the signal in compact trigono-
metric form; (c) the FS amplitude spectrum; (d) the phase spectrum of the signal in exponential
form

Trigonometric form

x(t) = −1 − 2 cos
(

2π

6
t − π

3

)
= −1 − cos

(
2π

6
t

)
−

√
3 sin

(
2π

6
t

)

Comparing this expression with the definition, Equation (7.4), we get the trigono-
metric form of the FS coefficients as

Xc(0) = −1 Xc(1) = −1 Xs(1) = −
√

3

Exponential form

x(t) = −1 − 2 cos
(

2π

6
t − π

3

)
= −1 + 2 cos

(
2π

6
t + 2π

3

)

= −1 + ej( 2π
6 t+ 2π

3 ) + e−j( 2π
6 t+ 2π

3 )

Comparing this expression with the definition, Equation (7.1), we get the exponen-
tial form of the FS coefficients as

Xcs(0) = −1, Xcs(1) = 1∠ 2π

3
Xcs(−1) = 1∠ −2π

3
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The FS amplitude spectrum and the phase spectrum of the signal in exponential
form are shown, respectively, in Figures 7.2(c) and (d). �

The frequencies of harmonically related continuous sinusoids must be rational num-
bers or rational multiples of the same transcendental or irrational number. Therefore,
the ratio of frequencies of any two harmonically related sinusoids is a rational number.
The fundamental frequency (of which the harmonic frequencies are integral multi-
ples) of a combination of sinusoids is found as follows: (i) any common factors of the
numerators and denominators of each of the frequencies are cancelled; and (ii) the
greatest common divisor of the numerators is divided by the least common multiple
of the denominators of the frequencies.

Example 7.2. Find the exponential form of the FS for the signal

x(t) = 2 + 4 sin
(

1

2
t + π

6

)
+ 3 cos

(
3

5
t − π

4

)

Solution
The frequency of the waveforms are 1/2 and 3/5. There are no common factors of
the numerators and denominators. The least common multiple of the denominators
(2,5) is 10. The greatest common divisor of the numerators (1,3) is one. Therefore,
the fundamental frequency is ω0 = 1/10 radians per second. The fundamental pe-
riod is T = 2π/ω0 = 2π10/1 = 20π. The first sinusoid, the fifth harmonic shown in
Figure 7.3 (dashed line), completes five cycles and the second sinusoid (dotted line),
the sixth harmonic, completes six cycles in the period. The combined waveform (solid
line) completes one cycle in the period.

x(t) = 2 + 2ej( 1
2 t− π

3 ) + 2e−j( 1
2 t− π

3 ) + 3

2
ej( 3

5 t− π
4 ) + 3

2
e−j( 3

5 t− π
4 )

Comparing this expression with the definition, Equation (7.1), we get the expo-
nential form of the FS coefficients as Xcs(0) = 2, Xcs(±5) = 2 ∠ ∓π

3 , Xcs(±6) =
3
2∠∓π

4 .
�

Figure 7.3 The harmonics and the combined waveform
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Example 7.3. Find the FS for a square wave defined over one period as

x(t) =
{

1 for |t| < 1
4

0 for 1
4 < |t| < 1

2

Solution
The period of the waveform is one and the fundamental frequency is 2π. The wave-
form is even-symmetric and odd half-wave symmetric with a dc bias. Therefore, in
addition to the dc component, the waveform is composed of odd-indexed cosine waves
only.

Xc(0) = 2
∫ 1

4

0
dt = 1

2

Xc(k) = 4
∫ 1

4

0
cos(2πk t)dt =

{
2
kπ

sin
(

π
2 k

)
for k odd

0 for k even and k �= 0

x(t) = 1

2
+ 2

π
(cos(2πt) − 1

3
cos(3(2πt)) + 1

5
cos(5(2πt)) − · · ·) (7.5)

The FS amplitude spectrum and the phase spectrum of the signal in exponential
form are shown, respectively, in Figures 7.4(a) and (b). �

7.1.6 Gibbs Phenomenon

The FS converges uniformly for waveforms with no discontinuity. At any discontinuity
of a waveform, the FS converges to the average of the left- and right-hand limits with
overshoots and undershoots in the vicinity of the discontinuity. As the basis waveforms
of the Fourier series are continuous sinusoids, they can never exactly add up to a
discontinuity. This inability of the FS is referred as the Gibbs phenomenon.

Figures 7.5(a), (b), (c), and (d) show the FS for the square wave, using up to the
first, third, seventh, and fifteenth harmonics, respectively. Consider the FS for the
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Figure 7.4 (a) The FS amplitude spectrum; (b) the phase spectrum of the square wave in exponential
form
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Figure 7.5 The FS for the square wave: (a) using up to the first harmonic (LH = 1); (b) using up to the
third harmonic (LH = 3); (c) using up to the seventh harmonic (LH = 7); (d) using up to the fifteenth
harmonic (LH = 15)

square wave using up to the first harmonic, x(t) = 1
2 + 2

π
cos(2πt). By differentiating

this expression with respect to t and equating it to zero, we get sin(2πt) = 0. The
expression evaluates to zero for t = 0. Substituting t = 0 in the expression for x(t),
we get the value of the peak as 1.1366, as shown in Figure 7.5(a). We can find the
maximum overshoots in other cases similarly.

As we use more harmonics, the frequency of oscillations increases and the oscilla-
tions are confined more closely to the discontinuity. But, the largest amplitude of the
oscillations settles at 1.0869 for relatively small number of harmonics. Therefore, even
if we use an infinite number of harmonics to represent a waveform with discontinuity,
there will be deviations of 8.69% of the discontinuity for a moment. Of course, the
area under the deviation tends to zero.

Example 7.4. Find the three forms of the FS for the periodic impulse train, shown
in Figure 7.6(a), with period T s defined as

x(t) =
∞∑

n=−∞
δ(t − nT )
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Figure 7.6 (a) Impulse train with period T s; (b) its FS spectrum

Solution

Xcs(k) = 1

T

∫ T
2

− T
2

δ(t)e−jkω0t dt = 1

T

∫ T
2

− T
2

δ(t) dt = 1

T
− ∞ < k < ∞

The spectrum, shown in Figure 7.6(b), is also a periodic impulse train with period
ω0 = 2π/T and constant amplitude 1/T . Note that the impulses in the time-domain
are of continuous type (as x(t) is a function of the continuous variable t), while those
of the spectrum are of discrete type (as Xcs(k) is a function of the discrete variable k).
The FS for the impulse train, in exponential form, is given by

x(t) =
∞∑

k=−∞
Xcs(k)ejkω0t = 1

T

∞∑
k=−∞

ejkω0t ω0 = 2π

T

The FS coefficients, in compact trigonometric form, are

Xp(0) = Xcs(0) = 1

T
Xp(k) = 2|Xcs(k)| = 2

T
θ(k) = 0 k = 1, 2, 3, . . .

The FS is given by

x(t) = 1

T
(1 + 2(cos(ω0t) + cos(2ω0t) + cos(3ω0t) + · · ·)) ω0 = 2π

T

As the phase θ(k) = 0 is zero, the trigonometric form of the FS is the same as this
form.

An alternate way of obtaining this FS is to consider the FS for a train of unit-area
rectangular pulses of width a and height 1/a, with the width a of one pulse including
the point t = 0. In the limiting case of a → 0, the train of pulses degenerates into an
impulse train and the limiting form of its FS is the FS for the impulse train. �

7.2 Properties of the Fourier Series

For each operation in one domain, the properties establish the corresponding operation
in the other domain, making evident the simpler relationship between variables for
a particular operation. For example, the convolution operation in the time-domain
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corresponds to the much simpler multiplication operation in the frequency-domain. In
addition, we can derive the FS coefficients for functions from that for related functions
more easily than deriving them from the definition.

7.2.1 Linearity

The FS coefficients for a linear combination of a set of periodic signals, with the same
period, is the same linear combination of their individual FS coefficients. That is,

x(t) ⇐⇒ Xcs(k) y(t) ⇐⇒ Ycs(k) ax(t) + by(t) ⇐⇒ aXcs(k) + bYcs(k),

where a and b are arbitrary constants. For example, the FS coefficients for cos(t) and
sin(t) are Xcs(±1) = 1/2 and Xcs(±1) = ∓j/2, respectively. The FS coefficients for
cos(t) + j sin(t) = ejt are Xcs(±1) = 1/2 + (j)(∓j/2). That is, the only nonzero FS
coefficient is Xcs(1) = 1.

7.2.2 Symmetry

The symmetry properties simplify the evaluation of the FS coefficients. If the signal
is real, then the real part of its spectrum is even and the imaginary part is odd, called
the conjugate symmetry. The FS for a real signal x(t), with period T , is given by

Xcs(k) = 1

T

∫ T

0
x(t)e−jk 2π

T
tdt = 1

T

∫ T

0
x(t)

(
cos

(
k

2π

T
t

)
− j sin

(
k

2π

T
t

))
dt

Conjugating both sides, we get

X∗
cs(k) = 1

T

∫ T

0
x(t)

(
cos

(
k

2π

T
t

)
+ j sin

(
k

2π

T
t

))
dt

Replacing k by −k, we get X∗
cs(−k) = Xcs(k). For example, the FS coefficients for

4 cos(t + π/3) are Xcs(±1) = 1 ± j
√

3.

7.2.2.1 Even Symmetry

If the signal x(t) is real and even, then its product with sine basis waveforms is odd and
the Xs(k) coefficients are, therefore, zero. That is, the signal is composed of cosine
waveforms alone and its spectrum is real and even. As the product of the cosine basis
waveforms and the signal is even, the FS defining integral can be evaluated over half
the period. That is,

Xc(0) = 2

T

∫ t1+ T
2

t1

x(t) dt
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Xc(k) = 4

T

∫ t1+ T
2

t1

x(t) cos(kω0t) dt, k = 1, 2, . . . ,∞

For example, the FS coefficients for cos(t) are Xcs(±1) = 1
2 .

7.2.2.2 Odd Symmetry

If the signal x(t) is real and odd, then its product with cosine basis waveforms is odd
and the Xc(k) coefficients are, therefore, zero. That is, the signal is composed of sine
waveforms alone and its spectrum is imaginary and odd. As the product of the sine
basis waveforms and the signal is even, the FS defining integral can be evaluated over
half the period. That is,

Xs(k) = 4

T

∫ t1+ T
2

t1

x(t) sin(kω0t) dt k = 1, 2, . . . ,∞

For example, the FS coefficients for sin(t) are Xcs(±1) = ∓ j

2 .
As the FS coefficients for a real and even signal are real and even and that for

a real and odd signal are imaginary and odd, it follows that the real part of the FS
coefficients, Re(Xcs(k)), of an arbitrary real signal x(t) are the FS coefficients for its
even component xe(t) and j Im(Xcs(k)) are that for its odd component xo(t).

7.2.2.3 Half-wave Symmetry

Even half-wave symmetry. If a periodic signal of period T satisfies the property
x(t ± T/2) = x(t), then it is said to have even half-wave symmetry. That is, it com-
pletes two cycles of a pattern in the interval T . The FS coefficients can be expressed
as

Xcs(k) = 1

T

∫ t1+ T
2

t1

(
x(t) + (−1)kx

(
t + T

2

))
e−jkω0t dt (7.6)

The odd-indexed FS coefficients are zero. The even-indexed FS coefficients are
given by

Xcs(k) = 2

T

∫ t1+ T
2

t1

x(t)e−jkω0t dt k = 0, 2, 4, . . .

Odd half-wave symmetry. If a periodic signal of period T satisfies the property −x(t ±
T/2) = x(t), then it is said to have odd half-wave symmetry. That is, the values of the
signal over any half period are the negatives of the values over the succeeding or
preceding half period. It is obvious, from Equation (7.6), that the even-indexed FS
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coefficients are zero. The odd-indexed FS coefficients are given by

Xcs(k) = 2

T

∫ t1+ T
2

t1

x(t)e−jkω0t dt k = 1, 3, 5, . . .

Any periodic signal x(t), with period T , can be decomposed into its even and
odd half-wave symmetric components xeh(t) and xoh(t), respectively. That is x(t) =
xeh(t) + xoh(t), where

xeh(t) = 1

2

(
x(t) + x

(
t ± T

2

))
and xoh(t) = 1

2

(
x(t) − x

(
t ± T

2

))

7.2.3 Time Shifting

When we shift a signal, the shape remains the same, but the signal is relocated. The
shift of a typical spectral component, Xcs(k0)ejk0ω0t , by t0 to the right results in the
exponential, Xcs(k0)ejk0ω0(t−t0) = e−jk0ω0t0Xcs(k0)ejk0ω0t . That is, a delay of t0 results
in changing the phase of the exponential by −k0ω0t0 radians without changing its
amplitude.

Therefore, if the FS spectrum for x(t), with the fundamental frequency ω0 = 2π/T ,
is Xcs(k), then

x(t ± t0) ⇐⇒ e±jkω0t0Xcs(k)

Consider the FS coefficients Xcs(±1) = ∓ j

2 for sin(2t). The FS coefficients
for sin(2t + π

2 ) = sin(2(t + π
4 )) = cos(2t), with k = ±1, ω0 = 2, and t0 = π

4 , are
Xcs(±1) = e±j(1)(2) π

4 (∓ j

2 ) = 1
2 .

7.2.4 Frequency Shifting

The spectrum, Xcs(k), of a signal, x(t), can be shifted by multiplying the signal by
a complex exponential, e±jk0ω0t , where k0 is an integer and ω0 is the fundamental
frequency. The new spectrum is Xcs(k ∓ k0), since a spectral component Xcs(ka)ejkaω0t

of the signal, multiplied by ejk0ω0t , becomes Xcs(ka)ej((ka+k0)ω0t) and the corresponding
spectral value occurs at k = (ka + k0), after a delay of k0 samples. Therefore, we get

x(t)e±jk0ω0t ⇐⇒ Xcs(k ∓ k0)

For example, consider the FS coefficients Xcs(±1) = ∓j/2 for sin(t). The FS
coefficients for cos(2t) sin(t) can be computed using this property. As cos(2t) =
1
2 (ej2t + e−j2t), the FS coefficients for the new function is the sum of the FS
coefficients for sin(t) shifted to the right and left by two, in addition to the scale
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factor 1/2. That is,

Xcs(±1) = ±j

4
and Xcs(±3) = ∓j

4

This spectrum corresponds to the time-domain function 1
2 (sin(3t) − sin(t)), which

is, of course, equal to cos(2t) sin(t).

7.2.5 Convolution in the Time-domain

Using the FS, we get periodic or cyclic convolution as FS analyzes periodic time-
domain signals. The periodic convolution operation is defined for two periodic signals,
x(t) of period T1 and h(t) of period T2, as

y(t) =
∫ T

0
x(τ)h(t − τ)dτ

where T (common period of x(t) and h(t)) is the least common multiple of T1 and T2.
The FS coefficients for y(t) are to be expressed in terms of those of x(t) and h(t).

The convolution of h(t) of period T with a complex exponential ejk0ω0t, ω0 = 2π/T

is given as

∫ T

0
h(τ)ejk0ω0(t−τ)dτ = ejk0ω0t

∫ T

0
h(τ)e−jk0ω0τdτ = THcs(k0)ejk0ω0t

As an arbitrary x(t) of period T is reconstructed by the inverse FS as
x(t) = ∑∞

k=−∞ Xcs(k)ejk0ω0t , the convolution of x(t) and h(t) is given by y(t) =∑∞
k=−∞ TXcs(k)Hcs(k)ejkω0t , where Xcs(k) and Hcs(k) are, respectively, the FS coeffi-

cients for x(t) and h(t). The inverse of the FS spectrum TXcs(k)Hcs(k) is the periodic
convolution of x(t) and h(t). That is,

∫ T

0
x(τ)h(t − τ)dτ =

∞∑
k=−∞

TXcs(k)Hcs(k)ejkω0t ⇐⇒ TXcs(k)Hcs(k)

Consider the convolution of x(t) = cos(t) and h(t) = sin(t) with the FS coefficients
Xcs(±1) = 1/2 and Hcs(±1) = ∓j/2, respectively. Then, with T = 2π, we get

TXcs(±1)Hcs(±1) = 2π

(
∓j

4

)
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These FS coefficients correspond to the time-domain function π sin(t). By directly
evaluating the time-domain convolution, we get

∫ 2π

0
cos(τ) sin(t − τ)dτ =

∫ 2π

0
cos(τ)(sin(t) cos(τ) − cos(t) sin(τ))dτ = π sin(t)

An important application of this property is in modeling the truncation of the FS
spectrum. The signal corresponding to the truncated spectrum has to be expressed
in terms of the original signal x(t) with fundamental frequency ω0. The truncation
operation can be considered as multiplying the spectrum of x(t) by the spectrum
that is one for −N ≤ k ≤ N and zero otherwise. The signal corresponding to this
spectrum is

y(t) =
sin

(
(2N+1)ω0t

2

)
sin

(
ω0t
2

)
Therefore, the signal corresponding to the truncated spectrum of x(t) (using only

2N + 1 FS coefficients) is given by the convolution of x(t) and y(t), multiplied by the
factor 1/T , as

xN(t) = 1

T

∫ T

0
x(τ)

sin
(

(2N+1)ω0(t−τ)
2

)
sin

(
ω0(t−τ)

2

) dτ

This expression is often used in explaining the Gibbs phenomenon. The alternating
nature of the second function in the integrand, even in the limit as N → ∞, does not
change and produces deviations at any discontinuity of x(t).

7.2.6 Convolution in the Frequency-domain

Consider the FS representations of x(t) and y(t) with a common fundamental frequency
ω0 = 2π/T .

x(t) =
∞∑

m=−∞
Xcs(m)ejmω0t and y(t) =

∞∑
l=−∞

Ycs(l)e
jlω0t

The FS coefficients for x(t)y(t) are to be expressed in terms of those of x(t) and
y(t). The product of the two functions is given by

z(t) = x(t)y(t) =
∞∑

m=−∞

∞∑
l=−∞

Xcs(m)Ycs(l)e
j(m+l)ω0t
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Letting m + l = k, we get

z(t) = x(t)y(t) =
∞∑

k=−∞

( ∞∑
m=−∞

Xcs(m)Ycs(k − m)

)
ejkω0t

This is a FS for z(t) = x(t)y(t) with coefficients Zcs(k) = ∑∞
m=−∞ Xcs(m)Ycs

(k − m). The convolution of two frequency-domain functions, with a common fun-
damental frequency, corresponds to the multiplication of their inverse FS in the time-
domain. That is,

x(t)y(t) ⇐⇒ 1

T

∫ T

0
x(t)y(t)e−jkω0t dt =

∞∑
m=−∞

Xcs(m)Ycs(k − m)

The convolution is aperiodic as the FS spectra are aperiodic.
Consider the convolution of the FS spectra given as Xcs(±1) = 1/2 and Ycs(±2) =

∓j/2, with ω0 = 1. The linear convolution of these spectra is Zcs(±3) = ∓j/4 and
Zcs(±1) = ∓j/4. The corresponding time-domain function is

1

2
(sin(t) + sin(3t)) = cos(t) sin(2t)

Note that the given FS spectra corresponds to the time-domain functions cos(t) and
sin(2t).

7.2.7 Duality

The analysis equation of the FS is an integral and the synthesis equation is a summation.
Therefore, there is no duality between these operations. However, as the synthesis
equation of the DTFT is an integral and the analysis equation is a summation, there is
duality between these two transforms. This will be presented in the next chapter.

7.2.8 Time Scaling

Scaling is the operation of replacing the independent variable t by at, where a �= 0
is a constant. As we have seen in Chapter 3, the signal is compressed or expanded
in the time-domain by this operation. As a consequence, the spectrum of the signal
is expanded or compressed in the frequency-domain. The amplitude of the spectrum
remains the same with the fundamental frequency changed to aω0. Let the spectrum of
a signal x(t), with the fundamental frequency ω0 = 2π/T , be Xcs(k). Then, x(at) ⇐⇒
Xcs(k) with the fundamental frequency aω0 and a > 0. If a < 0, the spectrum, with the
fundamental frequency |a|ω0, is also frequency-reversed. For example, with a = 0.2,
the signal cos(t) becomes cos(0.2t). The spectrum remains the same, that is Xcs(±1) =
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1/2, with the fundamental frequency changed to 0.2 radians from 1 radian. With
a = −3, the signal sin(t) becomes sin(−3t) = − sin(3t). The spectrum gets frequency-
reversed, Xcs(±1) = ±j/2, and the fundamental frequency of the FS spectrum is
changed to 3 radians from 1 radian.

7.2.9 Time Differentiation

As the signal is decomposed in terms of exponentials of the form ejk0ω0t , this property
is essentially finding the derivative of all the constituent exponentials of a signal. The
derivative of ejk0ω0t is jk0ω0e

jk0ω0t . Therefore, if the FS spectrum for a time-domain
function x(t) is Xcs(k), then the FS spectrum for its derivative is jkω0Xcs(k), where
ω0 is the fundamental frequency. Note that the FS coefficient with k = 0 is zero, as
the dc component is lost in differentiating a signal. In general,

dnx(t)

dtn
⇐⇒ (jkω0)n Xcs(k)

This property can be stated as the invariance of the exponentials with respect to the
differentiation operation. That is, the derivative of a exponential is the same exponential
multiplied by a complex scale factor. The exponentials are invariant with respect
to integration and summation operations also. These properties change an integro-
differential equation in the time-domain to an algebraic equation in the frequency-
domain. Therefore, the analysis of systems is easier in the frequency-domain.

Another use of this property, in common with other properties, is to find FS spectra
for signals from those of the related signals. This property can be used to find the FS
for the functions represented by polynomials in terms of the FS for their derivatives.
When a function is reduced to a sum of impulses, by differentiating it successively, the
FS of the impulses can be found easily and this FS is used to find the FS of x(t) using
the differentiation property. Consider a periodic rectangular pulse defined over one
period as x(t) = 1, |t| < a and x(t) = 0, a < |t| < T/2. The derivative of this signal
in a period are the impulses δ(t + a) and −δ(t − a). The FS spectrum for this pair
is (1/T )(ejkω0a − e−jkω0a) = (j2/T ) sin(kω0a), where ω0 = 2π/T . This spectrum is
related to the spectrum of the rectangular pulse by the factor 1/jkω0, k �= 0. Therefore,
the FS spectrum for the periodic rectangular pulse is

Xcs(k) = 2
sin(kω0a)

kω0T
= sin(kω0a)

πk

As there is no dc bias, this expression gives the correct value of Xcs(0). In general,
use this property to obtain Xcs(k) for k �= 0 only and determine Xcs(0) directly from
the given waveform.
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7.2.10 Time Integration

For a signal x(t) ⇐⇒ Xcs(k) with fundamental frequency ω0,

∫ t

−∞
x(τ)dτ ⇐⇒ 1

jkω0
Xcs(k)

provided the dc component of x(t) is zero (Xcs(0) = 0). Consider the function cos(2t)
with FS coefficients Xcs(±1) = 1/2. Then, its integral, y(t) = sin(2t)/2, has the FS
coefficients

Ycs(±1) = 1

j(±1)(2)

1

2
= ∓j

4

7.2.10.1 Rate of Convergence of the Fourier Series

In practical problems, only the sum of a finite number of the infinite terms of the
FS are used to approximate a given function x(t), as no physical device can generate
harmonics of infinite order. The rate of convergence of a FS indicates how rapidly the
partial sums converge to x(t). A smoother function has an higher rate of convergence.
According to the time-integration property, each time the FS is integrated term by term,
the coefficients are divided by the factor k, the index. That is, the rate of convergence of
the FS is increased by the factor k, as the function becomes smoother by the integration
operation. The FS for an impulse train converges slowly, as all its coefficients are the
same (no dependence on the index k). As the integral of a function with impulses is
a function with discontinuities, the FS of such a function converges more rapidly as
the magnitude of their coefficients decrease at the rate 1/k, for large values of k. As the
integral of a function with discontinuities results in a function with no discontinuity, the
FS for such functions converges still more rapidly as the magnitude of their coefficients
decrease at the rate 1/k2. The magnitude of the coefficients of a function, whose nth
derivative contains impulses, decrease at the rate 1/kn.

7.2.11 Parseval’s Theorem

As the frequency-domain representation of a signal is an equivalent representation, the
power of a signal can also be expressed in terms of its spectrum. That is, the average
power of a signal is the sum of the average powers of its frequency components. The
average power of a complex exponential, Aejω0t , is

P = 1

T

∫ T

0
|Aejω0t|2dt = |A|2
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since |ejω0t| = 1. That is, the average power of a complex exponential is the magnitude
squared of its complex amplitude (irrespective of its frequency and phase). Therefore,
the total average power of a signal is

P = 1

T

∫ T

0
|x(t)|2dt =

∞∑
k=−∞

|Xcs(k)|2

Example 7.5. Verify the Parseval’s theorem for the square wave of Example 7.3. Find
the sum of the powers of the dc, first harmonic, and the third harmonic components
of the signal.

Solution
The power using the time-domain representation is

P = 1

T

∫ T

0
|x(t)|2dt = 2

∫ 1
4

0
dt = 1

2

The power using the FS is

P =
∞∑

k=−∞
|Xcs(k)|2 =

(
1

2

)2

+ 2
∞∑

k=1,3,

(
1

kπ

)2

= 1

4
+ 2

π2

π2

8
= 1

2

The sum of the power of the components of the signal up to the third harmonic is

1

4
+ 2

π2
+ 2

9π2
= 1

4
+ 20

9π2
= 0.25 + 0.2252 = 0.4752

This example shows that the approximation of the signal by a few harmonics
includes most of its power. �

7.3 Approximation of the Fourier Series

We approximate the integral in Equation (7.2) by the rectangular rule of numerical
integration. We take N samples of the signal,

x(0), x
(

T

N

)
, x

(
2

T

N

)
, . . . , x

(
(N − 1)

T

N

)

by dividing the period T of the signal into N intervals. The sampling interval is
Ts = T/N. Now, Equation (7.2) is approximated as

Xcs(k) = 1

T

N−1∑
n=0

x(nTs)e
−jkω0nTs

T

N
= 1

N

N−1∑
n=0

x(nTs)e
−jk 2π

N
n
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Dropping Ts from x(nTs), we get

Xcs(k) = 1

N

N−1∑
n=0

x(n)e−j 2π
N

nk k = 0, 1, . . . , N − 1 (7.7)

This is the analysis equation. The synthesis equation, Equation (7.1), is approxi-
mated as

x(n) =
N−1∑
k=0

Xcs(k)ej 2π
N

nk n = 0, 1, . . . , N − 1.

Except for constant factors, the approximations of the analysis and synthesis equa-
tions are the same as the DFT and IDFT equations, respectively. Note that Xcs(k) is
aperiodic and periodicity of N selected values is assumed in the IDFT computation.
For example, if we truncate the FS spectrum to Xcs(−1), Xcs(0), and Xcs(1), then the
periodic extension can be written, starting with Xcs(0) and N = 3, as Xcs(0), Xcs(1),
and Xcs(−1). With N = 4, the periodic values are Xcs(0), Xcs(1), 0, and Xcs(−1).

For N even, comparing the coefficients of the DFT with that in Equation (7.2), we
get, for real signals,

Xc(0) = X(0)

N
Xc

(
N

2

)
=

X
(

N
2

)
N

Xc(k) = 2

N
Re(X(k)) Xs(k) = − 2

N
Im(X(k)) k = 1, 2, . . . ,

N

2
− 1

Xcs(k) = X(k)

N
k = 0, 1, . . . ,

N

2
− 1 and Re

(
Xcs

(
N

2

))
=

X
(

N
2

)
2N

7.3.1 Aliasing Effect

Let us find the FS spectrum of a sampled signal. The sampling operation can be
considered as multiplying the signal (x(t) with spectrum Xcs(k)) by the sampling
signal (s(t) = ∑∞

n=−∞ δ(t − nTs) with spectrum 1
Ts

). The sampled signal is
∑∞

n=−∞
x(nTs)δ(t − nTs). In the frequency domain, sampling operation corresponds to the
convolution of the spectra of the two signals. As the convolution of a signal with an
impulse is just translation of the origin of the signal to the location of the impulse, we
get the spectrum of the sampled signal x(t)s(t) as the superposition sum of the infinite
frequency-shifted spectrum of the signal, multiplied by the factor 1/Ts. That is, the
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FS spectrum for the sampled signal is

1

Ts

∞∑
m=−∞

Xcs

(
k − m

T

Ts

)

where T is the period of the signal. Let us construct a sequence x(n) such that its nth
element has the value that is the same as the strength of the impulse x(nTs)δ(t − nTs)
of the sampled signal. We get the DFT spectrum of x(n) by multiplying the spectrum
of the sampled signal by T (Remember that there is no normalization factor in the
definition of the DFT.) and noting that T/Ts = N. Therefore, we get

X(k) = N

∞∑
m=−∞

Xcs(k − mN) k = 0, 1, . . . , N − 1 (7.8)

This equation shows how the DFT spectrum is corrupted due to aliasing. By sam-
pling the signal, in order to use the DFT, to obtain a finite number of N samples in
a period, we simultaneously reduce the number of distinct sinusoids and, hence, the
number of distinct spectral coefficients to N. Therefore, if the signal is band-limited
we can get the exact FS coefficients by computing the DFT of the samples of the
signal. If the signal is not band-limited or the number of samples is inadequate, we
get a corrupted FS spectrum using the DFT due to the aliasing effect.

Consider the sampling of the square wave (Example 3) with N = 4 samples, shown
in Figure 7.7(a). Note that, at any discontinuity, the average of the left- and right-hand
limits should be taken as the sample value. The sample values, starting from n = 0, are
{1, 0.5, 0, 0.5}. The DFT of this set of samples is {2, 1, 0, 1}, shown in Figure 7.7(b).

−0.5 0 0.25
0

0.5

1

N = 4

x(
t)

t

(a)

0 1 2 3
0

1

2

X
(k

)

k

(b)

−0.5 0 0.375
0

0.5

1

N = 8

x(
t)

t

(c)

0 1 3 5 7
−0.4142

0

2.4142

4

X
(k

)

k

(d)

Figure 7.7 (a) Four samples of the square wave; (b) its DFT; (c) eight samples of the square wave;
(d) its DFT
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These values can be obtained from the FS coefficients using Equation (7.8). The dc
value is 2/4 = 0.5, which is equal to the analytical value. The coefficient of the first
harmonic is (1 + 1)/4 = 0.5, which differs from the analytical value of 0.637. This is
due to the fact that, with only four samples, all the other odd harmonics alias as the
first harmonic.

Xc(1) = 2

π

(
1 − 1

3
+ 1

5
− 1

7
+ · · ·

)

The value of the summation can be obtained from Equation (7.5) by substituting
t = 0.

1 = 1

2
+ 2

π

(
1 − 1

3
+ 1

5
− 1

7
+ · · ·

)

Therefore, we get Xc(1) = 0.5. As we double the number of samples, we get a better
approximation of the FS coefficients by the DFT. Figure 7.7(c) shows the square wave
with N = 8 samples and its DFT is shown in Figure 7.7(d). The value of the first
harmonic is (2.4142 + 2.4142)/8 = 0.6036, which is much closer to the actual value
of 0.637. The point is that DFT should be used to approximate the FS coefficients with
sufficient number of time-domain samples so that the accuracy of the approximation
is adequate.

7.4 Applications of the Fourier Series

The FS is used to analyze periodic waveforms, such as half- and full-wave rectified
waveforms. The steady-state response of stable LTI systems to periodic input signals
can also be found using the FS. The steady-state response is the response of a system
after the transient has decayed. The transient response of a stable system always decays
with time. The steady-state output of a LTI system to an input ejk0ω0t is the same
function multiplied by the complex scale factor, H(jk0ω0). Therefore, the output of
the system is H(jk0ω0)ejk0ω0t . The function H(jkω0) is the frequency response H(jω)
(Chapter 5) of the system, sampled at the discrete frequencies ω = kω0.

Consider the system governed by the differential equation

dy(t)

dt
+ y(t) = x(t)

The differential equation can be written, with the input x(t) = ejk0ω0t , as

d(H(jk0ω0)ejk0ω0t)

dt
+ H(jk0ω0)ejk0ω0t = ejk0ω0t
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Solving for H(jk0ω0), we get

H(jk0ω0) = 1

1 + jk0ω0

For an arbitrary periodic input, as x(t) = ∑∞
k=−∞ Xcs(k)ejkω0t , we get

y(t) =
∞∑

k=−∞
H(jkω0)Xcs(k)ejkω0t =

∞∑
k=−∞

Xcs(kω0)

1 + jkω0
ejkω0t

The more complex operation of solving a differential equation has been reduced to
the evaluation of an algebraic operation.

7.5 Summary
• In this chapter, the FS has been studied. It is used to represent periodic time-domain

signals by an aperiodic discrete spectrum in the frequency-domain.
• The three forms of the FS are the trigonometric, the compact trigonometric, and

the exponential. In the trigonometric form, a time-domain function is expressed in
terms of cosine and sine waveforms. In the compact trigonometric form, a time-
domain function is expressed in terms of real sinusoids. In the exponential form, a
time-domain function is expressed in terms of complex exponentials. Each of the
three forms of the FS can be derived from the other forms.

• The Fourier representation fails to provide uniform convergence in the vicinity of
a discontinuity of continuous waveforms in both the time- and frequency-domains
(in the time-domain, in the case of the FS).

• In practice, the FS is often approximated by the DFT.
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Exercises

7.1 The FS representation of a real periodic signal x(t) of period T , satisfying the
Dirichlet conditions, is given as

x(t) = Xc(0) +
∞∑

k=1

(Xc(k) cos(kω0t) + Xs(k) sin(kω0t)),
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where, ω0 = 2π/T and Xc(0), Xc(k), and Xs(k), the FS coefficients of the dc,
cosine, and sine components of x(t), respectively, are defined as

Xc(0) = 1

T

∫ t1+T

t1

x(t) dt,

Xc(k) = 2

T

∫ t1+T

t1

x(t) cos(kω0t) dt k = 1, 2, . . . ,∞

Xs(k) = 2

T

∫ t1+T

t1

x(t) sin(kω0t) dt k = 1, 2, . . . ,∞

and t1 is arbitrary. Derive the expressions for the coefficients using trigonometric
identities.

7.2 Expand x(t) and find the three forms of its FS coefficients without evaluating
any integral. What is the fundamental frequency ω0?
7.2.1 x(t) = cos(t).
7.2.2 x(t) = cos2(t).
7.2.3 x(t) = cos3(t).

∗7.2.4 x(t) = cos4(t).
7.2.5 x(t) = cos5(t).
7.2.6 x(t) = sin(t).
7.2.7 x(t) = sin2(t).
7.2.8 x(t) = sin3(t).
7.2.9 x(t) = sin4(t).
7.2.10 x(t) = sin5(t).

7.3 Find the three forms of the FS coefficients of x(t) without evaluating any inte-
gral. What is the fundamental frequency ω0?
7.3.1 x(t) = 3 + cos

(
2πt − π

3

)
− 2 sin

(
4πt + π

6

)
.

7.3.2 x(t) = −1 − 2 sin
(

4πt − π
6

)
+ 6 sin

(
8πt − π

3

)
.

7.3.3 x(t) = 2 − 3
√

2 cos
(
2πt − π

4

) + 2 sin
(

6πt + π
3

)
.

7.3.4 x(t) = −3 + √
3 cos(2πt) − sin(2πt) + √

2 cos(8πt) − √
2 sin(8πt).

∗7.3.5 x(t) = 1 + 1
j2ej(2πt+ π

3 ) + ej(6πt− π
6 ) − 1

j2e−j(2πt+ π
3 ) + e−j(6πt− π

6 ).
7.4 Find the trigonometric form of the FS coefficients. What is the fundamental

frequency ω0?
7.4.1 x(t) = 1 + 2 sin

(
4
7 t

)
+ 3 cos

(
2
3 t

)
.

∗7.4.2 x(t) = 2 − 5 cos
(

3
7 t

)
− 2 sin

(
2
9 t

)
.

7.4.3 x(t) = −3 + 2 cos
(

3
7 t

)
− sin

(
1
3 t

)
.
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7.5 Find the FS of a periodic pulse train of period T , defined over one period as

x(t) =
{

1
a

for|t| < a
2

0 for a
2 < |t| < T

2

Apply a limiting process, as a → 0, to the pulse train and its FS to obtain the
FS of the periodic impulse train of period T ,

x(t) =
∞∑

n=−∞
δ(t − nT )

7.6 Find the FS coefficients, using the time-domain convolution property, of y(t) =
x(t) ∗ x(t), the convolution of x(t) with itself, with x(t) defined over a period as

x(t) =
{

A 0 < t < T
2

0 T
2 < t < T

7.7 Find the FS coefficients of z(t) = x(t)y(t) with period equal to the common
period of x(t) and y(t), where x(t) = 2 sin(t) + 4 cos(3t) and y(t) = 6 cos(2t),
using the frequency-domain convolution property. Verify that the FS coeffi-
cients represent z(t) = x(t)y(t).

7.8 Find the trigonometric FS representation of the periodic full-wave rectified sine
wave defined over a period as

x(t) =
{

A sin(ω0t) 0 ≤ t < T
2

A sin(ω0(t − T
2 )) T

2 ≤ t < T
ω0 = 2π

T

using the time-differentiation property.
7.9 Using the time-differentiation property, find the FS coefficients of the periodic

signal x(t) defined over a period.
7.9.1

x(t) =
{−A 0 < t < T

2

A −T
2 < t < 0

7.9.2

x(t) =
{

A + 2 0 < t < T
2

−A + 2 −T
2 < t < 0
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7.9.3

x(t) =
{

0 0 < t < T
2

−(t + T
2 ) −T

2 < t < 0

7.9.4

x(t) = t

T
, 0 < t < T

7.9.5

x(t) =
{ 2t

T
0 ≤ t ≤ T

2

2 − 2t
T

T
2 < t < T

∗7.9.6

x(t) = sin(2t), 0 < t <
π

2

7.10 Find the trigonometric FS representation, using Equation (7.2), of the periodic
signal defined over a period as x(t) = 3

2 t, 0 < t < 2. Using the results, find the
sum of the infinite series

1 − 1

3
+ 1

5
− 1

7
+ · · ·

Verify Parseval’s theorem.
Find the power of the frequency components of the signal up to (i) the third
harmonic ; (ii) the fifth harmonic.
Approximate the trigonometric FS coefficients using the DFT with N = 4.
Verify that they are the same using Equation (7.8).
Find the location and the magnitude of a largest deviation due to Gibbs phe-
nomenon if the signal is reconstructed using up to the third harmonic.
Deduce the trigonometric FS representation of the signals x(t − 1) and
2x(t) − 3.

∗7.11 Find the trigonometric FS representation, using Equation (7.2), of the periodic
signal defined over a period as

x(t) =
{

1
2 t 0 ≤ t < 2

2(1 − t
4 ) 2 ≤ t < 4
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Using the results, find the sum of the infinite series

1 + 1

9
+ 1

25
+ 1

49
+ · · ·

Verify Parseval’s theorem.
Find the power of the frequency components of the signal up to : (i) the third
harmonic; (ii) the fifth harmonic.
Approximate the trigonometric FS coefficients using the DFT with N = 4.
Verify that they are the same using Equation (7.8).
Deduce the trigonometric FS representation of the signals x(t + 2) and
3x(t) − 2.

7.12 Find the trigonometric FS representation of the periodic half-wave rectified
sine wave defined over a period as

x(t) =
{

A sin( 2π
T

t) 0 ≤ t < T
2

0 T
2 ≤ t < T

using the frequency-domain convolution property.
Verify Parseval’s theorem.
Find the power of the frequency components of the signal up to the third har-
monic.
Approximate the trigonometric FS coefficients using the DFT with N = 4.
Verify that they are the same using Equation (7.8).
Deduce the FS coefficients of x(t) + x(t − T

2 ) and x(t) − x(t − T
2 ).

7.13 Find the trigonometric FS representation of the periodic half inverted cosine
wave defined over a period as

x(t) =
{−A cos( 2π

T
t) 0 < t < T

2

0 T
2 < t < T

using the frequency-domain convolution property.
Verify Parseval’s theorem.
Find the power of the frequency components of the signal up to the fifth har-
monic. Find the FS coefficients using the DFT with N = 4. Verify that they are
the same using Equation (7.8).
Find the location and the magnitude of a largest deviation due to Gibbs phe-
nomenon if the signal is reconstructed using up to the third harmonic.
Deduce the FS coefficients of x(t) − x(t − T

2 ).
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7.14 Using the result of Exercise 7.13, deduce the FS representation of periodic two
inverted half-cosine waves defined over a period as

x(t) =
{−A cos( 2π

T
t) 0 < t < T

2

A cos( 2π
T

t) T
2 < t < T

∗7.15 Find the response of the system governed by the differential equation

dy(t)

dt
+ y(t) = ej2t + ej3t

7.16 Find the response of the system governed by the differential equation

dy(t)

dt
+ 2y(t) = 2 − 3 sin(t) + cos

(
2t + π

3

)



8
The Discrete-time Fourier
Transform

A continuum of discrete sinusoids over a finite frequency range is used as the basis
signals in the DTFT to analyze aperiodic discrete signals. Compared with the DFT,
as the discrete aperiodic time-domain waveform contains an infinite number of sam-
ples, the frequency increment of the periodic spectrum of the DFT tends to zero and
the spectrum becomes continuous. The period is not affected since it is determined by
the sampling interval in the time-domain. An alternate view of the DTFT is that it is the
same as the FS with the roles of time- and frequency-domain functions interchanged.

In Section 8.1, the DTFT and its inverse, and the dual relationship between the
DTFT and the FS are derived. The properties of the DTFT are presented in Section 8.2.
The approximation of the DTFT by the DFT is described in Section 8.3. Some typical
applications of the DTFT are presented in Section 8.4.

8.1 The Discrete-time Fourier Transform

8.1.1 The DTFT as the Limiting Case of the DFT

In the last chapter, we found that the FS is the limiting case of the DFT as the sampling
interval in the time-domain tends to zero with the period of the waveform fixed. In
this chapter, we find that the DTFT is the limiting case of the DFT as the period in the
time-domain tends to infinity with the sampling interval fixed. With a predetermined
sampling interval, the effective frequency range of the spectrum is fixed.

Consider the DFT magnitude spectrum |X(k)| of x(n) with N = 5 samples, shown,
respectively, in Figures 8.1(b) and (a). The frequency increment of the spectrum is
2π/5. Even if a signal x(n) is aperiodic, in the DFT computation, periodicity is as-
sumed. Therefore, only a set of samples of the continuous spectrum of an aperiodic

A Practical Approach to Signals and Systems D. Sundararajan
© 2008 John Wiley & Sons (Asia) Pte Ltd
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Figure 8.1 (a) The time-domain function x(n) with N = 5; (b) the corresponding DFT magnitude
spectrum, |X(k)|; (c) same as (a) with N = 33; (d) the corresponding DFT magnitude spectrum, |X(k)|

x(n) is computed by the DFT. By zero-padding on either side of x(n), we have made
the signal longer with N = 33 samples, as shown in Figure 8.1(c). Its spectrum is
shown in Figure 8.1(d), which is denser (frequency increment 2π/33) compared with
that in Figure 8.1(b). Eventually, as N tends to infinity, we get the aperiodic discrete
signal and its periodic continuous spectrum. The spectrum is always periodic with the
same period, 2π, as the sampling interval is fixed at Ts = 1.

The foregoing argument can be put mathematically, as follows. The IDFT of
X(k), −N ≤ k ≤ N is defined as

x(n) = 1

2N + 1

N∑
k=−N

X(k)ej 2π
(2N+1) nk

, n = 0, ±1, ±2, . . . ,±N

Substituting the DFT expression for X(k), we get

x(n) = 1

2N + 1

N∑
k=−N

(
N∑

l=−N

x(l)e−j 2π
2N+1 lk

)
ej 2π

2N+1 nk

As N tends to ∞, due to zero-padding of x(n), ([2π/(2N + 1)]k) becomes a continu-
ous variable ω, differential dω formally replaces 2π/(2N + 1), and 2N + 1 = 2π/dω.
The outer summation becomes an integral with limits −π and π (actually any contin-
uous interval of 2π). The limits of the inner summation can be written as −∞ and ∞.
Therefore, the DTFT X(ejω) of the signal x(n) is defined as

X(ejω) =
∞∑

n=−∞
x(n)e−jωn (8.1)
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The DTFT is commonly written as X(ejω) instead of X(jω) to emphasize the fact
that it is a periodic function of ω. The inverse DTFT x(n) of X(ejω) is defined as

x(n) = 1

2π

∫ π

−π

X(ejω)ejωndω, n = 0, ±1, ±2, . . . (8.2)

When deriving closed-form expressions for x(n) or X(ejω),

X(ej0) =
∞∑

n=−∞
x(n), X(ejπ) =

∞∑
n=−∞

(−1)nx(n), x(0) = 1

2π

∫ π

−π

X(ejω)dω

which can be easily evaluated, are useful to check their correctness.
The analysis equation of the DTFT is a summation and the synthesis equation is an

integral. In these equations, it is assumed that the sampling interval of the time-domain
signal Ts, is 1 s. For other values of Ts, only scaling of the frequency axis is required.
However, the DTFT equations can also be expressed including Ts as

X(ejωTs ) =
∞∑

n=−∞
x(nTs)e

−jnωTs (8.3)

x(nTs) = 1

ωs

∫ ωs/2

−ωs/2
X(ejωTs )ejnωTs dω n = 0, ±1, ±2, . . . (8.4)

where ωs = 2π/Ts. The DTFT represents a discrete aperiodic signal, x(nTs), with Ts s
between consecutive samples, as integrals of a continuum of complex sinusoids ejnωTs

(amplitude (1/ωs)X(ejωTs )dω) over the finite frequency range −ωs/2 to ωs/2 (over
one period of X(ejωTs )). X(ejωTs ) is periodic of period ωs = 2π/Ts, since e−jnωTs =
e−jn(ω+2π/Ts)Ts . Therefore, the integration in Equation (8.4) can be evaluated over any
interval of length ωs. As the amplitude, (1/ωs)X(ejωTs )dω, of the constituent sinusoids
of a signal is infinitesimal, the spectral density X(ejωTs ), which is proportional to the
spectral amplitude, represents the frequency content of a signal. Although the DTFT
is the spectral density of a signal, it is still called the spectrum. Therefore, the DTFT
spectrum is a relative amplitude spectrum.

The summation in Equation (8.3) converges uniformly to X(ejωTs ), if x(nTs) is
absolutely summable, that is

∑∞
n=−∞ |x(nTs)| < ∞. The summation converges in the

least-squares error sense, if x(nTs) is square summable, that is
∑∞

n=−∞ |x(nTs)|2 < ∞
(for example, x(n) in Example 8.2). The Gibbs phenomenon is also common to all
forms of Fourier analysis whenever reconstructing a continuous waveform, with one or
more discontinuities, in either domain. In the case of the DTFT, the Gibbs phenomenon
occurs in the frequency-domain as the spectrum is a continuous function.
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Example 8.1. Find the DTFT of the unit impulse signal x(n) = δ(n).

X(ejω) =
∞∑

n=−∞
δ(n)e−jωn = 1 and δ(n) ⇐⇒ 1

That is, the unit impulse signal is composed of complex sinusoids of all frequencies
from ω = −π to ω = π in equal proportion. �

Example 8.2. One period of a DTFT spectrum, shown in Figure 8.2(a), is given as
X(ejω) = u(ω + π

4 ) − u(ω − π
4 ), −π < ω ≤ π. Find the corresponding x(n).

Solution
As the spectrum is even-symmetric,

x(n) = 1

π

∫ π
4

0
cos(ωn) dω = sin

(
πn
4

)
nπ

, −∞ < n < ∞

The time-domain signal x(n) is shown in Figure 8.2(b). �

The function of the form x(n) = sin(πn
4 )/(nπ), shown in Figure 8.2(b), is called the

sinc function that occurs often in signal and system analysis. It is an even function
of n. At n = 0, the peak value is 1

4 , as lim
θ→0

sin(θ) = θ. The zeros of the sinc func-

tion occur whenever the argument of the sine function in the numerator is equal to
±π, ±2π, ±3π, . . .. For the specific case, the zeros occur whenever n is an integral
multiple of four. As a → 0, sin(an)/(an) degenerates into a dc function with ampli-
tude one, as the zeros move to infinity. The sinc function is an energy signal, as it is
square summable. However, it is not absolutely summable.

Example 8.3. Find the DTFT of the signal x(n) = anu(n), |a| < 1.

X(ejω) =
∞∑

n=−∞
anu(n)e−jωn =

∞∑
n=0

(ae−jω)n = 1

1 − ae−jω
, |a| < 1

�

  0   
0

1

X
(e

jω
)

ω
(a)

π−− 4−π π−4 π

period=2π

−12 −8 −4 0 4 8 12

0

0.25

x(
n)

n

(b)

Figure 8.2 (a) One period of a DTFT spectrum; (b) the corresponding aperiodic discrete signal
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The DTFT of some frequently used signals, which are neither absolutely nor square
summable, such as the unit-step, is obtained by applying a limiting process to ap-
propriate signals so that they degenerate into these signals in the limit. The limit of
the corresponding transform is the transform of the signal under consideration, as
presented in the next example.

Example 8.4. Find the DTFT of the unit-step signal x(n) = u(n).
As this signal is not absolutely or square summable, its DTFT is derived as that of the
limiting form of the signal anu(n), as a → 1.

X(ejω) = lim
a→1

1

1 − ae−jω
= lim

a→1

(
1 − a cos(ω)

1 − 2a cos(ω) + a2
− j

a sin(ω)

1 − 2a cos(ω) + a2

)

The real and imaginary parts of the DTFT spectrum of the signal 0.8nu(n), shown
in Figure 8.3(a), are shown, respectively in Figures 8.3(c) and (e). Figures 8.3(d) and
(f) show the same for the signal 0.99nu(n), shown in Figure 8.3(b). The real part of
the spectrum is even and the imaginary part is odd. The area enclosed by the real
part of the spectrum is a constant (2π) independent of the value a, the base of the
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Figure 8.3 (a) x(n) = 0.8nu(n); (b) x(n) = 0.99nu(n); (c) the real part of the DTFT spectrum of the
signal in (a); (e) its imaginary part; (d) the real part of the DTFT spectrum of the signal in (b); (f) its
imaginary part
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exponential signal. This is so because, from the inverse DTFT with n = 0,

x(0) = 1 = 1

2π

∫ π

−π

1 − a cos(ω)

1 − 2a cos(ω) + a2
ejω0dω = 1

2π

∫ π

−π

1 − a cos(ω)

1 − 2a cos(ω) + a2
dω

As can be seen from the figures, the real part of the spectrum becomes more peaked
as a → 1. Eventually, the spectrum consists of a strictly continuous component (except
at ω = 0) and an impulsive component. The constant area 2π is split up, as the function
evaluates to 0.5 for ω �= 0 with a → 1, between these components and the spectrum
becomes

X(ejω) = πδ(ω) + 1

1 − e−jω
and u(n) ⇐⇒ πδ(ω) + 1

1 − e−jω �

Example 8.5. Find the DTFT of the dc signal, x(n) = 1.
The dc signal can be written as x(n) = u(n) + u(−n) − δ(n). Due to the time-reversal
property, if x(n) ⇐⇒ X(ejω) then x(−n) ⇐⇒ X(e−jω). The DTFT of u(−n) is ob-
tained from that of u(n) by replacing ω by −ω. Therefore, the DTFT of the dc
signal is

πδ(ω) + 1

1 − e−jω
+ πδ(−ω) + 1

1 − ejω
− 1 = 2πδ(ω)

Explicitly showing the periodicity of the DTFT spectrum, we get

1 ⇐⇒ 2π

∞∑
k=−∞

δ(ω + 2kπ)

That is, the dc signal, which is the complex exponential x(n) = ejωn with ω = 0,
has, nonzero spectral component only at the single frequency ω = 0. Note that 2π in
the spectral value is a constant factor. �

8.1.2 The Dual Relationship Between the DTFT and the FS

The DTFT is the same as the FS with the roles of time- and frequency-domain functions
interchanged. The analysis equation, with period of the time-domain waveform T and
the fundamental frequency ω0 = 2π/T , of the FS is

Xcs(kω0) = 1

T

∫ T
2

− T
2

x(t)e−jkω0t dt k = 0, ±1, ±2, . . .
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Replacing ω0 by Ts, T by ωs = 2π/Ts, ω by t, t by ω, and k by −k in this equation
we get

Xcs(−kTs) = 1

ωs

∫ ωs
2

− ωs
2

x(ω)ejkωTs dω k = 0, ±1, ±2, . . .

This equation is the same as the inverse DTFT with x(kTs) = Xcs(−kTs) and
X(ejωTs ) = x(ω). Due to this similarity,

x(kTs) ⇐⇒ X(ejωTs ) implies X(ejtTs ) = x(t) ⇐⇒ x(−kTs) = Xcs(kω0)

For the same periodic waveform, we get two sets of FS coefficients related by
the time-reversal operation because the periodic waveform occurs in the frequency-
domain in the case of the DTFT and in the time-domain in the case of the FS. By
convention, we use a complex exponential with negative exponent in the forward
transform definitions of the FS and the DTFT.

Consider the signal x(t) = sin(3t) shown in Figure 8.4(a) and the corresponding FS
coefficients Xcs(kω0) = Xcs(±3) = ∓j0.5 shown in Figure 8.4(b). From the FS syn-
thesis equation, −0.5jej3t + 0.5je−j3t = sin(3t). Consider the spectrum X(ejωTs ) =
sin(3ω) shown in Figure 8.4(c) and the corresponding x(kTs), (x(±3) = ±j0.5), shown
in Figure 8.4(d). From the DTFT analysis equation, 0.5je−j3ω − 0.5jej3ω = sin(3ω).
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Figure 8.4 (a) One period of the periodic time-domain function x(t) = sin(3t); (b) the corresponding
FS spectrum, Xcs(kω0); (c) one period of the periodic frequency-domain function X(ejωTs ) = sin(3ω);
(d) the corresponding inverse DTFT, x(kTs), which is the time-reversal of Xcs(kω0) in (b)
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8.1.3 The DTFT of a Discrete Periodic Signal

A periodic signal x(n) is reconstructed using its DFT coefficients X(k) as

x(n) = 1

N

N−1∑
k=0

X(k)ejkω0n ω0 = 2π

N

Since the DTFT of ejkω0n is 2πδ(ω − kω0), we get, from the linearity property of
the DTFT, one period of the DTFT X(ejω) of x(n) as

X(ejω) = 2π

N

N−1∑
k=0

X(k)δ(ω − kω0)

Therefore, the DTFT of a periodic signal is a periodic train of impulses with strength
2π
N

X(k) at 2π
N

k with period 2π.
For example, the DFT of cos((2π/4)n) is {X(0) = 0, X(1) = 2, X(2) = 0, X(3) =

2} with N = 4. One period of the DTFT X(ejω) is given as {X(ej0) = 0, X(ej 2π
4 ) =

πδ(ω − 2π
4 ), X(ej2 2π

4 ) = 0, X(ej3 2π
4 ) = πδ(ω − 3 2π

4 )}.

8.1.4 Determination of the DFT from the DTFT

The DTFT of a finite sequence x(n), starting from n = n0, of length N is given as

X(ejω) =
n0+N−1∑

n=n0

x(n)e−jnω

The DFT of x(n) is given as

X(k) =
n0+N−1∑

n=n0

x(n)e−jkω0n ω0 = 2π

N

Comparing the DFT and DTFT definitions of the signal, we get

X(k) = X(ejω)|ω=kω0 = X(ejkω0 )

The DTFT spectrum is evaluated at all frequencies along the unit-circle in the complex
plane, whereas the DFT spectrum is the set of N samples of the DTFT spectrum at
intervals of 2π

N
.

Let the nonzero samples of a signal is defined as {x(−2) = 0, x(−1) = −1, x(0) =
0, x(1) = 1}. The DTFT of x(n) is X(ejω) = −ejω + e−jω = −j2 sin(ω). The set of
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samples of X(ejω), {X(0) = 0, X(1) = −j2, X(2) = 0, X(3) = j2}, at ω = 0, ω =
2π
4 , ω = 2 2π

4 , and ω = 3 2π
4 is the DFT of x(n).

8.2 Properties of the Discrete-time Fourier Transform

Properties present the frequency-domain effect of time-domain characteristics and
operations on signals and vice versa. In addition, they are used to find new transform
pairs more easily.

8.2.1 Linearity

The DTFT of a linear combination of a set of signals is the same linear combination
of their individual DTFT. That is,

x(n) ⇐⇒ X(ejω), y(n) ⇐⇒ Y (ejω), ax(n) + by(n) ⇐⇒ aX(ejω) + bY (ejω),

where a and b are arbitrary constants. This property follows from the linearity property
of the summation operation defining the DTFT.

Consider the signal x(n) = a|n|, |a| < 1. This signal can be decomposed as x(n) =
anu(n) + a−nu(−n) − δ(n). The DTFT of anu(n), from Example 8.3, is 1

1−ae−jω . Due
to time-reversal property, if x(n) ⇐⇒ X(ejω) then x(−n) ⇐⇒ X(e−jω). Therefore,
the DTFT of a−nu(−n) is obtained from that of anu(n) as 1

1−aejω . The DTFT of the
signal x(n) = a|n|, |a| < 1, due to linearity property, is

X(ejω) = 1

1 − ae−jω
+ 1

1 − aejω
− 1 = 1 − a2

1 − 2a cos(ω) + a2

8.2.2 Time Shifting

When we shift a signal, the shape remains the same, but the signal is relocated. The shift
of a typical spectral component, X(ejωa )ejωan, by an integral number of sample inter-
vals, n0, to the right results in the exponential, X(ejωa )ejωa(n−n0) = e−jωan0X(ejωa )ejωan.
That is, a delay of n0 results in changing the phase of the exponential by −ωan0 radians
without changing its amplitude. Therefore, if the transform of a time-domain function
x(n) is X(ejω), then the transform of x(n ± n0) is given by e±jωn0X(ejω). That is,

x(n ± n0) ⇐⇒ e±jωn0X(ejω)

Consider the transform pair

(0.8)nu(n) ⇐⇒ 1

1 − 0.8e−jω



160 A Practical Approach to Signals and Systems

Then, due to this property, we get the transform pair

(0.8)(n−2)u(n − 2) ⇐⇒ e−j2ω

1 − 0.8e−jω

8.2.3 Frequency Shifting

The spectrum, X(ejω), of a signal, x(n), can be shifted by multiplying the signal
by a complex exponential, e±jω0n. The new spectrum is X(ej(ω∓ω0)), since a spectral
componentX(ejωa )ejωan of the signal multiplied by ejω0n becomesX(ejωa )ej(ωa+ω0)n and
the spectral value X(ejωa ) occurs at (ωa + ω0), after a delay of ω0 radians. Therefore,
we get

x(n)e±jω0n ⇐⇒ X(ej(ω∓ω0))

The complex exponential ejω0n can be considered as the product of the dc sig-
nal x(n) = 1 and ejω0n. From the frequency shift property, we get the transform
pair ejω0n ⇐⇒ 2πδ(ω − ω0). The complex exponential is characterized by the sin-
gle frequency ω0 alone. Therefore, its spectrum is an impulse at ω0 in the fun-
damental frequency range from −π to π. As cos(ω0n) = 0.5(ejω0n + e−jω0n) and
sin(ω0n) = 0.5j(e−jω0n − ejω0n),

cos(ω0n) ⇐⇒ π(δ(ω − ω0) + δ(ω + ω0))

sin(ω0n) ⇐⇒ jπ(δ(ω + ω0) − δ(ω − ω0))

In Example 8.2, the frequency response of an ideal lowpass filter and its impulse
response were presented. By shifting the frequency response, shown in Figure 8.2(a),
by π radians, we get the frequency response of an ideal highpass filter with cutoff
frequency π − π/4 = 3π/4, as shown in Figure 8.5(a). As the frequency response is
shifted by π radians, we get the impulse response of the highpass filter by multiplying
that of the lowpass filter by ejπn = (−1)n. That is, the impulse response of the highpass
filter is (−1)nsin(πn

4 )/nπ, shown in Figure 8.5(b).
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Figure 8.5 (a) One period of a DTFT spectrum of a highpass filter; (b) the corresponding impulse
response



The Discrete-time Fourier Transform 161

8.2.4 Convolution in the Time-domain

The convolution of signals x(n) and h(n) is defined, in Chapter 4, as

y(n) =
∞∑

m=−∞
x(m)h(n − m)

The convolution of h(n) with a complex exponential ejω0n is given as

∞∑
m=−∞

h(m)ejω0(n−m) = ejω0n
∞∑

m=−∞
h(m)e−jω0m = H(ejω0 )ejω0n

As an arbitrary x(n) is reconstructed by the inverse DTFT as

x(n) = 1

2π

∫ π

−π

X(ejω)ejωndω

the convolution of x(n) and h(n) is given by

y(n) = 1

2π

∫ π

−π

X(ejω)H(ejω)ejωndω

where X(ejω) and H(ejω) are, respectively, the DTFT of x(n) and h(n). The inverse
DTFT of X(ejω)H(ejω) is the convolution of x(n) and h(n). Therefore, we get the
transform pair

∞∑
m=−∞

x(m)h(n − m) = 1

2π

∫ π

−π

X(ejω)H(ejω)ejωndω ⇐⇒ X(ejω)H(ejω)

Consider the rectangular signal

x(n) =
{

1 for |n| ≤ 2

0 for |n| > 2

shown in Figure 8.6(a) and its spectrum shown in Figure 8.6(b). The DTFT of the
signal is sin( 5ω

2 )/sin(ω
2 ). The DTFT of the convolution of this signal with itself is, due

to the property, (sin( 5ω
2 )/sin(ω

2 ))2. As the convolution of a rectangular signal with itself
is a triangular signal, this DTFT is that of a triangular signal. The triangular signal
and its spectrum, which is positive for all ω, are shown, respectively, in Figures 8.6(c)
and (d).
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Figure 8.6 (a) The rectangular signal; (b) its spectrum; (c) the triangular signal, which is the convolution
of the signal in (a) with itself; (d) its spectrum

8.2.5 Convolution in the Frequency-domain

The convolution of two functions in the frequency-domain corresponds to the multi-
plication of the inverse DTFT of the functions in the time-domain with a scale factor.
That is,

x(n)y(n) ⇐⇒
∞∑

n=−∞
x(n)y(n)e−jωn = 1

2π

∫ 2π

0
X(ejv)Y (ej(ω−v))dv

Note that this convolution is periodic, since the DTFT spectrum is periodic.
Consider finding the DTFT of the product of the signal sin(n)/πn with itself. One

period of the DTFT of the signal is the rectangular function

{
1 for |ω| < 1

0 for 1 < |ω| < π

The convolution of this function with itself divided by 2π is the periodic triangular
function, one period of which is defined as




ω+2
2π

for −2 ≤ ω ≤ 0
2−ω
2π

for 0 < ω ≤ 2

0 for −π ≤ ω < −2 and 2 < ω < π
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8.2.6 Symmetry

If a signal is real, then the real part of its spectrum X(ejω) is even and the imaginary
part is odd, called the conjugate symmetry. The DTFT of a real signal is given by

X(ejω) =
∞∑

n=−∞
x(n)e−jωn =

∞∑
n=−∞

x(n)(cos(ωn) − j sin(ωn))

Conjugating both sides, we get

X∗(ejω) =
∞∑

n=−∞
x(n)(cos(ωn) + j sin(ωn))

Replacing ω by −ω, we get X∗(e−jω) = X(ejω). For example, the DTFT of
cos(ωa(n − π/4)) = cos(ωa

π
4 ) cos(ωan) + sin(ωa

π
4 ) sin(ωan) is

X(ejω) = π cos
(

ωa
π

4

)
(δ(ω − ωa) + δ(ω + ωa))

+ jπ sin
(

ωa
π

4

)
(δ(ω + ωa) − δ(ω − ωa))

If a signal is real and even, then its spectrum also is real and even. Since x(n) cos(ωn)
is even and x(n) sin(ωn) is odd,

X(ejω) = x(0) + 2
∞∑

n=1

x(n) cos(ωn) and x(n) = 1

π

∫ π

0
X(ejω) cos(ωn)dω

The DTFT of the cosine function is an example of this symmetry.
If a signal is real and odd, then its spectrum is imaginary and odd. Since x(n) cos(ωn)

is odd and x(n) sin(ωn) is even,

X(ejω) = −j2
∞∑

n=1

x(n) sin(ωn) and x(n) = j

π

∫ π

0
X(ejω) sin(ωn)dω

The DTFT of the sine function is an example of this symmetry.
As the DTFT of a real and even signal is real and even and that of a real and odd is

imaginary and odd, it follows that the real part of the DTFT, Re(X(ejω)), of an arbitrary
real signal x(n) is the transform of its even component xe(n) and j Im(X(ejω)) is that
of its odd component xo(n).
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8.2.7 Time Reversal

Let the spectrum of a signal x(n) be X(ejω). Then, x(−n) ⇐⇒ X(e−jω). That is the
time-reversal of a signal results in its spectrum also reflected about the vertical axis
at the origin. This result is obtained if we replace n by −n and ω by −ω in the DTFT
definition.

8.2.8 Time Expansion

As we have seen in Chapter 2, a signal is compressed or expanded by scaling operation.
The DTFT of the compressed signal, in the discrete case, is unrelated to the DTFT of
the original signal, since part of the data is lost in contrast to merely speeding it up
in the case of a continuous signal. Therefore, consider the case of signal expansion
alone. Let the spectrum of a signal x(n) be X(ejω). If we pad x(n) with zeros to get
y(n) defined as

y(an) = x(n) for − ∞ < n < ∞ and y(n) = 0 otherwise

where a �= 0 is any positive integer, then,

Y (ejω) = X(ejaω)

The DTFT of the sequence y(n) is given by

Y (ejω) =
∞∑

n=−∞
y(n)e−jωn

Since we have nonzero input values only if n = ak, k = 0, ±1, ±2, . . ., we get

Y (ejω) =
∞∑

k=−∞
y(ak)e−jωak =

∞∑
k=−∞

x(k)e−jωak = X(ejaω)

Therefore,

y(n) ⇐⇒ X(ejaω)

The spectrum is compressed. That is, the spectral value at ω in the spectrum of
the signal occurs at ω/a in the spectrum of its expanded version. If a is negative, the
spectrum is also frequency-reversed.

For example, the DTFT of the signal x(n) shown in Figure 8.7(a) with dots, with
its only nonzero values given as x(−1) = 1 and x(1) = 1, is X(ejω) = ejω + e−jω =
2 cos(ω). Using the theorem, we get the DTFT of y(n) with a = 2, shown in
Figure 8.7(a) with unfilled circles, as

Y (ejω) = X(ej2ω) = 2 cos(2ω)
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Figure 8.7 (a) Signal x(n) (dots) and its expanded version y(n) (unfilled circles) with a = 2; (b) the
DTFT of x(n) (solid line) and that of y(n) (dashed line); (c) signal x(n) (dots) and its expanded version
y(n) (unfilled circles) with a = 2; (d) the DTFT of x(n) (two impulses of strength π) and that of y(n)
(four impulses of strength π/2)

This result can be verified from the DTFT definition. The DTFT of the signal (solid
line) and that of its expanded version (dashed line) are shown in Figure 8.7(b). Since
the signal is expanded by a factor of two, the spectrum is compressed by a factor of
two.

As another example, consider the cosine signal x(n) = cos((2π/8)n), shown in
Figure 8.7(c) by dots, and its DTFT

X(ejω) = π

∞∑
k=−∞

(
δ

(
ω − 2π

8
+ 2πk

)
+ δ

(
ω + 2π

8
+ 2πk

))

shown in Figure 8.7(d) with two impulses of strength π. The DTFT of y(n) with a = 2,
shown in Figure 8.7(c) by unfilled circles, is

Y (ejω) = π

∞∑
k=−∞

(
δ

(
2ω − 2π

8
+ 2πk

)
+ δ

(
2ω + 2π

8
+ 2πk

))

= π

2

∞∑
k=−∞

(
δ

(
ω − π

8
+ πk

)
+ δ

(
ω + π

8
+ πk

))

= π

2

((
δ

(
ω − π

8

)
+ δ(ω + π

8
)
)

+
(

δ

(
ω − 7π

8

)
+ δ

(
ω + 7π

8

)))
,
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−π < ω ≤ π, shown in Figure 8.7(d) with four impulses of strength π/2 in the fun-
damental frequency range from −π to π. The expanded time-domain signal is recon-
structed from its spectrum as follows.

y(n) = 0.5 cos
(

π

8
n

)
+ 0.5 cos

((
π − π

8

)
n

)
= 0.5 cos

(
π

8
n

)
(1 + (−1)n)

= cos
(

π

8
n

)

for n even and y(n) is zero otherwise.

8.2.9 Frequency-differentiation

Differentiating both sides of the DTFT defining equation, with respect to ω, we get
the transform pair

(−jn)x(n) ⇐⇒ dX(ejω)

dω
or (n)x(n) ⇐⇒ (j)

dX(ejω)

dω

In general,

(−jn)mx(n) ⇐⇒ dmX(ejω)

dωm
or (n)mx(n) ⇐⇒ (j)m

dmX(ejω)

dωm

This property is applicable only if the resulting signal satisfies the existence condi-
tions of the DTFT. Consider the transform pair

δ(n − 2) ⇐⇒ e−j2ω

Using the property, we get the transform pair

nδ(n − 2) ⇐⇒ (j)(−j2)e−j2ω = 2e−j2ω

8.2.10 Difference

The derivative of a function is approximated by differences in the discrete case.

y(n) = x(n) − x(n − 1) ⇐⇒ Y (ejω) = (1 − e−jω)X(ejω)

using the time-shifting property.
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8.2.11 Summation

The summation of a time-domain function, x(n), can be expressed, in terms of its
DTFT X(ejω), as

y(n) =
n∑

l=−∞
x(l) ⇐⇒ Y (ejω) = X(ejω)

(1 − e−jω)
+ πX(ej0)δ(ω), −π < ω ≤ π

The transform [X(ejω)/(1 − e−jω)] + πX(ej0)δ(ω) is the product of the transforms
of x(n) and u(n) and corresponds to the convolution of x(n) and u(n) in the time-
domain, which, of course, is equivalent to the sum of the values of x(n) from −∞
to n. The time-summation operation can be considered as the inverse of the time-
differencing operation, if X(ej0) = 0. This justifies the strictly continuous component
of the spectrum. The impulsive component is required to take into account of the
dc component of x(n). This property is applicable only if the resulting signal satisfies
the existence conditions of the DTFT.

Since the DTFT of unit-impulse is one and the unit-step function is a summation
of the impulse, we get, using this property, the DTFT of u(n), over one period, as

u(n) =
n∑

l=0

δ(l) ⇐⇒ 1

(1 − e−jω)
+ πδ(ω) − π < ω ≤ π

As another example, consider the signal, shown in Figure 8.8(a), and the resulting
signal, shown in Figure 8.8(b), obtained by summing it. The DTFT of the given signal
is, from the DTFT definition, 1 + e−jω. Using the property, we get the DTFT of its
summation as

1 + e−jω

1 − e−jω
+ 2πδ(ω), −π < ω ≤ π

The summation ofx(n) isy(n), shown in Figure 8.8(b) along with its two components
corresponding to the two terms of the transform.
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Figure 8.8 (a) Signal x(n) = u(n) − u(n − 2); (b) y(n) = ∑n

l=−∞ x(l) (dotted line) and its two com-
ponents
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8.2.12 Parseval’s Theorem and the Energy Transfer Function

As the frequency-domain representation of a signal is an equivalent representation,
the energy of a signal can also be expressed in terms of its spectrum.

E =
∞∑

n=−∞
|x(n)|2 = 1

2π

∫ 2π

0
|X(ejω)|2dω

Since x(n) can be considered as the FS coefficients of X(ejω), this expression
is the same as that corresponding to the FS with the roles of the domains inter-
changed. The quantity |X(ejω)|2 is called the energy spectral density of the signal,
since (1/2π)|X(ejω)|2dω is the signal energy over the infinitesimal frequency band ω

to ω + dω.
Consider the signal, shown in Figure 8.8(a), and its DTFT 1 + e−jω. The energy

of the signal, from its time-domain representation, is 12 + 12 = 2. The energy of the
signal, from its frequency-domain representation, is

E = 1

2π

∫ 2π

0
|1 + e−jω|2dω = 1

2π

∫ 2π

0
(2 + 2 cos(ω))dω = 2

The input and output of a LTI system, in the frequency-domain, is related by the
transfer function H(ejω) as

Y (ejω) = H(ejω)X(ejω)

where X(ejω), Y (ejω), and H(ejω) are the DTFT of the input, output, and impulse
response of the system. The output energy spectrum is given by

|Y (ejω)|2 = Y (ejω)Y∗(ejω)

= H(ejω)X(ejω)H∗(ejω)X∗(ejω) = |H(ejω)|2|X(ejω)|2

The quantity |H(ejω)|2 is called the energy transfer function, as it relates the input
and output energy spectral densities of the input and output of a system.

8.3 Approximation of the Discrete-time Fourier Transform

In the computation of the DFT, we usually use the time-domain range from n = 0
to n = N − 1. Due to periodicity of the DFT, we can always get the samples in this
interval even though the data is defined in other intervals. Replacing ω by (2π/N)k in
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the DTFT definition, we get

X(ej 2π
N

k) =
N−1∑
n=0

x(n)e−j 2π
N

nk =
N−1∑
n=0

x(n)Wnk k = 0, 1, . . . , N − 1

Let us approximate the samples of the DTFT spectrum shown in Figure 8.2(a)
using the DFT. The time-domain signal, shown in Figure 8.2(b), is of infinite duration
and, therefore, we have to truncate it. For example, let us take the fifteen samples
x(−7), x(−6), . . . , x(6), x(7). The record length of the truncated signal should be such
that most of the energy of the signal is retained in the truncated signal. As the most
efficient and regular DFT algorithms are of length that is an integral power of two, the
truncated data is usually zero-padded. With one zero added and N = 16, the data for
the DFT computation becomes x(0), x(1), . . . , x(7), 0, x(−7), . . . , x(−2), x(−1), as
shown in Figure 8.9(a). The corresponding DFT spectrum is shown in Figure 8.9(b).
As the spectrum is even-symmetric, only the positive frequency half of the spectrum
is shown. As the number of samples is increased, the spectral samples become more
accurate, as shown in Figures 8.9(c) and (d) with N = 64. Note the Gibbs phenomenon
in the vicinity of the discontinuity of the spectrum.

The spectral samples obtained using the DFT are not exact because of the truncation
of the input data. In effect, the actual data are multiplied by a rectangular window.
Therefore, the desired spectrum is convolved with that of the rectangular window
(a sinc function). This results in the distortion of the spectrum. As the level of truncation
is reduced, the distortion also gets reduced. In the end, with no truncation (a rectangular
window of infinite length), we get an undistorted spectrum. As an infinite data length
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Figure 8.9 (a), (c) One period of the periodic extension of the truncated and zero padded aperiodic
discrete signal, shown in Figure 8.2(b), with N = 16 and N = 64 samples, respectively; (b), (d) The
DFT of the signals in (a) and (c), respectively
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is unacceptable for DFT computation, we start with some finite data length and keep
increasing it until the difference between two successive spectra becomes negligible.

8.3.1 Approximation of the Inverse DTFT by the IDFT

Replacing ω by (2π/N)k and dω by 2π/N in the inverse DTFT definition, we get

x(n) = 1

N

N−1∑
k=0

X
(
ej 2π

N
k
)

ej 2π
N

nk = 1

N

N−1∑
k=0

X
(
ej 2π

N
k
)

W−nk n = 0, 1, . . . , N − 1

Let us approximate the inverse DTFT of the spectrum shown in Figure 8.2(a) by
the IDFT. As always, at points of discontinuity, the average of the left- and right-hand
limits should be taken as the sample value in Fourier analysis. The sample values of the
spectrum with N = 8 are shown in Figure 8.10(a). The IDFT of these samples is shown
in Figure 8.10(b) along with the exact values. Only half of the signal is shown, as it is
even-symmetric. As the number of samples is increased, as shown in Figure 8.10(c),
the time-domain values become more accurate, as shown in Figure 8.10(d). As the
time-domain data length is infinite, the necessary sampling interval of the spectrum is
zero radians. However, as that interval is not practical with numerical analysis, we use
some finite sample interval. That results in time-domain aliasing. As mentioned earlier,
practical signals, with an adequate sampling interval and a sufficient record length, can
be considered as both time-limited and band-limited with a desired accuracy. This fact
enables the use of the DFT and IDFT, which can be computed using fast algorithms,
to approximate the other versions of Fourier analysis.
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Figure 8.10 (a), (c) Samples of one period of the periodic DTFT spectrum, shown in Figure 8.2(a), with
N = 8 and N = 32 samples, respectively; (b), (d) The IDFT of the spectra in (a) and (c), respectively
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8.4 Applications of the Discrete-time Fourier Transform

8.4.1 Transfer Function and the System Response

The input–output relationship of a LTI system is given by the convolution operation
in the time-domain. Since convolution corresponds to multiplication in the frequency-
domain, we get

y(n) =
∞∑

m=−∞
x(m)h(n − m) ⇐⇒ Y (ejω) = X(ejω)H(ejω)

where x(n), h(n), and y(n) are, respectively the system input, impulse response, and
output, andX(ejω),H(ejω), andY (ejω) are their respective transforms. As input is trans-
ferred to output by multiplication with H(ejω), H(ejω) is called the transfer function
of the system. The transfer function, which is the transform of the impulse response,
characterizes a system in the frequency-domain just as the impulse response does in
the time-domain.

Since the impulse function, whose DTFT is one (a uniform spectrum), is composed
of complex exponentials, ejωn, of all frequencies from ω = −π to ω = π with equal
magnitude and zero phase, the transform of the impulse response, the transfer func-
tion, is also called the frequency response of the system. Therefore, an exponential
Aej(ωan+θ) is changed to (|H(ejωa )|A)ej(ωan+(θ+∠ (H(ejωa ))) at the output. A real sinu-
soidal input signal A cos(ωan + θ) is also changed at the output by the same amount
of amplitude and phase of the complex scale factor H(ejωa ). That is, A cos(ωan + θ)
is changed to (|H(ejωa )|A) cos(ωan + (θ + ∠ (H(ejωa ))). The steady-state response of
a stable system to the input Aej(ωan+θ)u(n) is also the same.

As H(ejω) = Y (ejω)/X(ejω), the transfer function can also be described as the ratio
of the transform Y (ejω) of the response y(n) to an arbitrary signal x(n) to that of its
transform X(ejω), provided |X(ejω)| �= 0 for all frequencies and the system is initially
relaxed.

Since the transform of a delayed signal is its transform multiplied by a factor, we
can just as well find the transfer function by taking the transform of the difference
equation characterizing a system. Consider the difference equation of a causal LTI
discrete system.

y(n) + aK−1y(n − 1) + aK−2y(n − 2) + · · · + a0y(n − K)

= bMx(n) + bM−1x(n − 1) + · · · + b0x(n − M)

Taking the transform of both sides, we get, assuming initial conditions are all zero,

Y (ejω)(1 + aK−1e
−jω + aK−2e

−j2ω + · · · + a0e
−jKω)

= X(ejω)(bM + bM−1e
−jω + · · · + b0e

−jMω)
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The transfer function H(ejω) is obtained as

H(ejω) = Y (ejω)

X(ejω)
= bM + bM−1e

−jω + · · · + b0e
−jMω

1 + aK−1e−jω + aK−2e−j2ω + · · · + a0e−jKω

Example 8.6. Find the response, using the DTFT, of the system governed by the
difference equation

y(n) = x(n) + 0.6y(n − 1)

to the input x(n) = cos( 2π
6 n + π

6 ).

Solution
H(ejω) = ejω

ejω − 0.6

Substituting ω = 2π
6 , we get

H
(
ej 2π

6

)
= ej 2π

6

ej 2π
6 − 0.6

= 1.1471∠ (−0.6386)

The response of the system to the input x(n) = cos( 2π
6 n + π

6 ) is y(n) =
1.1471 cos( 2π

6 n + π
6 − 0.6386). �

Example 8.7. Find the impulse response h(n), using the DTFT, of the system gov-
erned by the difference equation

y(n) = x(n) − x(n − 1) + 2x(n − 2) + 7

12
y(n − 1) − 1

12
y(n − 2)

Solution

H(ejω) = 1 − e−jω + 2e−j2ω(
1 − 7

12e−jω + 1
12e−j2ω

) = 1 − e−jω + 2e−j2ω(
1 − 1

3e
−jω

) (
1 − 1

4e
−jω

)

Expanding into partial fractions, we get

H(ejω) = 24 + 64(
1 − 1

3e
−jω

) − 87(
1 − 1

4e
−jω

)
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Taking the inverse DTFT, we get the impulse response as

h(n) = 24δ(n) +
(

64
(

1

3

)n

− 87
(

1

4

)n)
u(n)

The first four values of the impulse response h(n) are

h(0) = 1, h(1) = −0.4167, h(2) = 1.6736, h(3) = 1.011 �

Example 8.8. Find the zero-state response, using the DTFT, of the system governed
by the difference equation

y(n) = 2x(n) − x(n − 1) + 3x(n − 2) + 9

20
y(n − 1) − 1

20
y(n − 2)

with the input x(n) = u(n), the unit-step function.

Solution
H(ejω) = 2 − e−jω + 3e−j2ω(

1 − 9
20e−jω + 1

20e−j2ω
) = 2 − e−jω + 3e−j2ω(

1 − 1
5e

−jω
) (

1 − 1
4e

−jω
)

With X(ejω) = 1
(1−e−jω) + πδ(ω),

Y (ejω) = H(ejω)X(ejω) = 2 − e−jω + 3e−j2ω

(1 − e−jω)
(

1 − 1
5e

−jω
) (

1 − 1
4e

−jω
) + 20

3
πδ(ω)

Expanding into partial fractions, we get

Y (ejω) =
20
3

(1 − e−jω)
+ 72(

1 − 1
5e

−jω
) −

230
3(

1 − 1
4e

−jω
) + 20

3
πδ(ω)

Taking the inverse DTFT, we get the zero-state response.

y(n) =
(

20

3
+ 72

(
1

5

)n

− 230

3

(
1

4

)n)
u(n)

The steady-state response is (20/3)u(n), the response after the transient response
has died out completely. The first four values of the sequence y(n) are

y(0) = 2, y(1) = 1.9, y(2) = 4.755, y(3) = 6.0448 �
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The transfer function concept can still be used, even if the initial conditions of
a system are nonzero. In that case, we have to assume that additional inputs are
applied to the system at the instant the system is turned on, which will produce the
same response as do the initial conditions. However, the z-transform is relatively
easier for system analysis. In addition, it can handle a larger class of signals and
systems than can be analyzed by the DTFT. Wherever the DTFT is more suitable,
it is better for numerical analysis as it can be approximated by the DFT using fast
algorithms.

8.4.2 Digital Filter Design Using DTFT

Digital filters are widely used in signal processing applications. Usually, the spec-
ification of a filter is given in terms of its frequency response. As the filter, which
is a system, is characterized by its impulse response, the design of a filter is to de-
termine its impulse response. Therefore, one way of finding the impulse response
is to find inverse DTFT of its frequency response. For example, the frequency re-
sponse and the corresponding impulse response of an ideal lowpass filter are shown,
respectively, in Figures 8.2(a) and (b) and those of a highpass filter are shown, re-
spectively, in Figures 8.5(a) and (b). A system with this type of impulse response is
not practically implementable because: (i) As the impulse response is not absolutely
summable, it is an unstable system; (ii) the impulse response is noncausal. The first
problem is overcome by truncating part of the impulse response. The second problem
is solved by shifting the impulse response to the right so that it becomes causal. With
these modifications of the impulse response, of course, the filter response will not be
ideal.

We prefer the response of the actual filter to converge uniformly to that of the ideal
filter. But, in Fourier analysis, the convergence criteria is with respect to the square
error. That is, there is a 9% deviation of the frequency response at the band edges
(discontinuities) of the filter. This problem can be reduced by using window functions
to smooth the truncated impulse response. This time the price that is paid is of longer
transition bands.

8.4.3 Digital Differentiator

In this subsection, we derive the impulse response of the digital differentiator from its
frequency response. This differentiator takes the samples of a continuous signal x(t)
and produces the samples of its derivative. The periodic frequency response, shown
in Figure 8.11(a) over one period, of the ideal digital differentiator is defined as

H(ejω) = jω, −π < ω < π
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Figure 8.11 (a) The frequency response of the ideal digital differentiator; (b) the frequency response
of the ideal Hilbert transformer

For example, the input and the output of the differentiator are

sin(ω0n) ⇐⇒ jπ(δ(ω + ω0) − δ(ω − ω0))

jπ(j)(−ω0δ(ω + ω0) − ω0δ(ω − ω0)) ⇐⇒ ω0 cos(ω0n)

The impulse response of the ideal differentiator is obtained by finding the inverse
DTFT of its frequency response.

h(n) = 1

2π

∫ π

−π

jωejωndω = cos(πn)

n
=

{
(−1)n

n
for n �= 0

0 for n = 0
− ∞ < n < ∞

As the frequency response of the differentiator is imaginary and odd-symmetric,
the impulse response is real and odd-symmetric.

8.4.4 Hilbert Transform

Although most practical signals are real-valued, we need, in applications such as the
sampling of bandpass signals and single-sideband amplitude modulation, a complex
signal whose real part is the given real signal x(n) and the imaginary part is the Hilbert
transform of x(n). In the Hilbert transform, every real frequency component of a real
signal x(n) is shifted to the right by −π/2 radians. That is, a phase of −π/2 radians is
added. For example, the Hilbert transform of sin(ωn) is sin(ωn − π/2) = − cos(ωn).
Most of the transforms have two domains, whereas there is only one domain in the
Hilbert transform. Consider the complex signal formed with the real part being a real
signal and the imaginary part being its Hilbert transform. The spectral values of this
complex signal are zero for negative frequencies (a one-sided spectrum). The complex
signal formed by the sine signal and its Hilbert transform is

sin(ωn) − j cos(ωn) = −jejωn

The DFT of sin(ωn), with N samples in a cycle, is −jN/2 at ω and jN/2 at −ω

whereas that of −jejωn is −jN at ω only. Similarly, a transform with its imaginary
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part being the Hilbert transform of its real part, for example the transfer function
of a causal system, corresponds to a one-sided time-domain signal. In this subsec-
tion, the impulse response of the Hilbert transformer is derived from its frequency
response.

Figures 8.12(a) and (b) show the signal
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Figure 8.12 (a) An arbitrary signal; (b) its DFT; (c) the Hilbert transform of signal in (a) and (d) its
DFT; (e) the signal in (c) multiplied by j and (f) its DFT; (g) the sum of signals in (a) and (e), and (h) its
one-sided DFT spectrum
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and its DFT spectrum, respectively. Figures 8.12(c) and (d) show the Hilbert transform
of the signal in (a)

xH (n) = sin
(

2π

16
n − π

2

)
+ cos

(
3

2π

16
n − π

2

)
+ sin

(
5

2π

16
n − π

3
− π

2

)

and its spectrum, respectively. The dc component 0.3 and the component with fre-
quency π, cos(πn), become sine terms with frequencies 0 and π radians. At these
frequencies, the samples of the sine wave are all zero. The differences between the
spectra in (b) and (d) are that the values at index k = 0 and at k = N

2 = 8 are zero in
(d), the values of the other positive frequency components in (b) are multiplied by −j,
and those of the negative frequency components in (b) are multiplied by j. Therefore,
the spectrum of a real signal modified in this way is the DFT of its Hilbert transform
and its IDFT gives the Hilbert transform of the signal.

The signal jxH (n) and its spectrum are shown in Figures 8.12(e) and (f), respectively.
Compared with the spectrum in Figure 8.12(b), the coefficients at index k = 0 and
at k = N/2 = 8 are zero, the coefficients of the positive frequency components are
modified by j(−j) = 1, and those of the negative frequency components are modified
by j(j) = −1. Therefore, the spectrum is the same as in (b) with the values of the
negative frequency components negated and the values with indices 0 and 8 zero. The
complex signal x(n) + jxH (n) and its spectrum are shown in Figures 8.12(g) and (h),
respectively. The spectral values in (h) with indices from 1 to 7 are twice of those in
the first half of (b). Values with indices 0 and 8 are the same and the rest of the values
are zero.

The periodic frequency response, shown in Figure 8.11(b) over one period, of the
ideal Hilbert transformer is defined as

H(ejω) =
{−j for 0 < ω < π

j for −π < ω < 0

The impulse response of the ideal Hilbert transformer is obtained by finding the inverse
DTFT of its frequency response.

h(n) = 1

2π

∫ π

0
−jejωndω + 1

2π

∫ 0

−π

jejωndω

=
{

2 sin2( πn
2 )

πn
for n �= 0

0 for n = 0
− ∞ < n < ∞
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8.5 Summary
• In this chapter, the DTFT, its properties, its applications, and its approximation by

the DFT have been presented.
• The DTFT analyzes aperiodic discrete signals in terms of a continuum of discrete

sinusoids over a finite frequency range. Due to the discrete nature of the signal with
an infinite range, the DTFT spectrum is periodic and continuous.

• There is a dual relationship between the FS and the DTFT.
• The spectral analysis of discrete signals, design of filters, and LTI discrete system

analysis are typical applications of the DTFT.
• As is the case with the other versions of the Fourier analysis, the DTFT is also

approximated by the DFT.

Further Reading

1. Sundararajan, D., Digital Signal Processing, Theory and Practice, World Scientific, Singapore, 2003.
2. Lathi, B. P., Linear Systems and Signals, Oxford University Press, New York, 2004.
3. Guillemin, E. A., Theory of Linear Physical Systems, John Wiley, New York, 1963.

Exercises

8.1 Find the DTFT of

x(n) =
{

1 for 0 ≤ n < N

0 otherwise

With N = 5, compute the values of X(ejω) of x(n) at ω = 0, π.
∗8.2 Find the DTFT of

x(n) =
{

1 for −N ≤ n ≤ N

0 otherwise

With N = 5, compute the values of X(ejω) of x(n) at ω = 0, π.
8.3 Find the DTFT of x(n) = (a)n cos(ω0n)u(n), a < 1. With ω0 = π/2 and a =

0.9, compute the values of X(ejω) of x(n) at ω = 0, π.
∗8.4 Find the DTFT of x(n) = (a)n sin(ω0n)u(n), a < 1. With ω0 = π/2 and a =

0.7, compute the values of X(ejω) of x(n) at ω = 0, π.
8.5 Apply a limiting process, as N → ∞, so that

x(n) =
{

cos(ω0n) for |n| ≤ N

0 for |n| > N

degenerates into the cosine function and, hence, derive the DTFT of the signal
cos(ω0n), −∞ < n < ∞.
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8.6 Apply a limiting process, as a → 1, so that a|n| cos(ω0n), a < 1 degenerates
into cos(ω0n) and, hence, derive the DTFT of the signal cos(ω0n), −∞ < n

< ∞.
8.7 Apply a limiting process so that x(n) degenerates into the dc function and,

hence, derive the DTFT of the dc function, x(n) = 1.

8.7.1 x(n) =
{

1 for |n| ≤ M

0 for |n| > M
as M → ∞.

8.7.2 x(n) = a|n|, 0 < a < 1 as a → 1.
8.7.3 x(n) = sin(an)

an
as a → 0.

8.8 Given the description of the periodic signal x(t) over one period, find its FS.
Then, using the duality property, find the corresponding DTFT pair. Verify the
DTFT pair using the inverse DTFT equation.

8.8.1 x(t) =
{

2 for 0 < t < 2

−2 for 2 < t < 4
8.8.2 x(t) = 1.5t, 0 ≤ t < 2.

8.8.3 x(t) =
{

4
3 t for 0 ≤ t < 1.5

4
3 (3 − t) for 1.5 ≤ t < 3

8.9 Find the DTFT of x(n).
8.9.1 x(n) = 2 cos

(
2π
8 n + π

3

)
.

8.9.2 x(n) = j4 sin
(

2π
6 n − π

6

)
.

8.9.3 x(n) = 2ej( 2π
9 n+ π

4 ).
8.9.4 x(n) = u(n − 2).

∗8.9.5 x(n) = (0.6)nu(n − 2).
8.10 Given the sample values over a period of a periodic sequence, find its DTFT

using the DFT.
8.10.1 {x(0) = 2, x(1) = 3, x(2) = 1, x(3) = 4}.

∗8.10.2 {x(0) = 4, x(1) = 1, x(2) = 2, x(3) = 3}.
8.10.3 {x(0) = 3, x(1) = 4, x(2) = −2, x(3) = 1}.

8.11 Find the DTFT, X(ejω), of x(n). Find also the DFT, X(k), of x(n) with N =
4. Verify that the DFT values correspond to the samples of X(ejω) at ω =
0, π/2, π, 3π/2.
8.11.1 {x(n), n = 0, 1, 2, 3} = {2, 3, −1, 4} and x(n) = 0 otherwise.
8.11.2 {x(n), n = 0, 1, 2, 3} = {4, 0, 0, 0} and x(n) = 0 otherwise.
8.11.3 {x(n), n = 0, 1, 2, 3} = {0, −2, 0, 0} and x(n) = 0 otherwise.
8.11.4 {x(n), n = 0, 1, 2, 3} = {3, 3, 3, 3} and x(n) = 0 otherwise.
8.11.5 {x(n), n = 0, 1, 2, 3} = {2, −2, 2, −2} and x(n) = 0 otherwise.

8.12 Find the DTFT of the signal

x(n) =
{

1 for n ≥ 0

−1 for n < 0

using the linearity property.



180 A Practical Approach to Signals and Systems

8.13 Find the DTFT of the signal x(n) = (n + 1)(0.7)nu(n) using the linearity prop-
erty. Find the spectral values at ω = 0, π.

8.14 Find the DTFT of the signal x(n) = 0, n < 0, x(0) = 2, x(1) = 2, and x(n) =
5, n > 1 using the transform of u(n), and linearity and time-shifting properties.

8.15 Find the DTFT of the signal with its nonzero values defined as x(n) =
(0.6)n, 0 ≤ n ≤ 7 using the transform of (0.6)nu(n), and the linearity and time-
shifting properties.

8.16 Find the inverse DTFT of X(ejω) using the linearity property.
8.16.1 X(ejω) = 1

(1−0.5e−jω)(1−0.4e−jω) .
∗8.16.2 X(ejω) = 1

(1−0.5e−jω)(1−0.25e−jω) .
8.17 Find the impulse response hl(n) of an ideal lowpass filter with cutoff frequency

π/3 radians. Using the frequency-shifting property and the hl(n) obtained, find
the impulse response hh(n) of an ideal highpass filter with cutoff frequency
2π/3 radians.

8.18 Find the DTFT of the signal

x(n) =
{

1 for −N ≤ n ≤ N

0 otherwise

using the DTFT of shifted unit-step signals.
8.19 Using the frequency-shifting property, find the inverse DTFT of

X(ejω) = 1

(1 − 0.6e−j(ω− π
3 ))

.
8.20 Find the DTFT of the signal x(n) = ejω0nu(n) using the frequency-shifting

property.
8.21 Find the convolution of the finite sequences x(n) and h(n) using the DTFT.

∗8.21.1 {x(n), n = 0, 1, 2, 3} = {1, 0, 2, 3} and {h(n), n = 1, 2, 3} = {−2,

1, −4}.
8.21.2 {x(n), n = −4, −3, −2, −1} = {3, 1, 0, −4} and {h(n), n = −4,

−3, −2, −1} = {1, 0, −1, 3}.

8.21.3 {x(n), n = −1, 0, 1} = {2, 0, 3} and {h(n), n = −1, 0, 1} = {−3,

2, 2}.
8.22 Using the time-domain convolution property, find the DTFT of the convolution

of x(n) and h(n).
8.22.1 x(n) = (0.5)nu(n) and h(n) = x(n).
8.22.2 x(n) = (0.6)nu(n) and h(n) = u(n).
8.22.3 x(n) = (0.7)nu(n) and h(n) = (0.3)nu(n).
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8.23 Using the frequency-domain convolution property, find the DTFT of the product
of x(n) and h(n).
8.23.1 x(n) = 2 sin(n) and h(n) = cos(n).
8.23.2 x(n) = e(jω0n) and h(n) = u(n).

8.24 Using the time-expansion property, find the DTFT of the signal y(n) defined as

y(an) = x(n) for − ∞ < n < ∞ and y(n) = 0 otherwise

8.24.1 x(n) = 3, |n| ≤ 2 and x(n) = 0 otherwise, and a = 2.
∗8.24.2 x(n) = (0.6)nu(n) and a = −4.

8.24.3 x(n) = sin( πn
3 )

πn
and a = 2.

8.24.4 x(n) = u(n) and a = 3.
8.24.5 x(n) = u(n − 2) and a = 2.
8.24.6 x(n) = cos

(
2π
8 (n − 1)

)
and a = 2.

8.25 Find the DTFT of the signal x(n) = n(0.8)nu(n) using the multiplication by
n property.

8.26 Using the time-summation property, find the DTFT of the summation

y(n) =
n∑

l=−∞
x(l)

8.26.1 x(−1) = 2, x(1) = −2 and x(n) = 0 otherwise.
8.26.2 x(n) = δ(n + 2).
8.26.3 x(n) = u(n + 2).

∗8.26.4 x(n) = (0.6)nu(n).
8.27 Verify Parseval’s theorem.

8.27.1 x(−1) = 1, x(1) = −1, and x(n) = 0 otherwise.
8.27.2 x(n) = sin(n)

πn
.

8.28 Find the DTFT of x(n) = (0.4)nu(n). Compute the samples of X(ejω) of x(n)
using the DFT with N = 4. Compare the DFT values with the exact sample
values of X(ejω).

∗8.29 Find the DTFT of x(n) = (0.3)nu(n). Approximate the values of x(n), using the
IDFT with N = 4, from the samples of the DTFT of x(n). Compare the IDFT
values with the exact values of x(n).

8.30 Using the DTFT, find the impulse response h(n) of the system governed by the
difference equation

y(n) = 2x(n) − 3x(n − 1) + 2x(n − 2) + 5

6
y(n − 1) − 1

6
y(n − 2)

with input x(n) and output y(n). List the first four values of h(n).
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∗8.31 Using the DTFT, find the impulse response h(n) of the system governed by the
difference equation

y(n) = x(n) − 4x(n − 1) − 11

12
y(n − 1) − 1

6
y(n − 2)

with input x(n) and output y(n). List the first four values of h(n).
8.32 Using the DTFT, find the impulse response h(n) of the system governed by the

difference equation

y(n) = x(n) + 11

15
y(n − 1) − 2

15
y(n − 2)

with input x(n) and output y(n). List the first four values of h(n).
8.33 Using the DTFT, find the frequency response of the system governed by the

difference equation

y(n) = x(n) + 0.8y(n − 1)

Deduce the steady-state response of the system to the input x(n) = cos( 2π
8 n −

π
6 )u(n).

8.34 Using the DTFT, find the zero-state response of the system governed by the
difference equation

y(n) = x(n) − 2x(n − 1) + 3x(n − 2) + 7

12
y(n − 1) − 1

12
y(n − 2)

with the input x(n) = u(n), the unit-step function.
∗8.35 Using the DTFT, find the zero-state response of the system governed by the

difference equation

y(n) = 3x(n) + 2x(n − 1) + x(n − 2) + 8

15
y(n − 1) − 1

15
y(n − 2)

with the input x(n) = ( 1
2 )nu(n).

8.36 Find the Hilbert transform xH (n) of the signal.
8.36.1 x(n) = 2 − cos2(n).

∗8.36.2 x(n) = (−1)n + sin2(0.5n).
8.37 Find the Hilbert transform xH (n) of the signal {x(n), n = 0, 1, 2, 3} =

{4, 5, 4, 3} using the DFT and the IDFT.



9
The Fourier Transform

The FT is the frequency-domain representation of continuous aperiodic signals in
terms of a continuum of sinusoids over an infinite frequency range. Compared with
the FS, as the period of the periodic waveform tends to infinity, the waveform becomes
aperiodic and the interval between the spectral points tends to zero, resulting in a
continuous aperiodic spectrum. Compared with the DTFT, as the sampling interval of
the time-domain waveform tends to zero, the waveform becomes continuous and the
period of the spectrum tends to infinity, resulting in the continuous periodic spectrum
of the DTFT becoming a continuous aperiodic spectrum.

In Section 9.1, we derive the FT, starting from the definition of the DTFT. The prop-
erties of the FT are presented in Section 9.2. The FT of mixed class of signals is derived
in Section 9.3. In Section 9.4, the approximation of the samples of the FT by those of
the DFT is described. Some typical applications of the FT are presented in Section 9.5.

9.1 The Fourier Transform

9.1.1 The FT as a Limiting Case of the DTFT

The FT is the same as the DTFT with the sampling interval of the time-domain
waveform tending to zero. Consider the samples of the continuous sinc function,
sin(π

3 t)/πt, with sampling interval Ts = 1 s and its DTFT spectrum, multiplied by Ts,
shown, respectively, in Figures 9.1(a) and (b). The DTFT spectrum is periodic with
period 2π/Ts = 2π/1 radians.

Reducing the sampling interval by a factor of two results in the doubling of the
period of the spectrum, as shown in Figures 9.1(c) and (d). As the number of samples
is increased, the amplitude of the spectrum will also increase. But the product of
the amplitude and the sampling interval approaches a finite limiting function. As the
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Figure 9.1 (a) Samples of the sinc function sin
(

π
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)
/πt, with Ts = 1 s; (b) its DTFT spectrum, multi-

plied by Ts, with period 2π radians; (c) sinc function with Ts = 0.5 s; (d) its DTFT spectrum, multiplied
by Ts, with period 4π radians

sampling interval tends to zero, the time-domain waveform becomes continuous with
a corresponding aperiodic spectrum.

The foregoing argument can be, mathematically, put as follows. Substituting for
X(ejωTs) and 1/ωs replaced by Ts/2π in Equation (8.4), we get

x(nTs) = Ts

2π

∫ ωs
2

− ωs
2

ejωnTs

( ∞∑
l=−∞

x(lTs)e
−jωlTs

)
dω

As Ts tends to 0, ωs tends to ∞, nTs and lTs become, respectively, continuous time
variables t and τ, differential dτ formally replaces Ts, and the summation becomes an
integral. Therefore, we get

x(t) = 1

2π

∫ ∞

−∞

(∫ ∞

−∞
x(τ)e−jωτdτ

)
ejωtdω = 1

2π

∫ ∞

−∞
X(jω)ejωtdω

The FT X(jω) of x(t) is defined as

X(jω) =
∫ ∞

−∞
x(t)e−jωtdt (9.1)

The inverse FT x(t) of X(jω) is defined as

x(t) = 1

2π

∫ ∞

−∞
X(jω)ejωtdω (9.2)
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The FT represents a continuous aperiodic signal x(t) as integrals of a continuum
of complex sinusoids (amplitude (1/2π)X(jω)dω) over an infinite frequency range.
Although the amplitudes are infinitesimal, the spectrum X(jω) (actually the spectral
density) gives the relative variations of the amplitudes of the constituent complex
sinusoids of a signal. When deriving closed-form expressions for X(jω) or x(t),

X(j0) =
∫ ∞

−∞
x(t)dt and x(0) = 1

2π

∫ ∞

−∞
X(jω)dω

which can be easily evaluated, are useful to check their correctness. By replacing ω

by 2πf and since dω = 2πdf , Equations (9.1) and (9.2) can be expressed in terms of
the cyclic frequency f as

X(j2πf ) =
∫ ∞

−∞
x(t)e−j2πftdt and x(t) =

∫ ∞

−∞
X(j2πf )ej2πftdf

The Gibbs phenomenon is common to all forms of Fourier analysis, whenever a con-
tinuous function, with one or more discontinuities, is reconstructed in either domain.

9.1.2 Existence of the FT

Any signal satisfying the Dirichlet conditions, which are a set of sufficient conditions,
can be expressed in terms of a FT. The first of these conditions is that the signal x(t) is
absolutely integrable, that is

∫ ∞
−∞ |x(t)|dt < ∞. From the definition of the FT, we get

|X(jω)| ≤
∫ ∞

−∞
|x(t)e−jωt| dt =

∫ ∞

−∞
|x(t)||e−jωt| dt

Since |e−jωt| = 1,

|X(jω)| ≤
∫ ∞

−∞
|x(t)| dt

Hence, the condition
∫ ∞
−∞ |x(t)|dt < ∞ implies that X(jω) will exist. The second

condition is that the number of finite maxima and minima of x(t) in any finite interval
must be finite. The third condition is that the number of finite discontinuities of x(t)
in any finite interval must be finite. Most signals of practical interest satisfy these
conditions.

As Fourier analysis approximates a signal in the least-squares error sense,

∫ ∞

−∞
|x(t)|2dt − 1

2π

∫ ∞

−∞
|X(jω)|2dω = 0

the FT X(jω) of a square integrable signal,
∫ ∞
−∞ |x(t)|2dt < ∞, also exists.
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Figure 9.2 (a) The pulse x(t) = u(t + 0.25) − u(t − 0.25); (b) its FT spectrum

Example 9.1. Find the FT of the rectangular pulse x(t) = u(t + a) − u(t − a).

Solution
As x(t) is even,

X(jω) =
∫ a

−a

e−jωtdt = 2
∫ a

0
cos(ωt)dt = 2 sin(ωa)

ω

u(t + a) − u(t − a) ⇐⇒ 2 sin(ωa)

ω

The pulse and its FT are shown, respectively, in Figures 9.2(a) and (b) with
a = 0.25. �

The function of the form sin(ωa)/ω, a specific case shown in Figure 9.2(b), is
called the sinc function that occurs often in signal and system analysis. It is an even
function of ω. At ω = 0, the peak value is a, as lim

θ→0
sin(θ) = θ. The zeros of the sinc

function occur whenever the numerator argument (ωa) of the sine function is equal
to ±π, ±2π, . . .. That is, at ω = ±π/a, ±2π/a, . . .. For the specific case, the zeros
occur whenever ω equals a multiple of 4π. The area enclosed by the sinc function is
π irrespective of the value of a, as, by finding the inverse FT of X(jω) in Example 9.1
with t = 0,

x(0) = 1

2π

∫ ∞

−∞
2 sin(ωa)

ω
dω = 1

It is also known that the area enclosed by the function is equal to the area of the
triangle inscribed within its main hump. The sinc function is not absolutely integrable.
But, it is square integrable and, hence, is an energy signal.

As a → 0, the function sin(ωa)/aω is expanded and, eventually, degenerates into
a dc function. The first pair of zeros at ω = ±π/a move to infinity and the function
becomes a horizontal line with amplitude one. As a becomes larger, the numerator
sine function sin(ωa) of sin(ωa)/πω alone is compressed (frequency of oscillations
is increased). As a consequence, the amplitudes of all the ripples along with that of
the main hump increase with fixed ratios to one another. While the ripples and the
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main hump become taller and narrower, the area enclosed by each and the total area
enclosed by the function remains fixed. In the limit, as a → ∞, the main hump and
all the ripples of significant amplitude are concentrated at ω = 0 and sin(ωa)/πω

degenerates into a unit-impulse.

Example 9.2. Find the FT X(jω) of the real, causal, and decaying exponential signal
x(t) = e−atu(t), a > 0. Find the value of x(0) from X(jω).

Solution

X(jω) =
∫ ∞

0
e−ate−jωtdt =

∫ ∞

0
e−(a+jω)tdt = −e−(a+jω)t

a + jω

∣∣∣∣∣
∞

0

= 1

a + jω

e−atu(t), a > 0 ⇐⇒ 1

a + jω

x(0) = 1

2π

∫ ∞

−∞
1

a + jω
dω = 1

2π

∫ ∞

−∞
a

ω2 + a2
dω − j

2π

∫ ∞

−∞
ω

ω2 + a2
dω

As the imaginary part of X(jω) is odd, its integral evaluates to zero. Therefore,

x(0) = 1

2π

∫ ∞

−∞
a

ω2 + a2
dω = 1

2π

∫ ∞

−∞

d
(

ω
a

)
(

ω
a

)2 + 1
= 1

2π
tan−1

(
ω

a

)∣∣∣∣
∞

−∞
= 1

2

The value of x(t) at t = 0 is always 1/2 for any value of a. Note that the Fourier
reconstructed waveform converges to the average of the right- and left-hand limits at
any discontinuity. �

For some signals, such as a step signal or a sinusoid, which are neither absolutely
nor square integrable, the FT is obtained by applying a limiting process to appropriate
signals so that they degenerate into these signals in the limit. The limit of the corre-
sponding transform is the transform of the signal under consideration, as presented in
the next example.

Example 9.3. Find the FT of x(t) = u(t), the unit-step function.

Solution
As u(t) is not absolutely or square integrable, we consider it as the limiting form
of the decaying exponential, e−atu(t), a > 0, as a → 0. Therefore, as the FT of the
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exponential is 1/(jω + a), the FT of u(t) is given by

X(jω) = lim
a→0

1

jω + a
= lim

a→0

a

ω2 + a2
− lim

a→0

jω

ω2 + a2
= lim

a→0

a

ω2 + a2
+ 1

jω

The area under the real part of X(jω) is π regardless of the value of a, as found
in Example 9.2. As a → 0, the value of this function tends to zero at all values of ω

except when ω = 0, where its area is π. Therefore

lim
a→0

a

ω2 + a2
= πδ(ω)

and

u(t) ⇐⇒ πδ(ω) + 1

jω

That is, the spectrum of the unit-step function is composed of an impulsive com-
ponent πδ(ω) (an impulse of strength π at ω = 0) and a strictly continuous (except
at ω = 0) component 1/jω. The real part of the transform πδ(ω) corresponds to the
even component ue(t) = 0.5 of u(t) and the imaginary part 1/jω corresponds to the
odd component uo(t) = −0.5, t < 0 and uo(t) = 0.5, t > 0.

Figure 9.3 depicts the limiting process by which a real exponential function degen-
erates into a unit-step function. Figures 9.3(a) and (c) show, respectively, the signal
e−atu(t) with a = 1 and a = 0.1. Figures 9.3(b) and (d) show, respectively, their cor-
responding spectra. The real part of the spectrum (continuous line) is an even function
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Figure 9.3 (a) x(t) = e−atu(t), a = 1; (b) its FT spectrum (the real part of the FT is shown by the
continuous line and the imaginary part is shown by the dashed line); (c) x(t) = e−atu(t), a = 0.1; (d) its
FT spectrum
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with a peak value of 1/a at ω = 0 and the imaginary part (dashed line) is an odd func-
tion with peaks of value ±1/2a at ω = ∓a. As a → 0, the real part becomes more
peaked and, eventually, degenerates into an impulse of strength π, that is πδ(ω). The
imaginary part becomes a rectangular hyperbola in the limit. �

Example 9.4. Find the FT of the unit impulse signal x(t) = δ(t).

Solution
Using the sampling property of the impulse, we get

X(jω) =
∫ ∞

−∞
δ(t)e−jωtdt = e−jω0

∫ ∞

−∞
δ(t)dt = 1 and δ(t) ⇐⇒ 1

The unit impulse signal is composed of complex sinusoids, with zero phase shift,
of all frequencies from ω = −∞ to ω = ∞ in equal proportion. That is,

δ(t) = 1

2π

∫ ∞

−∞
ejωtdω = 1

2π

∫ ∞

−∞
cos(ωt)dω = 1

π

∫ ∞

0
cos(ωt)dω �

Example 9.5. Find the inverse FT of X(jω) = δ(ω).

Solution

x(t) = 1

2π

∫ ∞

−∞
δ(ω)ejωtdω = 1

2π
and 1 ⇐⇒ 2πδ(ω)

An impulse at ω = 0 properly represents the dc signal, since it is characterized
by the single frequency ω = 0 alone. That is x(t) = ejω0t with ω0 = 0. Similar to
the DFT, the scale factor 1/2π is included in the inverse transform. Therefore, the
spectrum of dc is an impulse at ω = 0 with strength 2π rather than one. The placement
of the constant in the forward or inverse definition of a transform is a matter of
convention. �

Example 9.6. Find the inverse FT of X(jω) = δ(ω − ω0).

Solution

x(t) = 1

2π

∫ ∞

−∞
δ(ω − ω0)ejωtdω = 1

2π
ejω0t and ejω0t ⇐⇒ 2πδ(ω − ω0)

That is, the spectrum of the complex sinusoid ejω0t is an impulse at ω = ω0 with
strength 2π. �
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9.2 Properties of the Fourier Transform

Properties present the frequency-domain effect of time-domain characteristics and
operations on signals and vice versa. In addition, they are used to find new transform
pairs more easily.

9.2.1 Linearity

The FT of a linear combination of a set of signals is the same linear combination of
their individual FT. That is,

x(t) ⇐⇒ X(jω) y(t) ⇐⇒ Y (jω) ax(t) + by(t) ⇐⇒ aX(jω) + bY (jω),

where a and b are arbitrary constants. This property follows from the linearity property
of the integral defining the FT. Consider the signal defined as

x(t) =
{

1 for t > 0

−1 for t < 0

This signal can be expressed as (2u(t) − 1). Substituting the respective FT, we get
the FT of x(t) as 2(πδ(ω) + (1/jω)) − 2πδ(ω) = 2/jω.

9.2.2 Duality

The forward and inverse FT definitions differ only by the reversed algebraic sign
in the exponent of the complex exponential, the interchange of the variables t andω, and
the constant 1/2π in the inverse FT. Due to this similarity, there exists a dual relation-
ship between time- and frequency-domain functions. Consider the inverse FT defined
as

x(t) = 1

2π

∫ ∞

−∞
X(jω)ejωtdω

By replacing t by −t, we get

x(−t) = 1

2π

∫ ∞

−∞
X(jω)e−jωtdω and 2πx(−t) =

∫ ∞

−∞
X(jω)e−jωtdω

This is a forward transform with 2πx(−t) being the FT of X(jω). To put it
another way, we get 2πx(−t) by taking the FT of x(t) twice in succession, 2πx(−t) =
FT(FT(x(t))). Let x(t) ⇐⇒ X(jω). If we replace the variable ω in the frequency-
domain function by ±t, then the corresponding frequency-domain function is obtained
by replacing the variable t by ∓ω in the original time-domain function multiplied
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by 2π. For an even x(t), as X(jω) is also even, the sign change of either t or ω is not
required. For example, consider the FT pairs

cos(2t) ⇐⇒ π(δ(ω + 2) + δ(ω − 2)) and sin(3t) ⇐⇒ jπ(δ(ω + 3) − δ(ω − 3))

Using the property, we get the transform pairs

2 cos(2(−ω)) = 2 cos(2ω) ⇐⇒ (δ(t + 2) + δ(t − 2))

2 sin(3ω) ⇐⇒ j(δ(−t + 3) − δ(−t − 3)) = j(δ(t − 3) − δ(t + 3))

9.2.3 Symmetry

If a signal x(t) is real, then the real part of its spectrum X(jω) is even and the imaginary
part is odd, called the conjuagte symmetry. The FT of x(t) is given by

X(jω) =
∫ ∞

−∞
x(t)e−jωtdt =

∫ ∞

−∞
x(t)(cos(ωt) − j sin(ωt))dt

Conjugating both sides, we get

X∗(jω) =
∫ ∞

−∞
x(t)(cos(ωt) + j sin(ωt))dt

Replacing ω by −ω, we get X∗(−jω) = X(jω). An example is

x(t) = e−tu(t) ⇐⇒ X(jω) = 1

jω + 1
= 1

ω2 + 1
− jω

ω2 + 1

If a signal x(t) is real and even, then its spectrum also is real and even. Since
x(t) cos(ωt) is even and x(t) sin(ωt) is odd,

X(jω) = 2
∫ ∞

0
x(t) cos(ωt)dt and x(t) = 1

π

∫ ∞

0
X(jω) cos(ωt)dω

The FTπ(δ(ω + 1) + δ(ω − 1)) of cos(t) is an example of the FT of an even function.
Similarly, if a signal x(t) is real and odd, then its spectrum is imaginary and odd.

X(jω) = −j2
∫ ∞

0
x(t) sin(ωt)dt and x(t) = j

π

∫ ∞

0
X(jω) sin(ωt)dω

The FT jπ(δ(ω + 1) − δ(ω − 1)) of sin(t) is an example of the FT of an odd function.
As the FT of a real and even signal is real and even and that of a real and odd is

imaginary and odd, it follows that the real part of the FT, Re(X(jω)), of an arbitrary
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real signal x(t) is the transform of its even component xe(t) and j Im(X(jω)) is that of
its odd component xo(t).

9.2.4 Time Shifting

When we shift a signal, the shape remains the same but the signal is relocated. The shift
of a typical spectral component,X(jωa)ejωa t , by t0 to the right results in the exponential,
X(jωa)ejωa(t−t0) = e−jωa t0X(jωa)ejωa t . That is, a delay of t0 results in changing the
phase of the exponential by −ωat0 radians without changing its amplitude. Therefore,
if the FT of x(t) is X(jω), then

x(t ± t0) ⇐⇒ e±jωt0X(jω)

Consider the FT of cos(2t),π(δ(ω + 2) + δ(ω − 2)). Now, the FT of cos(2(t − π
4 )) =

cos(2t − π
2 ) = sin(2t) is

π(e−j(−2) π
4 δ(ω + 2) + e−j2 π

4 δ(ω − 2)) = jπ(δ(ω + 2) − δ(ω − 2))

9.2.5 Frequency Shifting

The spectrum, X(jω), of a signal, x(t), can be shifted by multiplying the signal by
a complex exponential, e±jω0t . The new spectrum is X(j(ω ∓ ω0)), since a spectral
component X(jωa)ejωat of the signal multiplied by ejω0t becomes X(jωa)ej(ωa+ω0)t

and the spectral value X(jωa) occurs at (ωa + ω0), after a delay of ω0 radians.
That is,

x(t)e±jω0t ⇐⇒ X(j(ω ∓ ω0))

Duality applies for both transform pairs and properties. This property is the dual of
the time-shifting property.

Consider the FT pair e−2tu(t) ⇐⇒ 1
2+jω

. The FT of

e−2t cos(3t)u(t) = e−2t (ej3t + e−j3t)

2
u(t)

is

1

2

(
1

2 + j(ω − 3)
+ 1

2 + j(ω + 3)

)
= 2 + jω

(2 + jω)2 + 9



The Fourier Transform 193

9.2.6 Convolution in the Time-domain

The convolution x(t) ∗ h(t) of signals x(t) and h(t) is defined, in Chapter 5, as

y(t) = x(t) ∗ h(t) =
∫ ∞

−∞
x(τ)h(t − τ)dτ

The convolution of h(t) with a complex exponential ejω0t is given as

∫ ∞

−∞
h(τ)ejω0(t−τ)dτ = ejω0t

∫ ∞

−∞
h(τ)e−jω0τdτ = H(jω0)ejω0t

As an arbitrary signal x(t) is reconstructed by the inverse FT as x(t) =
1

2π

∫ ∞
−∞ X(jω)ejωtdω, the convolution of x(t) and h(t) is given by y(t) =

1
2π

∫ ∞
−∞ X(jω)H(jω)ejωtdω. The inverse FT of X(jω)H(jω) is the convolution of x(t)

and h(t). That is,

∫ ∞

−∞
x(τ)h(t − τ)dτ = 1

2π

∫ ∞

−∞
X(jω)H(jω)ejωtdω ⇐⇒ X(jω)H(jω)

Therefore, convolution in the time-domain corresponds to multiplication in the
frequency-domain. This property is one of the major reasons for the dominant role of
the frequency-domain analysis in the study of signals and systems.

The convolution of a rectangular pulse, centered at the origin, of width a and height
1/a with itself yields a triangular waveform, centered at the origin, with width 2a and
height 1/a. Figures 9.4(a) and (b) show, respectively, these waveforms with a = 2.
Since convolution in the time-domain corresponds to multiplication in the frequency-
domain and the FT of the rectangular pulse is 2 sin(ωa

2 )/aω, we get the FT of the
triangular waveform as

X(jω) = 2 sin
(

ωa
2

)
aω

2 sin
(

ωa
2

)
aω

=
(

2 sin
(

ωa
2

)
aω

)2

−2 0 2
0

0.5

x(
t)

t

(b)

−1 0 1
0

0.5

x(
t)

t

(a)

Figure 9.4 (a) The rectangular pulse with width two and height 0.5; (b) the triangular waveform with
width four and height 0.5, which is the convolution of the pulse in (a) with itself
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9.2.7 Convolution in the Frequency-domain

Similar to the time-domain convolution, we find that the convolution of two frequency-
domain functions corresponds to the multiplication of the inverse FT of the functions
in the time-domain with a scale factor. That is,

x(t)y(t) ⇐⇒
∫ ∞

−∞
x(t)y(t)e−jωtdt = 1

2π

∫ ∞

−∞
X(jv)Y (j(ω − v))dv

The FT of sin(t) cos(t) is the convolution of the FT of sin(t) and cos(t) divided
by 2π. That is,

1

2π
(jπ(δ(ω + 1) − δ(ω − 1)) ∗ π(δ(ω + 1) + δ(ω − 1)))

= jπ2

2π
((δ(ω + 1) ∗ δ(ω + 1)) − (δ(ω − 1) ∗ δ(ω − 1)))

= jπ

2
(δ(ω + 2) − δ(ω − 2)) ⇐⇒ 1

2
sin(2t) = sin(t) cos(t)

9.2.8 Conjugation

Let x(t) ⇐⇒ X(jω). Then, x∗(±t) ⇐⇒ X∗(∓jω). This result is obtained if we replace
t by −t or ω by −ω, in addition to conjugating both sides of the FT definition. For
example,

e−(1+j2)tu(t) ⇐⇒ 1

(1 + j2) + jω
and e(1−j2)tu(−t) ⇐⇒ 1

(1 − j2) − jω

9.2.9 Time Reversal

Let x(t) ⇐⇒ X(jω). Then, x(−t) ⇐⇒ X(−jω). That is the time-reversal of a signal
results in its spectrum also reflected about the vertical axis at the origin. This result is
obtained if we replace t by −t and ω by −ω in the FT definition. For example,

e−3tu(t) ⇐⇒ 1

3 + jω
and e3tu(−t) ⇐⇒ 1

3 − jω

9.2.10 Time Scaling

Scaling is the operation of replacing the independent variable t by at, where a �= 0
is a real constant. As we have seen in Chapter 3, the signal is compressed (|a| > 1)
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or expanded (|a| < 1) in the time-domain by this operation. As a consequence, the
spectrum of the signal is expanded or compressed in the frequency-domain. With a

negative, the signal is also time-reversed.
Let the spectrum of a signal x(t) be X(jω). By replacing at by τ, t by τ/a and dt by

dτ/a, with a > 0, in the FT definition of x(at), we get

∫ ∞

−∞
x(at)e−jωtdt = 1

a

∫ ∞

−∞
x(τ)e−jω τ

a dτ = 1

a
X

(
j

(
ω

a

))

The FT of x(−at), due to the time-reversal property, becomes

1

a
X

(
j

(−ω

a

))
= 1

a
X

(
j

(
ω

−a

))

By combining both the results, we get

x(at) ⇐⇒ 1

|a|X
(

j

(
ω

a

))
, a �= 0

The factor 1/|a| ensures that the scaled waveforms in both the domains have the
same energy or power. A compressed signal varies more rapidly and, hence, requires
higher-frequency components to synthesize. Therefore, the spectrum is expanded. The
reverse is the case for signal expansion.

Consider the transform pair sin(2t) ⇐⇒ (jπ)(δ(ω + 2) − δ(ω − 2)). sin(6t) is a
time-compressed version of sin(2t) with a = 3. Using the property, the transform of
sin(6t) is obtained from that of sin(2t) as follows.

1

3
(jπ)

(
δ

(
ω

3
+ 2

)
− δ

(
ω

3
− 2

))
= 1

3
(jπ)

(
δ

(
ω + 6

3

)
− δ

(
ω − 6

3

))

= (jπ)(δ(ω + 6) − δ(ω − 6))

Note that δ(aω) = (1/|a|)δ(ω).

9.2.11 Time-differentiation

The derivative of a typical spectral component X(jωa)ejωa t is jωaX(jωa)ejωa t . There-
fore, if the transform of a time-domain function x(t) is X(jω), then the transform of
its derivative is given by jωX(jω). That is,

dx(t)

dt
⇐⇒ jω X(jω)

Note that, the spectral value with ω = 0 is zero, as the dc component is lost in
differentiating a signal. The factor ω implies that the magnitude of the high-frequency
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components is enhanced more and, hence, rapid time variations of the signal are accen-
tuated. The property is valid only if the derivative function is Fourier transformable.
For example,

e−tu(t) ⇐⇒ 1

jω + 1
and

d(e−tu(t))

dt
= (δ(t) − e−tu(t)) ⇐⇒ jω

jω + 1

In general,

dnx(t)

dtn
⇐⇒ (jω)n X(jω)

Consider finding the FT, shown in Figure 9.5(b), of the triangular waveform x(t) =
0.5(t + 2)u(t + 2) − tu(t) + 0.5(t − 2)u(t − 2), shown in Figure 9.5(a). This problem
is solved using the convolution property. Now, we use the differentiation property. The
FT of scaled and shifted impulse function can be found easily. Therefore, the idea is
to reduce the given function to a set of impulses by differentiating it successively.
(This method is applicable to signals those are characterized or approximated by any
piecewise polynomial function with finite energy.) Then, the FT of the impulses can be
related to the FT of the given function by the differentiation property. The first and
second derivatives of the triangular waveform, dx(t)/dt = 0.5u(t + 2) − u(t) + 0.5u

(t − 2) and d2x(t)/dt2 = 0.5δ(t + 2) − δ(t) + 0.5δ(t − 2), are shown, respectively, in
Figures 9.5(c) and (d). Let the FT of the triangular waveform be X(jω). Then, the FT
of the impulses of d2x(t)/dt2 shown in Figure 9.5(d), (0.5ej2ω − 1 + 0.5e−j2ω), must

−2 0 2
0

1

x(
t)

t

(a)

  0   
0

2

X
(j

ω
)

ω
(b)

−2π − ππ 2π

−2 0 2
−0.5

0

0.5
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(t

)/
dt

t

(c)

−2 0 2

−1

0

0.5

d2 x(
t)

/d
t2

t

(d)

Figure 9.5 (a) The triangular waveform; (b) its spectrum; (c) the first derivative of the triangular
waveform; (d) the second derivative of the triangular waveform
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be equal to (jω)2X(jω). That is,

(0.5ej2ω − 1 + 0.5e−j2ω) = cos(2ω) − 1 = −2 sin2(ω) = −ω2X(jω)

Solving for X(jω), we get the FT of the triangular waveform as

X(jω) = 2
(

sin(ω)

ω

)2

9.2.12 Time-integration

The indefinite integral, y(t), of a time-domain signal, x(t), can be expressed as the
convolution of x(t) and the unit-step signal, u(t), as

y(t) =
∫ t

−∞
x(τ)dτ =

∫ ∞

−∞
x(τ)u(t − τ)dτ = x(t) ∗ u(t)

As convolution in the time-domain corresponds to multiplication in the frequency-
domain, with x(t) ⇐⇒ X(jω) and u(t) ⇐⇒ 1

jω
+ πδ(ω), we get

∫ t

−∞
x(τ)dτ ⇐⇒ X(jω)

(
1

jω
+ πδ(ω)

)
= X(jω)

jω
+ πX(j0)δ(ω)

Note that, if X(j0) = 0, the integration operation can be considered as the inverse of
the differentiation operation. The property is valid only if y(t) is Fourier transformable.
The factor ω in the denominator implies that the magnitude of the high-frequency
components is reduced more and, hence, rapid time variations of the signal are reduced,
resulting in a smoother signal.

Consider the signal x(t) = u(t) − u(t − 2), shown in Figure 9.6(a), with the FT
X(jω) = 1

jω
(1 − e−j2ω) and X(j0) = 2. Now, using the property,

y(t) =
∫ t

−∞
x(τ)dτ ⇐⇒ Y (jω) = X(jω)

jω
+ 2πδ(ω) = 2πδ(ω) +

(
e−j2ω − 1

)
ω2

−1 0 1 2 3
0

1

x(
t)

t

(a)
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−1
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2

y(
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t

(b)

Figure 9.6 (a) Signal x(t); (b) the integral of x(t), y(t) (solid line), and its two components
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The integral of x(t) is y(t) = tu(t) − (t − 2)u(t − 2), shown in Figure 9.6(b) along
with its two components corresponding to the two terms of its transform.

9.2.13 Frequency-differentiation

Differentiating both sides of the FT definition with respect to ω yields

(−jt)x(t) ⇐⇒ dX(jω)

dω
or tx(t) ⇐⇒ j

dX(jω)

dω

The property is valid only if the resulting function is Fourier transformable. In
general,

(−jt)nx(t) ⇐⇒ dnX(jω)

dωn
or (t)nx(t) ⇐⇒ (j)n

dnX(jω)

dωn

For example,

e−2tu(t) ⇐⇒ 1

jω + 2
and te−2tu(t) ⇐⇒ 1

(jω + 2)2

9.2.14 Parseval’s Theorem and the Energy Transfer Function

As the frequency-domain representation of a signal is an equivalent representation,
energy E of a signal can also be expressed in terms of its spectrum. Note that this
theorem is applicable only to the FT of energy signals. From the frequency-domain
convolution property, we get

∫ ∞

−∞
x(t)y(t)e−jωtdt = 1

2π

∫ ∞

−∞
X(jv)Y (j(ω − v))dv

Letting ω = 0 and then replacing v by ω, we get

∫ ∞

−∞
x(t)y(t)dt = 1

2π

∫ ∞

−∞
X(jω)Y (−jω)dω

Assuming x∗(t) = y(t), X∗(−jω) = Y (jω) and X∗(jω) = Y (−jω). Therefore,
we get

∫ ∞

−∞
x(t)x∗(t)dt = 1

2π

∫ ∞

−∞
X(jω)X∗(jω)dω

E =
∫ ∞

−∞
|x(t)|2dt = 1

2π

∫ ∞

−∞
|X(jω)|2dω
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This relationship is called Parseval’s theorem. This expression is the limiting form
of the corresponding expression for DTFT as the sampling interval of the time-domain
signal tends to zero. Alternately, this expression can also be considered as the limiting
form of the corresponding expression for the FS as the period of the signal tends to
infinity. For real signals, as |X(jω)| is even, we get

E =
∫ ∞

−∞
|x(t)|2dt = 1

π

∫ ∞

0
|X(jω)|2dω

The quantity |X(jω)|2 is called the energy spectral density of the signal, since
1

2π
|X(jω)|2dω is the signal energy over the infinitesimal frequency band ω to ω + dω.

Example 9.7. Find the energy of the signal x(t) = e−tu(t). Find the value of T such
that 99% of the signal energy lies in the range 0 ≤ t ≤ T . What is the corresponding
signal bandwidth B, where B is such that 99% of the spectral energy lies in the range
0 ≤ ω ≤ B.

Solution
From the transform pair of Example 9.2, we get

e−tu(t) ⇐⇒ 1

1 + jω

The energy E of the signal is

E =
∫ ∞

−∞
|x(t)|2dt =

∫ ∞

0
e−2tdt = 1

2

By changing the upper limit to T , we get

∫ T

0
e−2tdt = −1

2
(e−2T − 1) = 0.99

2
= 0.495

Solving for T , we get T = 2.3026 s. This value is required in order to truncate the
signal for numerical analysis.

Using the spectrum,

1

π

∫ B

0

dω

1 + ω2
= 1

π
tan−1(B) = 0.495 or B = tan(0.495π) = 63.6567

Using this value, we can determine the sampling interval required to sample this
signal. As the sampling frequency must be greater than twice of that of the highest fre-
quency component, the sampling frequency must be greater than (2)(63.6567) radians
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per second. Therefore, the sampling interval must be smaller than 2π/(2)(63.6567) =
0.0494 s. �

Since |X(jω)|2 = X(jω)X∗(jω) = X(jω)X(−jω) for real signals, x(t) ∗ x(−t)⇐⇒
|X(jω)|2. The convolution x(t) ∗ x(−t), called the autocorrelation of x(t), is defined as

x(t) ∗ x(−t) =
∫ ∞

−∞
x(τ)x(τ − t)dτ ⇐⇒ |X(jω)|2

The input and output of a LTI system, in the frequency-domain, are related by the
transfer function H(jω) as Y (jω) = H(jω)X(jω), where X(jω), Y (jω), and H(jω)
are the FT of the input, output, and impulse response of the system. The output energy
spectrum is given by

|Y (jω)|2 = Y (jω)Y∗(jω)

= H(jω)X(jω)H∗(jω)X∗(jω) = |H(jω)|2|X(jω)|2

The quantity |H(jω)|2 is called the energy transfer function, as it relates the input
and output energy spectral densities of a system.

9.3 Fourier Transform of Mixed Classes of Signals

As the most general version of Fourier analysis, the FT is capable of representing all
types of signals. Therefore, the relation between the FT and other versions of Fourier
analysis is important in dealing with mixed class of signals. The signal x(t) and its
FT X(jω) are, in general, continuous and aperiodic. The inverse FT of a sampled
spectrum Xs(jω) yields a periodic signal, which is the sum of a periodic repetition of
x(t). This version corresponds to the FS. On the other hand, the FT of a sampled signal
xs(t) yields a periodic spectrum, which is the sum of a periodic repetition of X(jω).
This version corresponds to the DTFT. Sampling in both the domains corresponds to
the DFT with both the signal and its spectrum sampled and periodic.

9.3.1 The FT of a Continuous Periodic Signal

A periodic signal x(t) is reconstructed using its FS coefficients Xcs(k) as

x(t) =
∞∑

k=−∞
Xcs(k)ejkω0t,
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where ω0 is the fundamental frequency. Since the FT of ejkω0t is 2πδ(ω − kω0), we
get, from the linearity property of the FT,

x(t) =
∞∑

k=−∞
Xcs(k)ejkω0t ⇐⇒ X(jω) = 2π

∞∑
k=−∞

Xcs(k)δ(ω − kω0)

Therefore, the FT of a periodic signal is a sum of impulses with strength 2πXcs(k)
occurring at intervals of ω0.

Example 9.8. Find the FT of the signal x(t) = cos(ω0t).

Solution
The FS spectrum for cos(ω0t) is 1

2 (δ(k − 1) + δ(k + 1)). Multiplying this result by
2π and with the discrete impulse δ(k − 1) corresponding to the continuous impulse
δ(ω − ω0), we get the FT as π(δ(ω − ω0) + δ(ω + ω0)). Hence, cos(ω0t) ⇐⇒
π(δ(ω − ω0) + δ(ω + ω0)). Similarly, sin(ω0t) ⇐⇒ (jπ)(δ(ω + ω0) − δ(ω − ω0)).
For example, the FS and FT spectra of cos(3t), shown in Figure 9.7(a), are shown in
Figures 9.7(b) and (c), respectively. �

The spectra in Figures 9.7(b) and (c) are the equivalent representations of a single
sinusoid by the FS and the FT. In Figure 9.7(b), the discrete spectrum Xcs(k) consists
of two nonzero discrete impulses of value 0.5. In Figure 9.7(c), the continuous spec-
trum X(jω) consists of two continuous impulses with the value of their integrals
being π, which, after dividing by the scale factor 2π, becomes 0.5. The amplitude of
a constituent complex exponential of a signal x(t) is Xcs(k) in the case of the FS and
(1/2π)X(jω)dω in the case of the FT. Note that (δ(ω − ω0)dω)|ω=ω0 = 1. Remember
that both the spectra in Figures 9.7(b) and (c) represent the same waveform and, from
either spectra, we get 0.5(ej3t + e−j3t) = cos(3t).
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Figure 9.7 (a) The sinusoid cos(3t); (b) the FS spectrum, Xcs(k), of the sinusoid; (c) the FT, X(jω), of
the sinusoid
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9.3.2 Determination of the FS from the FT

Let x(t) be a periodic signal of period T . Let us define an aperiodic signal xp(t) that is
identical with x(t) over one period from t1 to t1 + T and is zero otherwise, where t1 is
arbitrary. The FT of this signal is

Xp(jω) =
∫ ∞

−∞
xp(t)e−jωtdt =

∫ t1+T

t1

x(t)e−jωtdt

The FS spectrum for x(t) is

Xcs(k) = 1

T

∫ t1+T

t1

x(t)e−jkω0tdt ω0 = 2π

T

Comparing the FS and FT definitions of the signals, we get

Xcs(k) = 1

T
Xp(jω)|ω=kω0 = 1

T
Xp(jkω0)

The discrete samples of 1
T
Xp(jω), at intervals of ω0, constitute the FS spectrum for

the periodic signalx(t). While the spectral values at discrete frequencies are adequate to
reconstruct one period of the periodic waveform using the inverse FS, spectral values
at continuum of frequencies are required to reconstruct one period of the periodic
waveform and the infinite extent zero values of the aperiodic waveform using the
inverse FT. Note the similarity of this relationship to that between the DTFT and the
DFT.

Example 9.9. Find the FS spectrum for the periodic signal x(t), one period of which
is defined as

x(t) =
{

1 for |t| < 1

0 for 1 < |t| < 2

Solution
Using the derivative method, the FT of xp(t) is obtained as follows:

jωXp(jω) = ejω − e−jω and Xp(jω) = 2
sin(ω)

ω

Since Xcs(k) = 1
T
Xp(jkω0), with T = 4 and ω = kω0 = k 2π

4 = π
2 k, we get

Xcs(k) = 2

4

sin
(

π
2 k

)
π
2 k

= sin
(

π
2 k

)
πk

�
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9.3.3 The FT of a Sampled Signal and the Aliasing Effect

Let the FT of a signal x(t) be X(jω). The sampled version of this signal, xs(t), is
obtained by multiplying it with an impulse train, s(t) = ∑∞

n=−∞ δ(t − nTs), where Ts

is the period and n is an integer. That is,

xs(t) = x(t)s(t) = x(t)
∞∑

n=−∞
δ(t − nTs) =

∞∑
n=−∞

x(nTs)δ(t − nTs)

The FS representation of the impulse train, from Chapter 7, is given as

s(t) = 1

Ts

∞∑
k=−∞

ejkωst

where ωs = 2π/Ts. Therefore, the sampled signal xs(t) is given by

xs(t) = 1

Ts

∞∑
k=−∞

x(t)ejkωst

= 1

Ts
(· · · + x(t)e−jωst + x(t) + x(t)ejωst + · · ·)

Let the FT of xs(t) be Xs(jω). Then, using the linearity and frequency shift properties
of the Fourier transform, we get

Xs(jω) = 1

Ts
(· · · + X(j(ω + ωs)) + X(jω) + X(j(ω − ωs)) + · · ·)

= 1

Ts

∞∑
k=−∞

X(j(ω − kωs))

This expression represents the convolution of the spectra of x(t) and s(t) (since it
is the FT of their product) and we could just as well have obtained the result through
the frequency-domain convolution property, as we shall see later. As the FT of the
sampled signal is expressed as a sum of the shifted versions of that of the corresponding
continuous signal, it is easy to visualize the form of Xs(jω) if we know X(jω). The
sampling of a signal has made the resulting spectrum periodic with period ωs, the
sampling frequency, in addition to scaling the amplitude by the factor 1/Ts, where Ts

is the sampling interval. The periodicity is the result of the reduction of the range of
frequencies, due to sampling, over which sinusoids can be distinguished. The factor
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1/Ts arises from the fact that

x(t) =
∫ ∞

−∞
x(τ)δ(t − τ)dτ = lim

Ts→0

∞∑
n=−∞

x(nTs)Tsδ(t − nTs) = lim
Ts→0

Tsxs(t)

Figures 9.8(a) and (b) show, respectively, the continuous sinc function and its
aperiodic FT spectrum.

x(t) =
sin

(
2π
3 t

)
2πt

⇐⇒ X(jω) = 0.5
(

u

(
ω + 2π

3

)
− u

(
ω − 2π

3

))

Figures 9.8(c) and (d) show the sampled sinc function, withTs = 0.5, and its periodic
FT spectrum with period 2π/0.5 = 4π radians and amplitude 0.5/0.5 = 1.

xs(t) =
∞∑

n=−∞

sin
(

2π
3 (0.5n)

)
2π(0.5n)

δ(t − 0.5n) ⇐⇒

Xs(jω) =
∞∑

k=−∞

(
u

(
ω + 2π

3
− 4kπ

)
− u

(
ω − 2π

3
− 4kπ

))

At any discontinuity of the time-domain function, the strength of the sample should
be equal to the average value of the right- and left-hand limits.

While the FT X(jω) of x(t) uniquely determines the FT Xs(jω) of xs(t), the converse
is not necessarily true. By sampling the signal, we simultaneously reduce the effective
frequency range of the sinusoids available to represent the signal and, hence, the FT of
the sampled signal becomes periodic due to aliasing effect. Therefore, if the signal is
band-limited and the sampling frequency is greater than twice the highest frequency
component of the signal, we can recover its exact FT from that of its sampled version
by lowpass filtering (since the periodic repetition of X(jω), yielding Xs(jω), does
not result in the overlapping of its nonzero portions). If the sampling frequency is
not sufficiently high, we can only recover a corrupted version of its FT spectrum, as
shown in Figures 9.8(i) and (j), since the periodic repetition of X(jω) results in the
overlapping of its nonzero portions.

xs(t) =
∞∑

n=−∞

sin
(

2π
3 (2n)

)
2π(2n)

δ(t − 2n) ⇐⇒

Xs(jω) =
∞∑

k=−∞
0.25

(
u

(
ω + 2π

3
− kπ

)
− u

(
ω − 2π

3
− kπ

))
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Figure 9.8 (a) The sinc function sin
(

2π

3 t
)
/2πt; (b) its FT spectrum; (c) samples of

(a) with Ts = 0.5s; (d) its periodic FT spectrum; (e) discrete samples of (a) with Ts =
0.5s; (f) its DTFT spectrum with period 4π radians, which is the same as in (d); (g) the same sam-
ples as in (e) with Ts = 1; (h) its DTFT spectrum with period 2π radians; (i) samples of (a) with Ts = 2 s;
(j) its periodic FT spectrum
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As the FT of δ(t − nTs) is e−jnωTs and due to the linearity property of the FT, the
FT of the sampled signal xs(t) = ∑∞

n=−∞ x(nTs)δ(t − nTs) is also given by

Xs(jω) =
∞∑

n=−∞
x(nTs)e

−jnωTs

This expression, which, of course, is completely equivalent to that derived earlier for
Xs(jω), reminds us that the relation is a FS with the roles of the domains interchanged
and corresponds to the DTFT. The time-domain samples x(nTs) are the FS coefficients
of the corresponding continuous periodic spectrum Xs(jω).

9.3.4 The FT of a Sampled Aperiodic Signal and the DTFT

Let us construct a sequence with the discrete sample values, at intervals of Ts, of
the signal x(t). These sample values are the same as the strengths of the corre-
sponding impulses x(nTs)δ(t − nTs) of the sampled signal. The DTFT of x(nTs) is
defined as

X(ejωTs ) =
∞∑

n=−∞
x(nTs)e

−jnωTs

That is, the DTFT of a sequence x(nTs) and the FT of the corresponding sampled
signal,

∑∞
n=−∞ x(nTs)δ(t − nTs), are the same when the DTFT version includes the

sampling interval, Ts. Figures 9.8(e) and (f) show, respectively, the discrete samples
of the sinc function

x(0.5n) =
sin

(
2π
3 (0.5n)

)
2π(0.5n)

with Ts = 0.5 s and its DTFT spectrum with period 4π radians, which is the same as
in (d).

Usually, the DTFT spectrum is computed with the assumption of Ts = 1 s.
Figures 9.8(g) and (h) show, respectively, the samples as in (e) with Ts = 1 s and
its DTFT spectrum with period 2π radians. The FT of the corresponding sampled
continuous signal xs(t) is obtained by scaling the frequency axis of this DTFT spec-
trum so that the period of the spectrum becomes 2π/Ts, as can be seen from Figs 9.8(g),
(h), (c), and (d).
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9.3.5 The FT of a Sampled Periodic Signal and the DFT

The FT of a band-limited periodic signal x(t), from earlier results, is

x(t) =
N∑

k=−N

Xcs(k)ejkω0t ⇐⇒ X(jω) = 2π

N∑
k=−N

Xcs(k)δ(ω − kω0),

where ω0 = 2π/T , the fundamental frequency of x(t). Let us sample the periodic
signal by multiplying it with an impulse train

s(t) =
∞∑

n=−∞
δ(t − nTs) ⇐⇒ S(jω) = 2π

Ts

∞∑
m=−∞

δ(ω − mωs)

with the interval between impulses being Ts = 2π/ωs. Then, as multiplication in the
time-domain corresponds to convolution in the frequency domain, the FT Xs(jω) of
the sampled signal xs(t) = x(t)s(t) is (1/2π)X(jω) ∗ S(jω). The FT of the sampled
signal, as convolution of a signal with an impulse is the relocation of the origin of the
signal at the location of the impulse, is

Xs(jω) = 2π

Ts

∞∑
m=−∞

N∑
k=−N

Xcs(k)δ(ω − kω0 − mωs)

where ωs = 2π/Ts. As X(k) = (2N + 1)Xcs(k), where X(k) is the DFT of the 2N + 1
discrete samples of x(t) over one period, we get

Xs(jω) = 2π

(2N + 1)Ts

∞∑
m=−∞

N∑
k=−N

X(k)δ(ω − kω0 − mωs)

This FT corresponds to the sampled periodic time-domain signal

xs(t) =
∞∑

n=−∞
x(nTs)δ(t − nTs)

The period of the time-domain signal x(n) of the DFT is 2N + 1 samples and that
of corresponding sampled continuous signal xs(t) is (2N + 1)Ts = T s. The period
of the FT spectrum is ωs = (2π/Ts) radians and the spectral samples are placed at
intervals of ω0 = [2π/(2N + 1)Ts] = 2π/T radians.

Consider the discrete samples, over two periods, of the continuous cosine wave
cos(2 2π

48 t) with sampling interval Ts = 3 s and its DFT spectrum shown, respec-
tively, in Figures 9.9(a) and (b). Both the waveform and its spectrum are periodic
with period N = 16 samples. The sampled version of the cosine wave is shown in
Figure 9.9(c). The waveform is periodic with period NTs = T = 48 s. The
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Figure 9.9 (a) The discrete samples, over two periods, of the continuous cosine wave cos(2 2π

48 t) with
sampling interval Ts = 3 s; (b) its DFT spectrum; (c) the sampled version of the cosine wave cos(2 2π

48 t);
(d) its periodic FT spectrum

FT spectrum of the waveform in Figure 9.9(c) is shown in Figure 9.9(d). The spec-
trum is periodic with period 2π/Ts = 2π/3 radians. The spectral samples are placed
at intervals of 2π/NTs = 2π/48 = 0.1309 radians.

xs(t) =
∞∑

n=−∞
cos

(
2

2π

48
n(3)

)
δ(t − 3n) ⇐⇒

Xs(jω) = π

3

∞∑
m=−∞

(
δ

(
ω − 2

2π

48
− 2mπ

3

)
+ δ

(
ω + 2

2π

48
− 2mπ

3

))

The point is that we should mean the same waveform by looking at DFT
and FT spectra. The term 2mπ/3 indicates that the spectrum is periodic with
period 2π/3 radians and, hence, the time-domain waveform is sampled with a
sampling interval of 3 s. The two impulse terms, with strength π/3, indicate a
cosine waveform with frequency 2(2π/48) radians and amplitude one. The DFT spec-
trum indicates a cosine waveform cos(2 2π

16 n). With a sampling interval of three seconds,
this waveform corresponds to cos(2 2π

48 t).
Consider the differences between the cosine waveforms with amplitude one and

their spectra in Figures 9.7 and 9.9. The waveform is continuous in Figure 9.7(a) and
makes one cycle in the fundamental period. The FS and FT spectra in Figure 9.7(b)
and (c) are aperiodic. The waveforms in Figures 9.9(a) and (c), with two cycles in
the fundamental period, are sampled, and, hence, their spectra are periodic with the
spectral values of the second harmonic in one period the same as those shown in
Figures 9.7(b) and (c) except for scale factors. As the DFT coefficients X(k) are equal
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to N times the FS coefficients Xcs(k), the spectral values in Figure 9.9(b), with the
number of samples N = 16, are (0.5)16 = 8. As the FT spectrum of a sampled signal
Xs(jω) is (1/Ts)X(jω), the spectral values in Figure 9.9(d) are π/3.

9.3.6 Approximation of a Continuous Signal from its Sampled Version

The zero-order hold filter is commonly used to approximate a continuous signal x(t)
from its sampled version xs(t). The impulse response of this filter is a rectangular
pulse of unit height and width Ts, h(t) = u(t) − u(t − Ts), where Ts is the sampling
interval of xs(t). By passing xs(t) through this filter, we get an output signal, which
is the convolution of xs(t) and h(t), that is a staircase approximation of x(t). The
convolution of xs(t), which is a sum of impulses, with h(t) results in replacing each
impulse of xs(t) by a pulse of width Ts and height equal to its strength (holding the
current sample value until the next sample arrives).

9.4 Approximation of the Fourier Transform

In approximating the FS by the DFT, we determine the appropriate sampling interval
and take samples over one period. In approximating the FT by the DFT, we have to
fix the record length as well. These two parameters have to be fixed so that most of
the energy of the signal is included in the selected record length and the continuous
spectrum of the FT is represented by a sufficiently accurate and dense set of spectral
samples.

The integral in Equation (9.1) is approximated by the rectangular rule of numerical
integration. The summation interval can start from zero, since the truncated signal, of
length T , is assumed periodic by the DFT, although the input signal can be nonzero
in any interval. We divide the period T into N intervals of width Ts = T/N and
represent the signal at N points as x(0), x(T/N), x(2T/N), . . . , x((N − 1)T/N). The
sampling interval in the time-domain is Ts seconds and that in the frequency-domain
is 2π/NTs = 2π/T radians per second. Now, Equation (9.1) is approximated as

X

(
j

2πk

NTs

)
= Ts

N−1∑
n=0

x(nTs)e
−j 2π

N
nk k = 0, 1, . . . , N − 1 (9.3)

Equation (9.2) is approximated as

x(nTs) = 1

NTs

N−1∑
k=0

X

(
j

2πk

NTs

)
ej 2π

N
nk n = 0, 1, . . . , N − 1 (9.4)

Except for the scale factors, Equations (9.3) and (9.4) are, respectively, the DFT and
the IDFT of N samples. By multiplying the DFT coefficients by the sampling interval
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Ts, we get the approximate samples of the FT. By multiplying the IDFT values by
1/Ts, we get the approximate samples of the time-domain signal.

Example 9.10. Approximate the magnitude of the FT of the signal x(t) = e−tu(t)
using the DFT.

Solution
From the transform pair of Example 9.7, we get

X(jω) = 1

1 + jω
and |X(jω)| = 1√

1 + ω2

Figure 9.10(a) shows the exponential signal e−tu(t) with four samples over a period
of T = 8 s. Figure 9.10(b) shows the magnitude of the FT and the samples of the FT
obtained through the DFT with N = 4 and N = 1024 samples. While the signal is of
infinite duration, we have truncated it to 8 s duration. The truncated signal has most
of the energy of the untruncated signal. This signal has also an infinite bandwidth.
Here again, the spectral values become negligible beyond some finite range. The
sample values of the signal in Figure 9.10(a) are {0.5, 0.1353, 0.0183, 0.0025}. The
first sample value occurs at a discontinuity and it is the average of the left- and right-
hand limits at the discontinuity. The magnitude of the DFT of these values, after
scaling by Ts = 2 s, is {1.3123, 0.9993, 0.7610, 0.9993}. As the second half of the
DFT spectrum is redundant, only the first three values are useful. The corresponding
samples of the FT are {1, 0.7864, 0.5370}.

The spectral samples obtained by the DFT are very inaccurate since the number of
samples N = 4 is very small and the frequency range is inadequate thereby resulting
in large amount of aliasing. The magnitude of the first five samples of the FT obtained
through the DFT with N = 1024 are {0.9997, 0.7862, 0.5368, 0.3905, 0.3032}. The
corresponding samples of the FT are {1, 0.7864, 0.5370, 0.3907, 0.3033}. This time,
while the DFT values are still inaccurate, the error is much less compared with the last
case. In general, the DFT values will never be exactly equal to the analytical values,
but can be made sufficiently accurate by increasing the number of samples. �
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Figure 9.10 (a) The exponential waveform x(t) = e−tu(t), with four samples over the range 0 ≤ t < 8;
(b) the magnitude of the FT (solid line) and the samples of the FT obtained through the DFT with N = 4
(dots) and N = 1024 (crosses) samples
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In order to approximate the FT of an arbitrary signal by the DFT, a trial and error
procedure is used. A set of samples over a reasonable record length of the signal with
an initial sampling interval is taken and the DFT is computed. Then, keeping the record
length the same, we double the number of samples. That is, we reduce the sampling
interval by one-half and the DFT is computed. This process is repeated until the spectral
values near the middle of the spectrum for real signals (at the end of the spectrum for
complex signals) become negligibly small, which ensures very little aliasing. Now, the
sampling interval is fixed. Truncation of a signal is multiplying it with a rectangular
window. As the window becomes longer, the truncation becomes less. In the frequency
domain, the spectrum of the window becomes more closer to an impulse from that of a
sinc function. The convolution of the spectra of the untruncated signal and the window
distorts the spectrum of the signal to a lesser extent. Therefore, keeping the sampling
interval the same, we keep doubling the record length and use the DFT to compute the
spectral samples. When truncation becomes negligible, the spectral values with two
successive lengths will be almost the same. Now, the record length is fixed.

9.5 Applications of the Fourier Transform

9.5.1 Transfer Function and System Response

The input–output relationship of a LTI system is given by the convolution operation
in the time-domain. Since convolution corresponds to multiplication in the frequency-
domain, we get

y(t) =
∫ ∞

−∞
x(τ)h(t − τ)dτ ⇐⇒ Y (jω) = X(jω)H(jω),

where x(t), h(t), and y(t) are, respectively the system input, impulse response, and
output, and X(jω), H(jω), and Y (jω) are their respective transforms. As input is trans-
ferred to output by multiplication with H(jω), H(jω) is called the transfer function
of the system. The transfer function, which is the transform of the impulse response,
characterizes a system in the frequency-domain just as the impulse response does in
the time-domain.

Since the impulse function, whose FT is one (a uniform spectrum), is com-
posed of complex exponentials ejωt of all frequencies with equal magnitude and
zero-phase, the transform of the impulse response, the transfer function, is also
called the frequency response of the system. Therefore, an exponential Aej(ωa t+θ)

is changed to (|H(jωa)|A)ej(ωa t+(θ+∠ (H(jωa))) at the output. A real sinusoidal input
signal A cos(ωat + θ) is also changed at the output by the same amount of amplitude
and phase of the complex scale factor H(jωa). That is, A cos(ωat + θ) is changed to
(|H(jωa)|A) cos(ωat + (θ + ∠ (H(jωa))). The steady-state response of a stable system
to the input Aej(ωat+θ)u(t) is also the same.
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As H(jω) = Y (jω)/X(jω), the transfer function can also be described as the ratio
of the transform Y (jω) of the response y(t) to an arbitrary signal x(t) to that of its
transform X(jω), provided |X(jω)| �= 0 for all frequencies and the system is initially
relaxed.

As the transform of the derivative of a signal is its transform multiplied by a factor,
we can readily find the transfer function from the differential equation. Consider the
second-order differential equation of a stable and initially relaxed LTI continuous
system.

d2y(t)

dt2
+ a1

dy(t)

dt
+ a0y(t) = b2

d2x(t)

dt2
+ b1

dx(t)

dt
+ b0x(t)

Taking the FT of both sides, we get

(jω)2Y (jω) + a1(jω)Y (jω) + a0Y (jω) =
(jω)2b2X(jω) + b1(jω)X(jω) + b0X(jω)

The transfer function H(jω) is obtained as

H(jω) = Y (jω)

X(jω)
= (jω)2b2 + (jω)b1 + b0

(jω)2 + a1(jω) + a0

Example 9.11. Find the response, using the FT, of the system governed by the
differential equation

dy(t)

dt
+ y(t) = x(t)

to the input x(t) = 2 cos(t + π
4 ).

Solution

H(jω) = 1

1 + jω

Substituting ω = 1, we get

H(j1) = 1

1 + j1
= 1√

2
∠

(
−π

4

)

The response of the system to the input x(t) = 2 cos
(
t + π

4

)
is y(t) =

2√
2

cos
(
t + π

4 − π
4

) = √
2 cos(t). �
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Example 9.12. Find the impulse response, using the FT, of the system governed by
the differential equation

dy(t)

dt
+ 3y(t) = x(t)

Solution

H(jω) = 1

3 + jω

The impulse response of the system, which is the inverse FT of H(jω), is h(t) =
e−3tu(t). �

Example 9.13. Find the zero-state response of the system governed by the differential
equation

d2y(t)

dt2
+ 4

dy(t)

dt
+ 4y(t) = d2x(t)

dt2
+ dx(t)

dt
+ 2x(t)

with the input x(t) = u(t), the unit-step function.

Solution

H(jω) = (jω)2 + (jω) + 2

(jω)2 + 4(jω) + 4

With X(jω) = πδ(ω) + 1
jω

,

Y (jω) = H(jω)X(jω) = (jω)2 + (jω) + 2

(jω)((jω)2 + 4(jω) + 4)
+ πδ(ω)((jω)2 + (jω) + 2)

(jω)2 + 4(jω) + 4

Expanding into partial fractions, we get

Y (jω) = 0.5

jω
+ 0.5

jω + 2
− 2

(jω + 2)2
+ π

2
δ(ω)

Taking the inverse FT, we get the zero-state response

y(t) = (0.5 + 0.5e−2t − 2te−2t)u(t)

The steady-state response is 0.5u(t) and the transient response due to the input is
(0.5e−2t − 2te−2t)u(t). �
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Systems with nonzero initial conditions cannot be directly analyzed with FT.
Further, handling of the frequency variable jω is relatively more difficult. For these
reasons, the Laplace transform is preferable for system analysis. However, the FT,
wherever it is more suitable, is efficient, as it can be approximated by the DFT using
fast algorithms.

9.5.2 Ideal Filters and their Unrealizability

Filters are prominent examples of LTI systems for signal analysis, manipulation, and
processing. Common applications of filters include removing noise from signals and
selection of individual channels in radio or television receivers. We present, in this
subsection, the constraints involved in the realization of practical filters.

The frequency response of an ideal lowpass filter is shown in Figure 9.11. As it
is even-symmetric, the specification of the response over the interval from ω = 0 to
ω = ∞, shown in thick lines, characterizes a filter.

H(jω) =
{

1 for 0 ≤ ω < ωc

0 for ω > ωc

From ω = 0 to ω = ωc, the filter passes frequency components of a signal with a
gain of 1 and rejects the other frequency components, since the output of the filter,
in the frequency-domain, is given by Y (jω) = H(jω)X(jω). The magnitudes of the
frequency components of the signal, X(jω), with frequencies up to ωc are multiplied
by 1 and the rest by 0. The range of frequencies from 0 to ωc is called the passband
and the range from ωc to ∞ is called the stopband. This ideal filter model is practically
unrealizable since its impulse response (inverse of H(jω)) extends from t = −∞ to
t = ∞, which requires a noncausal system. Practical filters approximate this model.

The impulse response of practical systems must be causal. The even and odd com-
ponents, for t > 0, of a causal time function x(t) are given as

xe(t) = x(t) + x(−t)

2
= x(t)

2
and xo(t) = x(t) − x(−t)

2
= x(t)

2

That is, x(t) = 2xe(t) = 2xo(t), t > 0 and xe(t) = −xo(t), t < 0. As the FT of an
even signal is real and that of an odd signal is imaginary, x(t) can be obtained by

Figure 9.11 Frequency response of an ideal lowpass filter
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finding the inverse FT of either the real part or the imaginary part of its spectrum
X(jω). That is,

x(t) = 2

π

∫ ∞

0
Re(X(jω)) cos(ωt)dω = − 2

π

∫ ∞

0
Im(X(jω)) sin(ωt)dω t > 0

The point is that the real and imaginary parts or, equivalently, the magnitude and the
phase of the FT of a causal signal are related. This implies that there are constraints,
for the realizability, on the magnitude of the frequency response, H(jω), of a practical
filter. These constraints are given by the Paley–Wiener criterion as

∫ ∞

−∞
| loge |H(jω)||

1 + ω2
dω < ∞

To satisfy this criterion, the magnitude of the frequency response |H(jω)| can be
zero at discrete points but not over any continuous band of frequencies. If H(jω) is
zero over a band of frequencies, | loge |H(jω)|| = ∞ and the condition is violated. On
the other hand, if H(jω) is zero at a finite set of discrete frequencies, the value of the
integral may still be finite, although the integrand is infinite at these frequencies. In
addition, any transition of this function cannot vary more rapidly than by exponential
order. The H(jω) of the ideal filter shown in Figure 9.11 does not meet the Paley–
Wiener criterion. Further, the order of the filter must be infinite to have a constant gain
all over the passband. Therefore, neither the flatness of the bands nor the sharpness of
the transition between the bands of ideal filters is realizable by practical filters.

9.5.3 Modulation and Demodulation

Modulation and demodulation operations are fundamental to communication appli-
cations. These operations are required in signal communication because of different
frequency ranges required for the signals to be communicated and for efficient trans-
mission of signals. As the antenna size is inversely proportional to the frequency of
the signal, the lower the frequency of the signal the larger is the required antenna
size. For example, an antenna of size about 30 km is required to transmit the audio
signal efficiently. Therefore, it is a necessity to embed the audio signal, called the
message signal, in a much higher-frequency signal, called the carrier signal, which
can be transmitted more efficiently. The operation of embedding the message signal
in a carrier signal is called modulation. The embedding involves the variation of some
property of the carrier signal in accordance with the message signal. At the receiv-
ing end, the message signal has to extracted from the modulated carrier signal. This
operation is called demodulation. There are different types of these operations with
distinct characteristics. We understand these operations using the property of the FT
that the multiplication of two signals in the time-domain corresponds to convolution
in the frequency-domain.
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9.5.3.1 Double Sideband, Suppressed Carrier (DSB-SC), Amplitude
Modulation

In this type of modulation, the amplitude A of the carrier signal, A cos(ωc(t) + θc), is
varied in some manner with the message signal, m(t), where ωc and θc are constants.
Let the FT of m(t) be M(jω). Then, the FT of the product of the message and carrier
signals, with A = 1 and θc = 0, is given as

m(t) cos(ωc(t)) ⇐⇒ 1

2
(M(j(ω + ωc)) + M(j(ω − ωc)))

After modulation, a copy of the spectrum of the message signal is placed at ωc and
another copy is placed at −ωc. Each copy of the spectrum of the message signal has the
upper sideband (USB) portion (the right half of the spectrum centered at ωc and the left
half of the spectrum centered at −ωc) and the lower sideband (LSB) portion (the left
half of the spectrum centered at ωc and the right half of the spectrum centered at −ωc).
As there are two sidebands and no carrier in the spectrum, this form of modulation
is called double sideband, suppressed carrier, amplitude modulation. Note that, the
message signal can be recovered from either sideband.

Let the message signal bem(t) = sin(2πt) and the carrier signal be c(t) = cos(20πt),
as shown in Figure 9.12(a). For illustration, we are using a sine wave of 1 Hz as the
message signal and cosine wave of 10 Hz as the carrier signal. However, it should be
noted that, in practice, the message signal will have a finite bandwidth and the carrier
frequency will be much higher. For example, the bandwidth of a message signal
could be 3 kHz with a carrier frequency 3000 kHz. The product m(t)c(t) is shown in
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Figure 9.12 (a) m(t) = sin(2πt) and c(t) = cos(20πt); (b) m(t)c(t); (c) the magnitude of the FT spec-
trum of m(t)c(t); (d) the magnitude of the FT spectrum of (m(t)c(t))c(t)
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Figure 9.12(b). The envelopes of m(t)c(t) are m(t) and −m(t), since m(t) cos(20πt) =
m(t) when cos(20πt) = 1 and m(t) cos(20πt) = −m(t) when cos(20πt) = −1. For
this specific example, the FT X(jω) of m(t)c(t) is

jπ

2
(−δ(f + (10 + 1)) + δ(f + (−10 − 1))︸ ︷︷ ︸

USB

+ δ(f + (10 − 1)) − δ(f + (−10 + 1))︸ ︷︷ ︸
LSB

)

Therefore, the magnitude of the FT spectrum of m(t)c(t), shown in Figure 9.12(c),
has impulses with strength π/2 at -11 Hz, -9 Hz, 9Hz, and 11 Hz.

Demodulation. To demodulate the modulated signal, m(t) cos(ωc(t)), at the receiver,
we simply multiply the signal by the carrier, cos(ωc(t)). This results in

m(t) cos2(ωc(t)) = 1

2
(m(t) + m(t) cos(2ωc(t))

The FT of this signal is

1

2
M(jω) + 1

4
(M(j(ω + 2ωc)) + M(j(ω − 2ωc)))

The spectrum of the message signal is centered at ω = 0 and can be recovered by
lowpass filtering. The other two spectra are the transform of m(t) modulated by a
carrier with frequency 2ωc. For the specific example, the magnitude of the spectrum
of (m(t)c(t))c(t) is shown in Figure 9.12(d).

To use this type of demodulation, we have to generate the carrier signal with the
same frequency and phase. This requires a complex receiver. While this form is used
in certain applications, for commercial radio broadcasting, another type of modulation
and demodulation, described next, is most commonly used.

9.5.3.2 Double Sideband, with Carrier (DSB-WC), Amplitude Modulation

In this type of modulation, the amplitude of the carrier signal, cos(ωc(t)), is varied in
some manner with the modulating signal, (1 + km(t)), where ωc and k are constants.
Let the FT of m(t) be M(jω). Then, the FT of the product of the message and carrier
signal is given as

(1 + km(t)) cos(ωct) ⇐⇒
k

2
(M(j(ω + ωc)) + M(j(ω − ωc))) + π(δ(ω + ωc) + δ(ω − ωc))

After modulation, a copy of the spectrum of the message signal is placed at ωc

and another copy is placed at −ωc. As there are two sidebands and the carrier in the
spectrum of the transmitted signal, this form of modulation is called double sideband,
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Figure 9.13 (a) (1 + 0.8m(t))c(t); (b) the magnitude of its FT spectrum

with carrier, amplitude modulation. This form of modulation is intended for simple
receivers with out the need for generating the carrier signal. For example, let the
signals m(t) and c(t) be the same as shown in Figure 9.12(a). Figures 9.13(a) and
(b) show, respectively, (1 + 0.8m(t))c(t), and the magnitude of the FT spectrum of
(1 + 0.8m(t))c(t). The signal can be demodulated by a simple envelope detector circuit
or a rectifier followed by a lowpass filter, if the message signal rides on the carrier
signal. That is, (1 + km(t)) ≥ 0 for all values of t.

The basis of modulation in the two cases studied is frequency shifting. One advan-
tage of this type of modulation is the transmission of several signals over the same
channel using the frequency-division multiplexing method. The signals share portions
of the bandwidth of the channel with adequate separation between them.

9.5.3.3 Pulse Amplitude Modulation (PAM)

In the modulation types so far presented, the carrier is a sinusoid. The use of a pulse
train as the carrier and modulating its amplitude in accordance with the message signal
is called pulse amplitude modulation (PAM). The pulse train consists of constant
width and amplitude pulses with uniform spacing between them. The message signal
modulates the amplitude of the pulses. This is essentially the same as that of sampling
of continuous signals using an impulse train, presented earlier. The difference is that
the sampling pulse, unlike the impulse, has a finite width. The FS spectrum of this
signal is sin(a kωs)/kπ, where a is half the width of the pulse, ωs = 2π/Ts, and Ts is
the sampling interval. Proceeding as in the case of the impulse sampling, we get the
FT of the modulated signal as

Xs(jω) =
(

· · · + sin(aωs)

π
X(j(ω + ωs)) + 2a

Ts
X(jω) + · · ·

)

The spectrum, centered at ω = 0, is unaltered except for a scale factor compared
with that of the signal. Therefore, we can recover the original spectrum using a lowpass
filter. Using this type of modulation, several message signals can be transmitted over
the same channel by the method called time-division multiplexing. The time between
two pulses of a modulated signal can be used by other modulated signals.
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9.6 Summary
• In this chapter, we have studied the FT, its properties, its approximation by the DFT,

and some of its applications.
• The FT is primarily intended to analyze continuous aperiodic signals in terms of a

continuum of complex exponentials over an infinite frequency range.
• The FT is the most general type of Fourier analysis and, hence, it can be used to

analyze a mixed class of signals.
• The FT can be approximated by the DFT to a desired accuracy with proper choice

of the record length and the number of samples.
• The FT has wide applications in signal and system analysis.
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Exercises

9.1 Starting from the defining equations of the exponential form of the FS and the
inverse FS, derive the defining equations of the FT and the inverse FT as the
period of the time-domain waveform tends to infinity.

9.2 Derive an expression, using the defining integral, for the FT of the signal x(t) =
e−at cos(ω0t)u(t), a > 0. With a = 0.4 and ω0 = 3, compute X(j0).

9.3 Derive an expression, using the defining integral, for the FT of the signal x(t) =
e−at sin(ω0t)u(t), a > 0. With a = 0.1 and ω0 = 2, compute X(j0).

9.4 Derive an expression, using the defining integral, for the FT of the signal

x(t) =
{

1 − |t| for |t| < 1

0 elsewhere

Compute X(j0) and X(j(2π)).
9.5 Derive an expression, using the defining integral, for the FT of the signal x(t) =

e−3|t|.
Compute X(j0).

9.6 Derive an expression, using the defining integral, for the FT of the signal

x(t) =
{

cos(10t) for |t| < 1

0 for |t| > 1

Compute X(j0).
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∗9.7 Derive an expression, using the defining integral, for the FT of the signal x(t) =
te−2tu(t).
Compute X(j0).

9.8 Apply a limiting process so that x(t) degenerates into the impulse function and,
hence, derive the FT of the impulse function δ(t).
9.8.1 x(t) = ae−atu(t), a > 0, as a → ∞.

9.8.2 x(t) =
{

1
2a

for |t| < a

0 for |t| > a
, a > 0, as a → 0.

9.8.3 x(t) =
{

1
a

for 0 < t < a

0 elsewhere
, a > 0, as a → 0.

9.8.4 x(t) =
{

1
a

for −a < t < 0

0 elsewhere
, a > 0, as a → 0.

9.8.5 x(t) =
{

1
a2 (a − |t|) for |t| < a

0 for |t| > a
, a > 0, as a → 0.

9.8.6 x(t) =
{

1
2a2 (2a + t) for −2a < t < 0

0 elsewhere
, a > 0, as a → 0.

9.9 Apply a limiting process so that x(t) degenerates into the dc function and, hence,
derive the FT of the dc function, x(t) = 1.

x(t) =
{

1 for |t| < a

0 for |t| > a
, a > 0, as a → ∞.

9.10 Derive the FT of the function y(t) =
{−1 for t < 0

1 for t > 0
by applying a limiting

process to the signal x(t) = e−atu(t) − eatu(−t), as a → 0.
9.11 Apply a limiting process so that x(t) degenerates into the cosine function and,

hence, derive the FT of the cosine function, cos(t).

x(t) =
{

cos(t) for |t| < a

0 for |t| > a
, a > 0, as a → ∞

9.12 Apply a limiting process so that e−a|t| sin(t), a > 0 degenerates into sin(t), as
a → 0, and, hence, derive the FT of sin(t).

9.13 Derive the FT of the unit-step function u(t) using the FT of the functions

x(t) =
{

1 for t > 0

−1 for t < 0
and y(t) = 1

9.14 Using the duality property, find the FT of the signal x(t).
9.14.1 x(t) = 1

2+jt
.

∗9.14.2 x(t) = 2 sin(3t)
t

.
9.14.3 x(t) = πδ(t) + 1

jt
.
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9.15 Using the linearity and frequency-shifting properties, find the FT of x(t).
9.15.1 x(t) = cos(ω0t)u(t).
9.15.2 x(t) = sin(ω0t)u(t).

∗9.15.3 x(t) =
{

cos(ω0t) for |t| < a

0 for |t| > a
, a > 0.

9.15.4 x(t) =
{

sin(ω0t) for |t| < a

0 for |t| > a
, a > 0.

∗9.16 Derive the inverse FT of the function

X(jω) = 1

ω2

(
e−j4ω − 1

)

using the time-domain convolution property.
9.17 Using the time-domain convolution property, find the FT of the convolution of

x(t) and h(t).

9.17.1 x(t) =
{−2 for 0 < t < 4

0 for t < 0 and t > 4
and

h(t) =
{

3 for 0 < t < 5

0 for t < 0 and t > 5
9.17.2 x(t) = e−2tu(t) and h(t) = e−3tu(t).

9.17.3 x(t) = e−tu(t) and h(t) =
{

1 for 0 < t < 1

0 for t < 0 and t > 1

9.17.4 x(t) =
{

(1 − |t|) for |t| < 1

0 otherwise
and h(t) =

{
1 for 0 < t < 1

0 for t < 0 and t > 1
9.17.5 x(t) = e−atu(t), a > 0 and h(t) = x(t).

9.18 Using the frequency-domain convolution property, find the FT of the product
of x(t) and h(t).
9.18.1 x(t) = cos(ω0t) and h(t) = u(t).

∗9.18.2 x(t) = sin(ω0t) and h(t) = u(t).

9.18.3 x(t) = cos(ω0t) and h(t) =
{

1 for |t| < a

0 for |t| > a
, a > 0.

9.18.4 x(t) = sin(ω0t) and h(t) =
{

1 for |t| < a

0 for |t| > a
, a > 0.

9.19 Derive the FT of the function x(t) = e−a|t|, a > 0 using the linearity and time-
reversal properties.

9.20 Using the time-scaling property, find the FT of the signal x(at).
9.20.1 x(t) = cos(t) and a = −2.
9.20.2 x(t) = e−2tu(t) and a = 2.
9.20.3 x(t) = e−2tu(t) and a = 1

2 .
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9.20.4 x(t) = e−2tu(t) and a = − 1
2 .

9.20.5 x(t) =
{

1 for |t| < 2

0 for |t| > 2
and a = 2.

9.20.6 x(t) =
{

1 for |t| < 2

0 for |t| > 2
and a = −2.

9.20.7 x(t) =
{

1 for |t| < 2

0 for |t| > 2
and a = 1

2 .

9.20.8 x(t) = u(t) and a = 3.
∗9.20.9 x(t) = u(t) and a = −2.
9.20.10 x(t) = u(t − 4) and a = 2.

9.21 Using the time-differentiation property, find the FT of the derivative of the
signal x(t) = sin(4t).

9.22 Using the time-differentiation property, find the FT of the signal x(t).

9.22.1 x(t) =
{

(1 − t) for 0 < t < 1

0 for t < 0 and t ≥ 1

9.22.2 x(t) =
{

t for 0 < t < 1

0 for t ≤ 0 and t > 1

9.22.3 x(t) =



1 for −1 < t < 0

−1 for 0 < t < 1

0 for t < −1 and t > 1

∗9.22.4 x(t) =




t for 0 ≤ t < 1

1 for 1 ≤ t < 2

(3 − t) for 2 ≤ t < 3

0 for t < 0 and t > 3
9.22.5 x(t) = e−2|t|.

9.23 Using the time-integration property, find the FT of y(t), where

y(t) =
∫ t

−∞
x(τ)dτ

9.23.1 x(t) = δ(t − 3).

9.23.2 x(t) =



2 for −1 < t < 0

−2 for 0 < t < 1

0 for t < −1 and t > 1
9.23.3 x(t) = cos(3t).

9.23.4 x(t) =
{

sin(t) for 0 ≤ t < π
2

0 for t < 0 and t > π
2
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9.23.5 x(t) =
{

cos(t) for 0 < t < π

0 for t < 0 and t > π
∗9.23.6 x(t) = e−tu(t).
9.23.7 x(t) = u(t).

9.24 Using the frequency-differentiation property, find the FT of the signal x(t).
9.24.1 x(t) = t2e−tu(t).
9.24.2 x(t) = tu(t).
9.24.3 x(t) = te−2|t|.

∗9.24.4 x(t) =
{

t for 0 < t < 1

0 for t < 0 and t > 1

9.24.5 x(t) =
{

t for −1 < t < 1

0 for t < −1 and t > 1

9.24.6 x(t) =
{

t sin(t) for 0 < t < π

0 for t < 0 and t > π

9.25 Using the linearity, time-shifting, frequency differentiation properties and the
FT of u(t), find the FT of the signal

x(t) =



0 for t < 0

t for 0 ≤ t ≤ 3

3 for t > 3

9.26 Find the energy of the signal x(t) = e−2tu(t). Find the value of T such that 90%
of the signal energy lies in the range 0 ≤ t ≤ T . What is the corresponding
signal bandwidth.

9.27 Derive the Parseval’s theorem for aperiodic signals from that for the Fourier
series of periodic signals, as the period tends to infinity.

9.28 Using the complex FS coefficients of the periodic signal x(t), find its FT.
9.28.1 x(t) = ∑∞

n=−∞ δ(t − nT ).
9.28.2 x(t) = 2 + 3 cos(2t) + 4 sin(4t) − 5e−j6t + 6ej10t .

∗9.28.3 x(t) = −1 − 3 sin(3t) + 2 cos(5t) + 6e−j7t .
9.28.4 x(t) = 3 − 2 cos(10t) + 3 sin(15t) − ej25t .

9.29 Using the FT, find the complex FS coefficients of the periodic signal x(t).
9.29.1 x(t) = 5e−j(t+ π

3 ).
9.29.2 x(t) = 2 cos(2t − π

4 ).
9.29.3 x(t) = 3 sin(3t − π

6 ).
∗9.29.4 x(t) = ∑∞

n=−∞(t − 2n)(u(t − 2n) − u(t − 2 − 2n)).
9.30 Find the inverse FT, x(t), of X(jω). Find the sampled signal xs(t) and its trans-

form Xs(jω) for the sampling interval Ts = 0.25, 0.5, 1, 2 and 3 s.
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9.30.1

X(jω) =
{

cos(ω) for |ω| < π

0 elsewhere

9.30.2

X(jω) =
{

sin(2ω) for |ω| < π

0 elsewhere

9.31 Find the FT of x(t) and its sampled versions with the sampling interval Ts =
0.01, 0.1, 1 and 10 s. What are the spectral values of x(t) and its sampled
versions at ω = 0.
9.31.1 x(t) = e−tu(t).

∗9.31.2 x(t) = e−|t|.
9.32 Find the FT of x(t) and its sampled versions with the sampling interval Ts =

0.1, 0.5, 1 and 2 s.
9.32.1 x(t) = 2 cos

(
2π
32 t

)
+ sin

(
3 2π

32 t
)

.

9.32.2 x(t) = 4 sin
(

2π
24 t

)
+ cos

(
5 2π

24 t
)

.
∗9.33 Approximate the samples of the FT of the signal

x(t) =
{

1 − |t| for |t| < 1

0 elsewhere

using the DFT with N = 4 samples. Assume that the signal is periodically
extended with period T = 2 s. Compare the first two samples of the FT obtained
using the DFT with that of the exact values.

9.34 Approximate the samples of the FT of the signal

x(t) =
{

1 for |t| < 2

0 for |t| > 2

using the DFT with N = 4 samples. Assume that the signal is periodically
extended with period T = 8 s. Compare the first two samples of the FT obtained
using the DFT with that of the exact values.

9.35 Find the response y(t), using the FT, of the system governed by the differential
equation

dy(t)

dt
+ y(t) = ejt

Verify your solution by substituting it into the differential equation.
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9.36 Using the FT, find the zero-state response y(t) of the system governed by the
differential equation

2
dy(t)

dt
+ 3y(t) = δ(t)

Verify your solution by substituting it into the differential equation.
9.37 Using the FT, find the zero-state response y(t) of the system governed by the

differential equation

dy(t)

dt
+ 2y(t) = u(t)

Verify your solution by substituting it into the differential equation.
9.38 Using the FT, find the zero-state response y(t) of the system governed by the

differential equation

3
dy(t)

dt
+ 2y(t) = 4e−2tu(t)

Verify your solution by substituting it into the differential equation.





10
The z-Transform

In Fourier analysis, we decompose a signal in terms of its constituent constant-
amplitude sinusoids. Systems are modeled in terms of their responses to sinusoids.
This representation provides an insight into the signal and system characteristics and
makes the evaluation of important operations, such as convolution, easier. The gen-
eral constraint on the signal to be analyzed is that it is absolutely or square integ-
rable/summable. Even with this constraint, the use of Fourier analysis is extensive
in signal and system analysis. However, we still need the generalization of Fourier
analysis so that a larger class of signals and systems can be analyzed in the frequency-
domain, retaining all the advantages of the frequency-domain methods. The general-
ization of the Fourier analysis for discrete signals, called the z-transform, is described
in this chapter.

The differences between the z-transform and Fourier analysis are presented in
Section 10.1. In Section 10.2, the z-transform is derived starting from the DTFT defi-
nition. In Section 10.3, the properties of the z-transform are described. In Section 10.4,
the inverse z-transform is derived and two frequently used methods to find the inverse
z-transform are presented. Typical applications of the z-transform are described in
Section 10.5.

10.1 Fourier Analysis and the z-Transform

In Fourier analysis, we analyze a waveform in terms of constant-amplitude sinusoids
A cos(ωn + θ), shown in Figure 2.1. Fourier analysis is generalized by making the
basis signals a larger set of sinusoids, by including sinusoids with exponentially vary-
ing amplitudes Arn cos(ωn + θ), shown in Figure 2.5. This extension enables us to
analyze a larger set of signals and systems than is possible with Fourier analysis. The
sinusoids, whether they have constant-amplitude or varying amplitude, have the key
advantages of being the basis signals in terms of ease of signal decomposition and
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© 2008 John Wiley & Sons (Asia) Pte Ltd



228 A Practical Approach to Signals and Systems

efficient signal and system analysis. In Fourier analysis, we use fast algorithms to
obtain the frequency-domain representation of signals. In the case of the transforms
that use sinusoids with exponentially varying amplitudes, it is found that a short table
of transform pairs is adequate for most practical purposes.

In the Fourier representation, the spectrum of a one-dimensional signal is also one-
dimensional, the spectral coordinates being the frequencyω and the complex amplitude
of the complex sinusoids. In the case of the generalized transforms, the rate of change
of the amplitude of the exponentially varying amplitude sinusoids is also a parameter.
This makes the spectrum of a one-dimensional signal two-dimensional, a surface. The
spectrum provides infinite spectral representations of the signal, that is the spectral
values along any appropriate closed contour of the two-dimensional spectrum could
be used to reconstruct the signal. Therefore, a signal may be reconstructed using
constant-amplitude sinusoids or exponentially decaying sinusoids or exponentially
growing sinusoids, or an infinite combination of these types of sinusoids.

The advantages of the z-transform include: the pictorial description of the behavior
of the system obtained by the use of the complex frequency; the ability to analyze
unstable systems or systems with exponentially growing inputs; automatic inclusion
of the initial conditions of the system in finding the output; and easier manipulation
of the expressions involving the variable z than those with ejω.

10.2 The z-Transform

We assume, in this chapter, that all signals are causal, that is x(n) = 0, n < 0,
unless otherwise specified. This leads to the one-sided or unilateral version of the
z- transform, which is mostly used for practical system analysis. If a signal x(n)u(n)
is not Fourier transformable, then its exponentially weighted version (x(n)r−n) may
be Fourier transformable for the positive real quantity r > 1. If x(n)u(n) is Fourier
transformable, (x(n)r−n) may still be transformable for some values of r < 1. The
DTFT of this signal is

∞∑
n=0

(x(n)r−n)e−jωn

By combining the exponential factors, we get

X(rejω) =
∞∑

n=0

x(n)(rejω)−n

This equation can be interpreted as the generalized Fourier analysis of the signal
x(n) using exponentials with complex exponents or sinusoids with varying amplitudes
as the basis signals. By substituting z = rejω, we get the defining equation of the
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one-sided or unilateral z-transform of x(n) as

X(z) =
∞∑

n=0

x(n)z−n (10.1)

Expanding the summation, we get

X(z) = x(0) + x(1)z−1 + x(2)z−2 + x(3)z−3 + · · ·

where z is a complex variable. Therefore, the basis functions used in the z-transform
are of the form zn = e(σ+jω)n = rnejωn = rn(cos(ωn) + j sin(ωn)) = (a + jb)n. While
X(ejω) is the DTFT of x(n), X(z) = X(rejω) is the DTFT of x(n)r−n for all values of r

for which
∑∞

n=0 |x(n)r−n| < ∞. If the value one is included in these values of r, then
X(ejω) can be obtained from X(z) by the substitution z = ejω. The z-transform of a
signal x(n), X(z), exists for |z| > r0 if |x(n)| ≤ rn

0 for some constant r0. For example,
x(n) = an2

does not have a z-transform. In essence, the z-transform of a signal, whether
it is converging or not, is the DTFT of all its versions, obtained by multiplying it by a
real exponential of the form r−n, so that the modified signal is guaranteed to converge.

The z-transform, X(z), represents a sequence only for the set of values of z for which
it converges, that is the magnitude of X(z) is not infinite. The region that comprises
this set of values in the z-plane (a complex plane used for displaying the z-transform)
is called the region of convergence (ROC). For a given positive number c, the equation
|z| = |a + jb| = c or a2 + b2 = c2 describes a circle in the z-plane with center at the
origin and radius c. Consequently, the condition |z| > c for ROC specifies the region
outside this circle. If the ROC of the z-transform of a sequence includes the unit-circle,
then its DTFT can be obtained from X(z) by replacing z with ejω.

Example 10.1. Find the z-transform of the unit-impulse signal, δ(n).

Solution
Using the definition, we get

X(z) = 1, for all z and δ(n) ⇐⇒ 1, for all z

The transform pair for a delayed impulse δ(n − m) is

δ(n − m) ⇐⇒ z−m |z| > 0,

where m is positive. �

Example 10.2. Find the z-transform of the finite sequence with its only nonzero
samples specified as {x(0) = 5, x(2) = 4, x(5) = −2}.
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Solution
Using the definition, we get

X(z) = 5 + 4z−2 − 2z−5 = 5z5 + 4z3 − 2

z5
|z| > 0

�

The geometric sequence, anu(n), is fundamental to the study of linear discrete
systems, as it is more convenient to express the natural response of systems in that
form.

Example 10.3. Find the z-transform of the geometric sequence, anu(n).

Solution
Substituting x(n) = an in the defining equation of the z-transform, we get

X(z) =
∞∑

n=0

(a−1z)−n = 1 + (a−1z)−1 + (a−1z)−2 + (a−1z)−3 + · · ·

= 1

1 − (a−1z)−1
= z

z − a
|z| > |a|

It is known that the geometric series 1 + r + r2 + · · · converges to 1/(1 − r), if
|r| < 1. If |z| > |a|, the common ratio of the series r = a/z has magnitude that is less
than one. Therefore, the ROC of the z-transform is given as |z| > |a| and we get the
transform pair

anu(n) ⇐⇒ z

z − a
|z| > |a| �

Note that the DTFT of anu(n) does not exist for a > 1, whereas the z-transform
exists for all values of a as long as |z| > |a|. The z-transform spectrum of a sequence
is usually displayed by the locations of zeros and poles of the z-transform and its
magnitude.

The pole-zero plot and the magnitude of the z-transform z/(z − 0.8) of the signal
anu(n) with a = 0.8 are shown, respectively, in Figures 10.1(a) and (b). When z = 0.8,
|X(z)| = ∞.

This point, marked by the cross in Figure 10.1(a) is called a pole of X(z) (the
peak in Figure 10.1(b)). When z = 0, X(z) = 0. This point marked by the open cir-
cle in Figure 10.1(a) is called a zero of X(z) (the valley in Figure 10.1(b)). The
pole-zero plot specifies a transform X(z), except for a constant factor. In the region
outside the circle with radius 0.8, X(z) exists and is a valid frequency-domain rep-
resentation of the signal. In general, the ROC of a z-transform is the region in the
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Figure 10.1 (a) The pole-zero plot of the z-transform z/(z − 0.8) of (0.8)nu(n); (b) the magnitude of
the z-transform

z-plane that is exterior to the smallest circle, centered at the origin, enclosing all its
poles.

Example 10.4. Find the z-transform of the signal ejωnu(n). Deduce the z-transform
of sin(ωn)u(n).

Solution
Using the transform of anu(n) with a = ejω, we get

ejωnu(n) ⇐⇒ z

z − ejω
|z| > 1

Since the magnitude of a = ejω is 1, the convergence condition is |z| > 1. Using
the fact that j2 sin(ωn) = (ejωn − e−jωn), we get

j2X(z) = z

z − ejω
− z

z − e−jω
|z| > 1

sin(ωn)u(n) ⇐⇒ z sin(ω)

(z − ejω)(z − e−jω)
= z sin(ω)

z2 − 2z cos(ω) + 1
|z| > 1 �

Figure 10.2(a) shows the pole-zero plot and Figure 10.2(b) shows the magnitude
of the z-transform z sin(π

4 )/(z2 − 2z cos(π
4 ) + 1) of the signal sin(π

4 n)u(n). There is a
zero at z = 0 and poles at z = ej π

4 and z = e−j π
4 , a pair of complex-conjugate poles.

Example 10.5. Find the z-transform of the signal defined as

x(n) =



(0.2)n for 0 ≤ n ≤ 5

(0.2)n + (−0.6)n for 6 ≤ n ≤ 8

(−0.6)n for 9 ≤ n < ∞
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Figure 10.2 (a) The pole-zero plot of the z-transform z sin( π

4 )/[(z − ej π
4 )(z − e−j π

4 )] of sin( π

4 n)u(n);
(b) the magnitude of the z-transform

Solution
From the definition of the z-transform, we get

X(z) =
8∑

n=0

(0.2)nz−n +
∞∑

n=0

(−0.6)nz−n −
5∑

n=0

(−0.6)nz−n

X(z) = z9 − (0.2)9

z8(z − 0.2)
+ z

z + 0.6
− z6 − (−0.6)6

z5(z + 0.6)
|z| > 0.6 �

10.3 Properties of the z-Transform

Properties present the frequency-domain effect of time-domain characteristics and
operations on signals and vice versa. In addition, they are used to find new transform
pairs more easily.

10.3.1 Linearity

It is often advantageous to decompose a complex sequence into a linear combination
of simpler sequences (as in Example 10.4) in the manipulation of sequences and their
transforms. If x(n) ⇐⇒ X(z) and y(n) ⇐⇒ Y (z), then

ax(n) + by(n) ⇐⇒ aX(z) + bY (z)

where a and b are arbitrary constants. The z-transform of a linear combination
of sequences is the same linear combination of the z-transforms of the individual
sequences. This property is due to the linearity of the defining summation operation
of the transform.
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10.3.2 Left Shift of a Sequence

The shift property is used to express the transform of the shifted version, x(n + m)u(n),
of a sequence x(n) in terms of its transform X(z). If x(n)u(n) ⇐⇒ X(z) and m is a
positive integer, then

x(n + m)u(n) ⇐⇒ zmX(z) − zm
m−1∑
n=0

x(n)z−n

Let the z-transform of the sequence x(n + m)u(n) be Y (z). Then,

z−mY (z) = x(m)z−m + x(m + 1)z−m−1 + · · ·

By adding m terms,
∑m−1

n=0 x(n)z−n, to both sides of the equation, we get

z−mY (z) + x(m − 1)z−m+1 + x(m − 2)z−m+2 + · · · + x(0) = X(z)

Y (z) = zmX(z) − zm
m−1∑
n=0

x(n)z−n

For example,

x(n + 1)u(n) ⇐⇒ zX(z) − zx(0) and x(n + 2)u(n) ⇐⇒ z2X(z) − z2x(0) − zx(1)

Consider the sequence x(n) with x(−2) = 1, x(−1) = 2, x(0) = −1, x(1) = 1,

x(2) = −2, x(3) = 2 and x(n) = 0 otherwise, shown in Figure 10.3(a). The trans-
form of x(n) is X(z) = −1 + z−1 − 2z−2 + 2z−3. The sequence p(n), shown in
Figure 10.3(b), is the left-shifted sequence x(n + 1). The transform of p(n)u(n) =
x(n + 1)u(n) is

P(z) = 1 − 2z−1 + 2z−2 = zX(z) − zx(0) = z(−1 + z−1 − 2z−2 + 2z−3) + z
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n)
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−3−2−1 0 1 2 3 4
−2
−1
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1
2

n

q(
n)

(c)

Figure 10.3 (a) x(n); (b) p(n) = x(n + 1); (c) q(n) = x(n − 1)
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10.3.3 Right Shift of a sequence

If x(n)u(n) ⇐⇒ X(z) and m is a positive integer, then

x(n − m)u(n) ⇐⇒ z−mX(z) + z−m
m∑

n=1

x(−n)zn

For example,

x(n − 1)u(n) ⇐⇒ z−1X(z) + x(−1)

x(n − 2)u(n) ⇐⇒ z−2X(z) + z−1x(−1) + x(−2)

The sequence q(n), shown in Figure 10.3(c), is the right shifted sequence x(n − 1).
The transform of q(n)u(n) = x(n − 1)u(n) is

Q(z) = 2 − z−1 + z−2 − 2z−3 + 2z−4

= 2 + z−1(−1 + z−1 − 2z−2 + 2z−3) = x(−1) + z−1X(z)

In finding the response y(n) of a system for n ≥ 0, the initial conditions, such as
y(−1) and y(−2), must be taken into account. The shift properties provide the way for
the automatic inclusion of the initial conditions. The left shift property is more conve-
nient for solving difference equations in advance operator form. Consider solving the
difference equation y(n) = x(n) + 1

2y(n − 1) with the initial condition y(−1) = 3 and
x(n) = 0. The solution is y(n) = 3( 1

2 )n+1u(n), using time-domain method. Taking the
z-transform of the difference equation, we get Y (z) = X(z) + 1

2 (z−1Y (z) + 3). Solv-
ing for Y (z), Y (z) = 3

2z/(z − 1
2 ). The inverse transform of Y (z) is y(n) = 3

2 ( 1
2 )nu(n),

which is the same as that obtained earlier.

10.3.4 Convolution

If x(n)u(n) ⇐⇒ X(z) and h(n)u(n) ⇐⇒ H(z), then

y(n) =
∞∑

m=0

h(m)x(n − m) ⇐⇒ Y (z) = H(z)X(z)

The DTFT of x(n)r−n is the z-transform X(z) of x(n). The convolution of x(n)r−n

and h(n)r−n corresponds to X(z)H(z) in the frequency-domain. The inverse DTFT of
X(z)H(z), therefore, is the convolution of x(n)r−n and h(n)r−n given by

∞∑
m=0

x(m)r−mh(n − m)r(−n+m) = r−n
∞∑

m=0

x(m)h(n − m) = r−n(x(n) ∗ h(n))
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As finding the inverse z-transform is the same as finding the inverse DTFT in
addition to multiplying the signal by rn, as will be seen later, we get the convolution
of x(n) and h(n) by finding the inverse z-transform of X(z)H(z).

Consider the two sequences and their transforms x(n) = ( 1
2 )nu(n) ⇐⇒ X(z) =

z/(z − 1
2 ) and h(n) = ( 1

3 )nu(n) ⇐⇒ H(z) = z/(z − 1
3 ). The convolution of the

sequences, in the transform domain, is given by the product of their transforms,

X(z)H(z) = z

z − 1
2

z

z − 1
3

= 3z

z − 1
2

− 2z

z − 1
3

The inverse transform of X(z)H(z) is the convolution of the sequences in the time-
domain and it is (3( 1

2 )n − 2( 1
3 )n)u(n).

10.3.5 Multiplication by n

If x(n)u(n) ⇐⇒ X(z), then

nx(n)u(n) ⇐⇒ −z
d

dz
X(z)

Differentiating the defining expression for X(z) with respect to z and multiplying
it by −z, we get

−z
d

dz
X(z) = −z

d

dz

∞∑
n=0

x(n)z−n =
∞∑

n=0

nx(n)z−n =
∞∑

n=0

(nx(n))z−n

For example,

δ(n) ⇐⇒ 1 and nδ(n) = 0 ⇐⇒ 0

u(n) ⇐⇒ z

z − 1
and nu(n) ⇐⇒ z

(z − 1)2

10.3.6 Multiplication by an

If x(n)u(n) ⇐⇒ X(z), then

anx(n)u(n) ⇐⇒ X

(
z

a

)

From the z-transform definition, we get

X(z) =
∞∑

n=0

anx(n)z−n =
∞∑

n=0

x(n)
(

z

a

)−n

= X

(
z

a

)
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Multiplication of x(n) by an corresponds to scaling the frequency variable z. For
example,

u(n) ⇐⇒ z

z − 1
and (2)nu(n) ⇐⇒

z
2

( z
2 − 1)

= z

z − 2

The pole at z = 1 in the transform of u(n) is shifted to the point z = 2 in the
transform of (2)nu(n).

With a = −1 and x(n)u(n) ⇐⇒ X(z), (−1)nx(n)u(n) ⇐⇒ X(−z). For example,
u(n) ⇐⇒ z

z−1 and (−1)nu(n) ⇐⇒ −z/(−z − 1) = z/(z + 1).

10.3.7 Summation

If x(n)u(n) ⇐⇒ X(z), then y(n) = ∑n
m=0 x(m) ⇐⇒ Y (z) = [z/(z − 1)]X(z). The

product [z/(z − 1)]X(z) corresponds to the convolution of x(n) and u(n) in the time-
domain, which, of course, is equivalent to the sum of the first n + 1 values of x(n).

For example, x(n) = (−1)nu(n) ⇐⇒ z
z+1 . Then, Y (z) = z

z−1
z

z+1 = 1
2

(
z

z−1 + z
z+1

)
.

Taking the inverse z-transform, we get y(n) = 1
2 (1 + (−1)n).

10.3.8 Initial Value

Using this property, the initial value of x(n), x(0), can be determined directly from
X(z). If x(n)u(n) ⇐⇒ X(z), then

x(0) = lim
z→∞ X(z) and x(1) = lim

z→∞(z(X(z) − x(0)))

From the definition of the transform, we get

lim
z→∞ X(z) = lim

z→∞(x(0) + x(1)z−1 + x(2)z−2 + x(3)z−3 + · · ·) = x(0)

As z → ∞, each term, except x(0), tends to zero. Let X(z) = (z2 − 2z + 5)/
(z2 + 3z − 2). Then,

x(0) = lim
z→∞

(z2 − 2z + 5)

(z2 + 3z − 2)
= 1

Note that, when z → ∞, only the terms of the highest power are significant.
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10.3.9 Final Value

Using this property, the final value of x(n), x(∞), can be determined directly from
X(z). If x(n)u(n) ⇐⇒ X(z), then

lim
n→∞ x(n) = lim

z→1
((z − 1)X(z))

provided the ROC of (z − 1)X(z) includes the unit-circle (otherwise, x(n) has no
limit as n → ∞). Let X(z) = (z2 − 2z + 5)/(z2 + 3z − 2). The property does not
apply since the ROC of (z − 1)X(z) does not include the unit-circle. Let X(z) =
(z2 − 2z + 5)/(z2 − 1.5z + 0.5). Then,

lim
n→∞ x(n) = lim

z→1
(z − 1)

(z2 − 2z + 5)

(z2 − 1.5z + 0.5)
= lim

z→1

(z2 − 2z + 5)

(z − 0.5)
= 8

The value limn→∞ x(n), if it is nonzero, is solely due to the scaled unit-step compo-
nent of x(n). Multiplying X(z) by (z − 1) and setting z = 1 is just finding the partial
fraction coefficient of the unit-step component of x(n).

10.3.10 Transform of Semiperiodic Functions

Consider the function x(n)u(n) that is periodic of period N for n ≥ 0, that is
x(n + N) = x(n), n ≥ 0. Let x1(n) = x(n)u(n) − x(n − N)u(n − N) ⇐⇒ X1(z).
x1(n) is equal to x(n)u(n) over its first period and is zero elsewhere. Then,

x(n)u(n) = x1(n) + x1(n − N) + x1(n − 2N) + · · ·

Using the right shift property, the transform of x(n)u(n) is

X(z) = X1(z)(1 + z−N + z−2N + · · ·) = X1(z)

1 − z−N
= X1(z)

(
zN

zN − 1

)

Let us find the transform of x(n) = (−1)nu(n) with period N = 2. X1(z) = 1 −
z−1 = (z − 1)/z. From the property,

X(z) = z2

(z2 − 1)

(z − 1)

z
= z

(z + 1)

10.4 The Inverse z-Transform

Consider the transform pair x(n)u(n) ⇐⇒ z/(z − 2), |z| > 2. Multiplying the signal
by ( 1

4 )nu(n) gives x(n)( 1
4 )nu(n) ⇐⇒ z/(z − 0.5), |z| > 0.5, due to the multiplication

by an property. Now, the ROC includes the unit circle in the z-plane. Let us substitute
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z = ejω in z/(z − 0.5) to get 1/(1 − 0.5e−jω). The inverse DTFT of this transform
is the signal 0.5nu(n) = x(n)( 1

4 )nu(n). Now, multiplying both sides by 4nu(n) gives
the original time-domain signal x(n)u(n) = 2nu(n). This way of finding the inverse
z-transform gives us a clear understanding of how the z-transform is the generalized
version of the DTFT.

The inverse z-transform relation enables us to find a sequence from its z-transform.
The DTFT of x(n)r−n can be written as

X(rejω) =
∞∑

n=0

x(n)(rejω)−n

The inverse DTFT of X(rejω) is

x(n)r−n = 1

2π

∫ π

−π

X(rejω)ejωndω

Multiplying both sides by rn, we get

x(n) = 1

2π

∫ π

−π

X(rejω)(rejω)ndω

Let z = rejω. Then, dz = jrejωdω = jzdω. Now, the inverse z-transform of X(z),
in terms of the variable z, is defined as

x(n) = 1

2πj

∮
C

X(z)zn−1dz (10.2)

with the integral evaluated, in the counterclockwise direction, along any simply con-
nected closed contour C, encircling the origin, that lies in the ROC of X(z). As ω varies
from −π to π, the variable z traverses the circle of radius r in the counterclockwise
direction once.

We can use any appropriate contour of integration in evaluating the inverse
z-transform because the transform values corresponding to the contour are taken in
the inverse process. As can be seen from Figures 10.1(b) and Figure 10.2(b), the
z-transform values vary with each of the infinite choices for the contour of integra-
tion.

10.4.1 Finding the Inverse z-Transform

While the most general way of finding the inverse z-transform is to evaluate the contour
integral Equation (10.2), for most practical purposes, two other simpler methods are
commonly used.
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10.4.1.1 The Partial Fraction Method

In LTI system analysis, we are mostly encountered with the problem of inverting a
z-transform that is a rational function (a ratio of two polynomials in z). In the partial
fraction method, the rational function of the z-transform is decomposed into a linear
combination of transforms such as those of δ(n), anu(n), and nanu(n). Then, it is easy
to find the inverse transform from a short table of transform pairs.

Consider finding the partial fraction expansion of X(z) = z/(z − 1
5 )(z − 1

4 ). As the
partial fraction of the form kz/(z − p) is more convenient, we first expand X(z)/z and
then multiply both sides by z.

X(z)

z
= 1

(z − 1
5 )(z − 1

4 )
= A

(z − 1
5 )

+ B

(z − 1
4 )

Multiplying all the expressions by (z − 1
5 ), we get

(
z − 1

5

)
X(z)

z
= 1

(z − 1
4 )

= A + B(z − 1
5 )

(z − 1
4 )

Letting z = 1
5 , we get A = (z − 1

5 )X(z)
z

|z= 1
5

= −20. Similarly, B = (z − 1
4 )

X(z)
z

|z= 1
4

= 20.
Therefore,

X(z) = −20z

(z − 1
5 )

+ 20z

(z − 1
4 )

The time-domain sequence x(n) corresponding to X(z) is given by

x(n) =
(

−20
(

1

5

)n

+ 20
(

1

4

)n)
u(n)

The first four values of the sequence x(n) are

x(0) = 0 x(1) = 1 x(2) = 0.45 x(3) = 0.1525

As the sum of the terms of a partial fraction will always produce a numerator
polynomial whose order is less than that of the denominator, the order of the numer-
ator polynomial of the rational function must be less than that of the denominator.
This condition is satisfied by X(z)/z, as the degree of the numerator polynomial, for
z-transforms of practical interest, is at the most equal to that of the denominator.
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Example 10.6. Find the inverse z-transform of

X(z) = z2

(z − 1
2 )(z + 1

3 )

Solution
X(z)

z
=

(
z

(z − 1
2 )(z + 1

3 )

)
and X(z) =

3
5z

(z − 1
2 )

+
2
5z

(z + 1
3 )

x(n) =
(

3

5

(
1

2

)n

+ 2

5

(
−1

3

)n)
u(n)

The first four values of the sequence x(n) are

x(0) = 1, x(1) = 0.1667, x(2) = 0.1944, x(3) = 0.0602 �

The partial fraction method applies for complex poles also. Of course, the complex
poles and their coefficients will always appear in conjugate pairs for X(z) with real
coefficients. Therefore, finding one of the coefficients of each pair of poles is sufficient.

Example 10.7. Find the inverse z-transform of

X(z) = z

(z2 − 2z + 4)

Solution
Factorizing the denominator of X(z) and finding the partial fraction, we get

X(z)

z
=

(
1

(z − (1 + j
√

3))(z − (1 − j
√

3))

)

X(z) =
( z

j2
√

3

z − (1 + j
√

3)
+

z

−j2
√

3

z − (1 − j
√

3)

)

x(n) =
(

1

j2
√

3

)
(1 + j

√
3)n +

(
1

−j2
√

3

)
(1 − j

√
3)n n = 0, 1, . . .

The two terms of x(n) form a complex conjugate pair. The conjugate of a complex
number z = x + jy, denoted by z∗, is defined as z∗ = x − jy, that is the imaginary
part is negated. Now, z + z∗ = 2x (twice the real part of z or z∗). This result is very
useful in simplifying expressions involving complex conjugate poles. Let (a + jb)
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and (a − jb) are a pair of complex-conjugate poles and (c + jd) and (c − jd) are
their respective partial fraction coefficients. Then, the poles combine to produce the
time-domain response 2A(r)n cos(ωn + θ), where r = √

a2 + b2 and ω = tan−1( b
a
),

and A = √
c2 + d2 and θ = tan−1( d

c
). For the specific example, twice the real part of

( 1
j2

√
3
)(1 + j

√
3)n or ( 1

−j2
√

3
)(1 − j

√
3)n is

x(n) = 1√
3

(2)n cos
(

π

3
n − π

2

)
u(n)

The first four values of the sequence x(n) are

x(0) = 0 x(1) = 1 x(2) = 2 x(3) = 0 �

Example 10.8. Find the inverse z-transform of

X(z) = (z2 − 2z + 2)

(z2 − 7
12z + 1

12 )

Solution
X(z)

z
=

(
(z2 − 2z + 2)

z(z − 1
3 )(z − 1

4 )

)
and X(z) =

(
24 + 52z

(z − 1
3 )

− 75z

(z − 1
4 )

)

x(n) = 24δ(n) +
(

52
(

1

3

)n

− 75
(

1

4

)n)
u(n)

The first four values of the sequence x(n) are

x(0) = 1 x(1) = −1.4167 x(2) = 1.0903 x(3) = 0.7541 �

For a pole of order m, there must be m partial fraction terms corresponding to poles
of order m, m − 1, . . . , 1.

Example 10.9. Find the inverse z-transform of

X(z) = z2

(z − 1
3 )2(z − 1

2 )

Solution
X(z)

z
=

(
z

(z − 1
3 )2(z − 1

2 )

)
=

(
A

(z − 1
3 )2

+ B

(z − 1
3 )

+ C

(z − 1
2 )

)
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Now, A can be found to be −2 by substituting z = 1
3 in the expression z/(z − 1

2 ).
C can be found to be 18 by substituting z = 1

2 in the expression z/(z − 1
3 )2. One method

to determine the value of B is to substitute a value for z, which is not equal to any
of the poles. For example, by substituting z = 0 in the expression, the only unknown
B is evaluated to be −18. Another method is to subtract the term −2/(z − 1

3 )2 from
the expression z/(z − 1

3 )2(z − 1
2 ) to get 3/(z − 1

2 )(z − 1
3 ). Substituting z = 1

3 in the
expression 3/(z − 1

2 ), we get B = −18. Therefore,

X(z) =
(

− 2z

(z − 1
3 )2

− 18z

(z − 1
3 )

+ 18z

(z − 1
2 )

)

x(n) =
(

−2n

(
1

3

)n−1

− 18
(

1

3

)n

+ 18
(

1

2

)n
)

u(n)

The first four values of the sequence x(n) are

x(0) = 0 x(1) = 1 x(2) = 1.1667 x(3) = 0.9167 �

The next example is similar to Example 10.9 with the difference that a second-order
pole occurs at z = 0.

Example 10.10. Find the inverse z-transform of

X(z) = z2 + 1

z2(z − 1
3 )

Solution
X(z)

z
=

(
z2 + 1

z3(z − 1
3 )

)
=

(
A

z3
+ B

z2
+ C

z
+ D

(z − 1
3 )

)

X(z) =
(

−3

z2
+ −9

z
− 30 + 30z

(z − 1
3 )

)

x(n) = −30δ(n) − 9δ(n − 1) − 3δ(n − 2) + 30
(

1

3

)n

u(n)

The first four values of the sequence x(n) are

x(0) = 0 x(1) = 1 x(2) = 0.3333 x(3) = 1.1111 �
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10.4.1.2 The Long Division Method

By dividing the numerator polynomial by the denominator polynomial, we can
express a z-transform in a form that is similar to that of the defining series. Then, from
inspection, the sequence values can be found. For example, the inverse z-transform of
X(z) = z/(z − 0.8) is obtained dividing z by z − 0.8. The quotient is

X(z) = 1 + 0.8z−1 + 0.64z−2 + 0.512z−3 + · · ·

Comparing with the definition of the z-transform, the time-domain values are
x(0) = 1, x(1) = 0.8, x(2) = 0.64, x(3) = 0.512, and so on. These values can be
verified from x(n) = (0.8)nu(n), which is the closed-form solution of the inverse z-
transform (Example 10.3). This method is particularly useful when only the first few
values of the time-domain sequence are required.

10.5 Applications of the z-Transform

10.5.1 Transfer Function and System Response

The input–output relationship of a LTI system is given by the convolution operation
in the time-domain. Since convolution corresponds to multiplication in the frequency-
domain, we get

y(n) =
∞∑

m=0

x(m)h(n − m) ⇐⇒ Y (z) = X(z)H(z),

where x(n), h(n), and y(n) are, respectively the system input, impulse response, and
output, and X(z), H(z), and Y (z) are their respective transforms. As input is transferred
to output by multiplication with H(z), H(z) is called the transfer function of the system.
The transfer function, which is the transform of the impulse response, characterizes a
system in the frequency-domain just as the impulse response does in the time-domain.
For stable systems, the frequency response H(ejω) is obtained from H(z) by replacing
z by ejω.

We can as well apply any input, with nonzero spectral amplitude for all values of z

in the ROC, to the system, find the response, and the ratio of the z-transforms Y (z) of
the output and X(z) of the input is H(z) = Y (z)

X(z) . Consider the system governed by the
difference equation

y(n) = 2x(n) − 3y(n − 1)

The impulse response of the system is h(n) = 2(−3)n. The transform of
h(n) is H(z) = 2z/(z + 3). The output of this system, with initial condition
zero, to the input x(n) = 3u(n) is y(n) = 3

2 (1 − (−3)(n+1))u(n). The transform
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of y(n) is

Y (z) = 3

2

(
z

z − 1
+ 3z

z + 3

)

The transform of the input x(n) = 3u(n) is X(z) = 3z/(z − 1). Now,

H(z) = Y (z)

X(z)
=

3
2

(
z

z−1 + 3z
z+3

)
3z

z−1

= 2z

z + 3

which is the same as the transform of the impulse response.
Since the transform of a delayed signal is its transform multiplied by a factor, we

can just as well find the transfer function by taking the transform of the difference
equation characterizing a system. Consider the difference equation of a causal LTI
discrete system.

y(n) + aK−1y(n − 1) + aK−2y(n − 2) + · · · + a0y(n − K)

= bMx(n) + bM−1x(n − 1) + · · · + b0x(n − M)

Taking the z-transform of both sides, we get, assuming initial conditions are all
zero,

Y (z)(1 + aK−1z
−1 + aK−2z

−2 + · · · + a0z
−K)

= X(z)(bM + bM−1z
−1 + · · · + b0z

−M)

The transfer function H(z) is obtained as

H(z) = Y (z)

X(z)
= bM + bM−1z

−1 + · · · + b0z
−M

1 + (aK−1z−1 + aK−2z−2 + · · · + a0z−K)

=
∑M

l=0 bM−lz
−l

1 + ∑K
l=1 aK−lz−l

The transfer function written in positive powers of z,

H(z) = zK−M(bMzM + bM−1z
M−1 + · · · + b0)

zK + (aK−1zK−1 + aK−2zK−2 + · · · + a0)

is more convenient for manipulation.
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10.5.2 Characterization of a System by its Poles and Zeros

By using the pole-zero representation of the z-transform, the transfer function can be
written as

H(z) = B
zK−M(z − z1)(z − z2) · · · (z − zM)

(z − p1)(z − p2) · · · (z − pK)
= BzK−M

∏M
l=1(z − zl)∏K
l=1(z − pl)

where B is a constant. As the coefficients of the polynomials of H(z) are real for
practical systems, the zeros and poles are real-valued or they always occur as complex-
conjugate pairs.

The pole-zero plot of the transfer function H(z) of a system is a pictorial description
of its characteristics, such as speed of response, frequency selectivity, and stability.
Poles with magnitudes much smaller than one results in a fast-responding system, with
its transient response decaying rapidly. On the other hand, poles with magnitudes closer
to one result in a sluggish system. Complex-conjugate poles located inside the unit-
circle result in an oscillatory transient response that decays with time. The frequency
of oscillation is higher for poles located in the second and third quadrants of the unit-
circle. Complex-conjugate poles located on the unit-circle result in a steady oscillatory
transient response. Poles located on the positive real axis inside the unit circle result in
exponentially decaying transient response. Alternating positive and negative samples
is the transient response due to poles located on the negative real axis. The frequency
components of an input signal with frequencies close to a zero will be suppressed
while those close to a pole will be readily transmitted. Poles located symmetrically
about the positive real axis inside the unit-circle and close to the unit-circle in the
passband result in a lowpass system that more readily transmits low-frequency signals
than high-frequency signals. Zeros located symmetrically about the negative real axis
in the stopband further enhance the lowpass character of the frequency response. On
the other hand, poles located symmetrically about the negative real axis inside the unit-
circle and close to the unit-circle in the passband result in a highpass system that more
readily transmits high-frequency signals than low-frequency signals. For example, a
system with its pole-zero plot such as that shown in Figure 10.1 is a lowpass filter.
The stability of a system can also be determined from its pole-zero plot, as presented
later.

Example 10.11. Find the zero-input, zero-state, transient, steady-state, and complete
responses of the system governed by the difference equation

y(n) = 2x(n) − x(n − 1) + 3x(n − 2) + 9

20
y(n − 1) − 1

20
y(n − 2)

with the initial conditions y(−1) = 3 and y(−2) = 2 and, the input x(n) = u(n), the
unit-step function.
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Solution
The z-transforms of the terms of the difference equation are

x(n) ⇐⇒ z

z − 1
x(n − 1) ⇐⇒ 1

z − 1
x(n − 2) ⇐⇒ 1

z(z − 1)

y(n) ⇐⇒ Y (z) y(n − 1) ⇐⇒ y(−1) + z−1Y (z) = z−1Y (z) + 3

y(n − 2) ⇐⇒ y(−2) + z−1y(−1) + z−2Y (z) = z−2Y (z) + 3z−1 + 2

Substituting the corresponding transform for each term in the difference equation
and factoring, we get

Y (z)

z
= 2z2 − z + 3

(z − 1)(z − 1
5 )(z − 1

4 )
+ ( 5

4z − 3
20 )

(z − 1
5 )(z − 1

4 )

The first term on the right-hand side is H(z)X(z)/z and corresponds to the zero-
state response. The second term is due to the initial conditions and corresponds to the
zero-input response.

Expanding into partial fractions, we get

Y (z)

z
=

20
3

(z − 1)
+ 72

(z − 1
5 )

−
230

3

(z − 1
4 )

− 2

(z − 1
5 )

+
13
4

(z − 1
4 )

Taking the inverse z-transform, we get the complete response.

y(n) =

zero-state︷ ︸︸ ︷
20

3
+ 72

(
1

5

)n

− 230

3

(
1

4

)n

zero-input︷ ︸︸ ︷
−2

(
1

5

)n

+ 13

4

(
1

4

)n

, n = 0, 1, . . .

y(n) = 20

3
+ 70

(
1

5

)n

− 881

12

(
1

4

)n

, n = 0, 1, . . .

The first four values of y(n) are

y(0) = 3.2500 y(1) = 2.3125 y(2) = 4.8781 y(3) = 6.0795

The responses are shown in Figure 10.4. The zero-input response (a) is
−2( 1

5 )n + 13
4 ( 1

4 )n, the response due to initial conditions alone. The zero-state response
(b) is 20

3 + 72( 1
5 )n − 230

3 ( 1
4 )n, the response due to input alone. The transient response

(e) is 72( 1
5 )n − 230

3 ( 1
4 )n − 2( 1

5 )n + 13
4 ( 1

4 )n = 70( 1
5 )n − 881

12 ( 1
4 )n, the response that

decays with time. The steady-state response (f) is 20
3 u(n), the response after the tran-

sient response has died out completely. Either the sum of the zero-input and zero-state
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n

Transient
due to input

(d)

Figure 10.4 Various components of the response of the system in Example 10.11

components (a) and (b) or the sum of the transient and steady-state components (e) and
(f) of the response is the complete response (c) of the system. Either the difference of
the transient and zero-input components (e) and (a) or the difference of the zero-state
and steady-state components (b) and (f) of the response is the transient response (d)
of the system due to input alone. The initial and final values of y(n) are 3.25 and
20/3, respectively. These values can be verified by applying the initial and final value
properties to Y (z). We can also verify that the initial conditions at n = −1 and at
n = −2 are satisfied by the zero-input component of the response. �

The same set of coefficients is involved in both the difference equation and transfer
function models of a system. Therefore, either of the models can be used to deter-
mine the complete response of a system. In formulating the transfer function model,
we have assumed that the initial conditions are zero. However, it should be noted
that, with appropriately chosen input that yields the same output as the initial con-
ditions, we can use the transfer function concept, even for problems with nonzero
initial conditions. Consider the transform of the output obtained in the example in
presenting the right-shift property, Y (z) = 3

2z/(z − 1
2 ). This equation can be consid-

ered as Y (z) = H(z)X′(z) with H(z) = z/(z − 1
2 ) and X′(z) = 3

2 . X′(z) corresponds
to the time-domain input 3

2δ(n), which produces the same response that results from
the initial condition.

10.5.3 System Stability

The zero-input response of a system depends solely on the locations of its poles. A
system is considered stable if its zero-input response, due to finite initial conditions,
converges, marginally stable if its zero-input response tends to a constant value or
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oscillates with a constant amplitude, and unstable if its zero-input response diverges.
Commonly used marginally stable systems are oscillators, which produce a bounded
zero-input response. The response corresponding to each pole p of a system is of the
form rnejnθ, where the magnitude and phase of the pole are r and θ, respectively. If
r < 1, then rn tends to zero as n tends to ∞. If r > 1, then rn tends to ∞ as n tends to
∞. If r = 1, then rn = 1 for all n. However, the response tends to infinity, for poles
of order more than one lying on the unit-circle, as the expression for the response
includes a factor that is a function of n. Poles of any order lying inside the unit-circle
do not cause instability. Therefore, we conclude that, from the locations of the poles
of a system,

• All the poles, of any order, of a stable system must lie inside the unit-circle. That
is, the ROC of H(z) must include the unit-circle.

• Any pole lying outside the unit-circle or any pole of order more than one lying on
the unit-circle makes a system unstable.

• A system is marginally stable if it has no poles outside the unit-circle and has poles
of order one on the unit-circle.

Figure 10.5 shows pole locations of some transfer functions and the corresponding
impulse responses. If all the poles of a system lie inside the unit-circle, the bounded-
input bounded-output stability condition (Chapter 4) is satisfied. However, the con-
verse is not necessarily true, since the impulse response is an external description of a
system and may not include all its poles. The bounded-input bounded-output stability
condition is not satisfied by a marginally stable system.

10.5.4 Realization of Systems

To implement a system, a realization diagram has to be derived. Several realizations of
a system are possible, each realization differing in such characteristics as the amount
of arithmetic required, sensitivity to coefficient quantization, etc. The z-transform of
the output of a Nth order system is given as

Y (z) = X(z)H(z) = X(z)
N(z)

D(z)
= X(z)(bN + bN−1z

−1 + · · · + b0z
−N)

1 + aN−1z−1 + · · · + a0z−N

Let R(z) = X(z)
D(z) . Then, Y (z) = R(z)N(z). Now, the system structure can be realized

as a cascade of two systems. The first system, R(z) = X(z)/D(z), has only poles with
input x(n) and output r(n). The second system, Y (z) = R(z)N(z), has only zeros with
input r(n) and output y(n), where

r(n) = x(n) −
N∑

k=1

aN−kr(n − k) and y(n) =
N∑

k=0

bN−kr(n − k)
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Figure 10.5 The poles of some transfer functions H(z) and the corresponding impulse responses h(n):
(a)H(z) = (z/

√
2)/(z2 − √

2z + 1) = 0.5jz/[z − ((1/
√

2) − (j/
√

2))]−0.5jz/[z − ((1/
√

2) + (j/
√

2))]
and H(z) = z/(z − 1); (b) h(n) = sin( π

4 n)u(n); (c) h(n) = u(n); (d) H(z) = z/(z2 − 2z + 2) =
0.5jz/[z − (1 − j1)] − 0.5jz/[z − (1 + j1)]; and H(z) = z/(z + 1); (e) h(n) = (

√
2)n sin( π

4 n)u(n);
(f) h(n) = (−1)nu(n); (g) H(z) = z(z − 0.5)/(z2 − z + 0.5) = 0.5z/[z − (0.5 − 0.5j)]+0.5z/[z − (0.5
+0.5j)];H(z) = z/(z − 1)2; (h)h(n) = ( 1√

2
)n cos( π

4 n)u(n) and (i)h(n) = nu(n). ; (j)H(z) = z/(z − 0.5)
and H(z) = z/(z − 1.1); (k) h(n) = (0.5)nu(n); (l) h(n) = (1.1)nu(n); (m) H(z) = z/(z + 0.4), and
H(z) = z/z + 1.1; (n) h(n) = (−0.4)nu(n) and (o) h(n) = (−1.1)nu(n).
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Figure 10.6 Realization of a second-order system

Both the systems can share a set of delay units as the term r(n − k) is common. The
realization of a second-order system is shown in Figure 10.6. This realization is known
as the canonical form I realization, implying the use of the minimum number of delay
elements. A transposed form of a system structure is obtained by: (i) reversing the
directions of all the signal flow paths; (ii) replacing the junction points by adders and
vice versa; and (iii) interchanging the input and output points. The transposed form
of the system in Figure 10.6 is shown in Figure 10.7. This realization is known as the
canonical form II realization. This form is derived as follows.

H(z) = Y (z)

X(z)
= b2z

2 + b1z + b0

z2 + a1z + a0
= b2 + b1z

−1 + b0z
−2

1 + a1z−1 + a0z−2

Y (z)(1 + a1z
−1 + a0z

−2) = X(z)(b2 + b1z
−1 + b0z

−2)

Figure 10.7 Transposed form of the system structure shown in Figure 10.6
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Y (z) = b2X(z) + z−1(b1X(z) − a1Y (z)) + z−2(b0X(z) − a0Y (z))

= b2X(z) + z−1{(b1X(z) − a1Y (z)) + z−1(b0X(z) − a0Y (z))}
= b2X(z) + z−1{(b1X(z) − a1Y (z)) + z−1r(2)(z)}
= b2X(z) + z−1r(1)(z)

Therefore, the following difference equations characterize this system structure.

y(n) = b2x(n) + r(1)(n − 1)

r(1)(n) = b1x(n) − a1y(n) + r(2)(n − 1)

r(2)(n) = b0x(n) − a0y(n)

These realizations have the advantage of using the coefficients of the transfer func-
tion directly.

While this type of realization is applicable to system of any order, it becomes more
sensitive to coefficient quantization due to the tendency of the poles and zeros to
occur in clusters. Therefore, usually, a higher-order system is decomposed into first-
and second-order sections connected in cascade or parallel. In the cascade form, the
transfer function is decomposed into a product of first- and second-order transfer
functions.

H(z) = H1(z)H2(z) · · · Hm(z)

In the parallel form, the transfer function is decomposed into a sum of first- and
second-order transfer functions.

H(z) = g + H1(z) + H2(z)+, · · · , +Hm(z),

where g is a constant. Each section is independent and clustering of poles and zeros is
avoided as the maximum number of poles and zeros in each section is limited to two.
Each second-order section is realized as shown in Figure 10.6 or 10.7.

10.5.5 Feedback Systems

In feedback systems, a fraction of the output signal is fed back and subtracted from
the input signal to form the effective input signal. By using negative feedback, we can
change the speed of response, reduce sensitivity, improve stability, and increase the
range of operation of a system at the cost of reducing the open-loop gain. Consider the
feedback system shown in Figure 10.8. The feedback signal R(z) can be expressed as

R(z) = F (z)Y (z)
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Figure 10.8 Two systems connected in a feedback configuration

where F (z) is the feedback transfer function of the system and Y (z) is the output. Now,
the error signal E(z) is

E(z) = X(z) − R(z) = X(z) − F (z)Y (z)

The output Y (z) is expressed as

Y (z) = G(z)E(z) = G(z)(X(z) − F (z)Y (z)),

where G(z) is the forward transfer function of the system. Therefore, the transfer
function of the feedback system is given as

Y (z)

X(z)
= G(z)

1 + G(z)F (z)

If G(z) is very large, the transfer function of the feedback system approximates to
the inverse of the feedback transfer function of the system.

Y (z)

X(z)

 1

F (z)

Consider the system with the transfer function

G(z) = z

z − 3
2

G(z) has a pole at z = 3
2 and, therefore, the system is unstable. We can make a stable

feedback system, using this system in the forward path and another suitable system in
the feedback path. Let the transfer function of the system in the feedback path be

F (z) = 1

z − 1
5
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Then, the transfer function of the feedback system is

G(z)

1 + G(z)F (z)
=

z

z− 3
2

1 + z

z− 3
2

1
z− 1

5

= z(z − 1
5 )

z2 − 7
10z + 3

10

Now, both the poles of this system lie inside the unit-circle and, therefore, the system
is stable.

10.6 Summary
• In this chapter, the theory of the one-sided z-transform, its properties and some

applications have been described. As practical systems are causal, the one-sided
z-transform is mostly used in practice.

• The z-transform is a generalized version of Fourier analysis. The basis waveforms
consist of sinusoids with varying amplitudes or exponentials with complex ex-
ponents. The larger set of basis waveforms makes this transform suitable for the
analysis of a larger class of signals and systems.

• The z-transform corresponding to a one-dimensional sequence is two-dimensional
(a surface), since it is a function of two variables (the real and imaginary parts of the
complex frequency). In the frequency-domain, a sequence is uniquely specified by
its z-transform along with its ROC. The spectral values along any simply connected
closed contour, encircling the origin, in the ROC can be used to reconstruct the
corresponding time-domain sequence.

• The inverse z-transform is defined by a contour integral. However, for most practical
purposes, the partial fraction method along with a short list of z-transform pairs is
adequate to find the inverse z-transform.

• The z-transform is essential for the design, and transient and stability analysis of
discrete LTI systems. The z-transform of the impulse response of a system, the
transfer function, is a frequency-domain model of the system.

Further Reading

1. Sundararajan, D., Digital Signal Processing, Theory and Practice, World Scientific, Singapore, 2003.

2. Lathi, B. P., Linear Systems and Signals, Oxford University Press, New York, 2004.

Exercises

10.1 The nonzero values of a sequence x(n) are specified as {x(−2) = 1, x(0) =
2, x(3) = −4}. Find the unilateral z-transform of
10.1.1 x(n − 3).
10.1.2 x(n − 1).

∗10.1.3 x(n).
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10.1.4 x(n + 1).
10.1.5 x(n + 2).
10.1.6 x(n + 4).

10.2 Find the nonzero values of the inverse z-transform of
10.2.1 X(z) = 2 − 3z−2 + z−4.
10.2.2 X(z) = z−2 − 2z−5.
10.2.3 X(z) = −2 + 3z−1 − z−10.

∗10.2.4 X(z) = 1 + z−1 − z−2.
10.2.5 X(z) = z−2 + 2z−3.

10.3 Using the z-transform of u(n) and nu(n), and the shift property, find the
z-transform of x(n).
10.3.1 x(n) = u(n − 3) − u(n − 5).
10.3.2 x(n) = nu(n − 3).
10.3.3 x(n) = n, 0 ≤ n ≤ 4 and x(n) = 0 otherwise.

∗10.3.4 x(n) = (n − 2)u(n).
10.4 The nonzero values of two sequences x(n) and h(n) are given. Using the

z-transform, find the convolution of the sequences y(n) = x(n) ∗ h(n).
∗10.4.1 {x(0) = 2, x(2) = 3, x(4) = −2} and {h(1) = 2, h(3) = −4}.
10.4.2 {x(1) = 3, x(4) = −4} and {h(0) = −2, h(3) = 3}.
10.4.3 {x(2) = 3, x(4) = −2} and {h(1) = 4, h(2) = 1}.
10.4.4 {x(0) = −4, x(3) = −1} and {h(0) = 1, h(2) = −2}.
10.4.5 {x(2) = 3, x(4) = −1} and {h(1) = 2, h(3) = 2}.

10.5 Using the multiplication by n property, find the z-transform of x(n).
10.5.1 x(n) = nu(n).

∗10.5.2 x(n) = n2nu(n).
10.5.3 x(n) = nu(n − 2).

10.6 Using the multiplication by an property, find the z-transform of x(n).
10.6.1 x(n) = 3nu(n).

∗10.6.2 x(n) = n4nu(n).
10.6.3 x(n) = 2n cos(n)u(n).

10.7 Using the summation property, find the sum y(n) = ∑n
m=0 x(m).

10.7.1 x(n) = cos( 2π
4 n)u(n).

∗10.7.2 x(n) = sin( 2π
4 n)u(n).

10.7.3 x(n) = e(j 2π
4 n)u(n).

10.7.4 x(n) = u(n).
10.7.5 x(n) = (n)u(n).

10.8 Find the initial and final values of the sequence x(n) corresponding to the
transform X(z), using the initial and final value properties.
10.8.1 X(z) = z(3z+2)

(z− 1
2 )(z+ 1

4 )
.

10.8.2 X(z) = 3z
(z−2)(z+3) .

∗10.8.3 X(z) = 2z(z+3)
(z− 1

2 )(z−1)
.
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10.8.4 X(z) = z
(z−1)2 .

10.8.5 X(z) = 2z2

(z−1)(z+2) .
10.9 Given the sample values of the first period, find the z-transform of the semiperi-

odic function x(n)u(n).
10.9.1 {1, 0, −1, 0}.
10.9.2 {0, 1, 0, −1}.
10.9.3 {1, j, −1, −j}.

∗10.9.4 {1, 1, −1, −1}.
10.9.5 {0, 1, 2, 1}.

10.10 Find the inverse z-transform of X(z) using the inverse DTFT.
10.10.1 X(z) = z

z−5 .
10.10.2 X(z) = z

z−0.8 .
10.10.3 X(z) = z

(z−1)2 .
10.11 Find the inverse z-transform of

X(z) = z(2z + 3)

(z2 − 2
15z − 1

15 )

List the first four values of x(n).
10.12 Find the inverse z-transform of

X(z) = (3z − 1)

(z2 − 11
12z + 1

6 )

List the first four values of x(n).
∗10.13 Find the inverse z-transform of

X(z) = z(z + 2)

(z2 + 2z + 2)

List the first four values of x(n).
10.14 Find the inverse z-transform of

X(z) = 2z2 + 1

(z2 − z − 6)

List the first four values of x(n).
10.15 Find the inverse z-transform of

X(z) = z

(z3 + 3
2z2 − 1

2 )

List the first four values of x(n).
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10.16 Find the inverse z-transform of

X(z) = z2 − 1

z2(z + 1
3 )

List the first four values of x(n).
10.17 Find the first four values of the inverse z-transform of X(z) by the long division

method.
10.17.1 X(z) = 2z2+2z−3

z2−z+1 .
10.17.2 X(z) = z

z2+2z−2 .

10.17.3 X(z) = 3z2−z+2
2z2+z−3 .

10.18 Using the z-transform, derive the closed-form expression of the impulse re-
sponse h(n) of the system governed by the difference equation

y(n) = x(n) + 2x(n − 1) + x(n − 2) + 3y(n − 1) − 2y(n − 2)

with input x(n) and output y(n).
List the first four values of h(n).

10.19 Given the difference equation of a system and the input signal x(n), find the
steady-state response of the system.
10.19.1 y(n) = x(n) + 0.8y(n − 1) and x(n) = 2ej( 2π

4 n+ π
6 )u(n).

∗10.19.2 y(n) = x(n) + 0.7y(n − 1) and x(n) = 3 cos( 2π
4 n − π

3 )u(n).
10.19.3 y(n) = x(n) + 0.5y(n − 1) and x(n) = 4 sin( 2π

4 n + π
4 )u(n).

10.20 Using the z-transform, derive the closed-form expression of the complete
response of the system governed by the difference equation

y(n) = 2x(n) − x(n − 1) + x(n − 2) + 7

6
y(n − 1) − 1

3
y(n − 2)

with the initial conditions y(−1) = 2 and y(−2) = −3 and, the input x(n) =
u(n), the unit-step function.
List the first four values of y(n).
Deduce the expressions for the zero-input, zero-state, transient, and steady-
state responses of the system.

∗10.21 Using the z-transform, derive the closed-form expression of the complete
response of the system governed by the difference equation

y(n) = x(n) + 2x(n − 1) − x(n − 2) + 5

4
y(n − 1) − 3

8
y(n − 2)

with the initial conditions y(−1) = 2 and y(−2) = 1 and, the input x(n) =
(−1)nu(n).
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List the first four values of y(n).
Deduce the expressions for the zero-input, zero-state, transient, and steady-
state responses of the system.

10.22 Using the z-transform, derive the closed-form expression of the complete
response of the system governed by the difference equation

y(n) = 3x(n) − 3x(n − 1) + x(n − 2) + 7

12
y(n − 1) − 1

12
y(n − 2)

with the initial conditions y(−1) = 1 and y(−2) = 2 and, the input x(n) =
nu(n), the unit-ramp function.
List the first four values of y(n).
Deduce the expressions for the zero-input, zero-state, transient, and steady-
state responses of the system.

10.23 Using the z-transform, derive the closed-form expression of the complete
response of the system governed by the difference equation

y(n) = x(n) − 3x(n − 1) + 2x(n − 2) + y(n − 1) − 2

9
y(n − 2)

with the initial conditions y(−1) = 3 and y(−2) = 2 and, the input x(n) =
( 1

4 )nu(n).
List the first four values of y(n).
Deduce the expressions for the zero-input, zero-state, transient, and steady-
state responses of the system.

10.24 Using the z-transform, derive the closed-form expression of the complete
response of the system governed by the difference equation

y(n) = x(n) + x(n − 1) − x(n − 2) + 3

4
y(n − 1) − 1

8
y(n − 2)

with the initial conditions y(−1) = 1 and y(−2) = 2 and, the input x(n) =
2 cos( 2π

4 n − π
6 )u(n).

List the first four values of y(n).
Deduce the expressions for the zero-input, zero-state, transient, and steady-
state responses of the system.

10.25 Using the z-transform, derive the closed-form expression of the impulse re-
sponse of the cascade system consisting of systems governed by the given
difference equations with input x(n) and output y(n).
List the first four values of the impulse response of the cascade system.

∗10.25.1 y(n) = 2x(n) − x(n − 1) + 1
4y(n − 1) and

y(n) = 3x(n) + x(n − 1) − 1
3y(n − 1).
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10.25.2 y(n) = x(n) + x(n − 1) − 2
3y(n − 1) and

y(n) = 2x(n) − x(n − 1) − 1
5y(n − 1).

10.25.3 y(n) = x(n) + 2x(n − 1) + 1
3y(n − 1) and

y(n) = 3x(n) + 2x(n − 1) + 1
2y(n − 1).

10.26 Using the z-transform, derive the closed-form expression of the impulse re-
sponse of the combined system, connected in parallel, consisting of systems
governed by the given difference equations with input x(n) and output y(n).
List the first four values of the impulse response of the parallel system.
10.26.1 y(n) = 2x(n) − x(n − 1) + 1

4y(n − 1) and
y(n) = 3x(n) + x(n − 1) − 1

3y(n − 1).
10.26.2 y(n) = x(n) + x(n − 1) − 2

3y(n − 1) and
y(n) = 2x(n) − x(n − 1) − 1

5y(n − 1).
∗10.26.3 y(n) = x(n) + 2x(n − 1) + 1

3y(n − 1) and
y(n) = 3x(n) + 2x(n − 1) + 1

2y(n − 1).



11
The Laplace Transform

The generalization of the Fourier transform for continuous signals, by including sinu-
soids with exponentially varying amplitudes in the set of basis signals, is called the
Laplace transform. This generalization makes the transform analysis applicable to a
larger class of signals and systems. In Section 11.1, we develop the Laplace transform
starting from the definition of the Fourier transform. In Section 11.2, the properties of
the Laplace transform are described. In Section 11.3, the inverse Laplace transform is
derived. Typical applications of the Laplace transform are presented in Section 11.4.

11.1 The Laplace Transform

We assume, in this chapter, that all the signals are causal, that is x(t) = 0, t < 0, unless
otherwise specified. This leads to the one-sided or unilateral version of the Laplace
transform, which is mostly used for practical system analysis. If a signal x(t)u(t)
is not Fourier transformable, then its exponentially weighted version, x(t)e−σt , may
be Fourier transformable for the positive real quantity σ > 0. If x(t)u(t) is Fourier
transformable, x(t)e−σt may still be transformable for some values of σ < 0. The
Fourier transform of this signal is

∫ ∞

0
(x(t)e−σt)e−jωtdt

By combining the exponential factors, we get,

X(σ + jω) =
∫ ∞

0
x(t)e−(σ+jω)tdt (11.1)

This equation can be interpreted as the generalized Fourier transform of the signal
x(t) using exponentials with complex exponents or sinusoids with varying amplitudes

A Practical Approach to Signals and Systems D. Sundararajan
© 2008 John Wiley & Sons (Asia) Pte Ltd
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as the basis signals. Therefore, a signal may be decomposed in terms of constant-
amplitude sinusoids or exponentially decaying sinusoids or exponentially growing
sinusoids, or an infinite combination of these types of sinusoids. By substituting s =
σ + jω, we get the defining equation of the Laplace transform of x(t) as

X(s) =
∫ ∞

0−
x(t)e−stdt

Note that the lower limit is assumed, in this book, to be 0−, where t = 0− is the
instant immediately before t = 0. This implies that a jump discontinuity or an impulse
component of the function x(t) at t = 0 is included in the integral. In addition, this
lower limit enables the use of the initial conditions at t = 0− directly. In practical
applications, we are more likely to know the initial conditions before the input signal
is applied, rather than after.

While X(jω) is the FT of x(t), X(s) = X(σ + jω) is the FT of x(t)e−σt for all values
of σ for which

∫ ∞
0− |x(t)e−σt|dt < ∞. If the value zero is included in these values of

σ, then X(jω) can be obtained from X(s) by the substitution s = jω. The Laplace
transform of x(t), X(s), exists for Re(s) > σ0 if |x(t)| ≤ Meσ0t for some constants M

and σ0. For example, the signal et2
has no Laplace transform. In essence, the Laplace

transform of a signal, whether it is converging or not, is the FT of all its versions,
obtained by multiplying it by a real exponential of the form e−σt , so that the modified
signal is guaranteed to converge.

The advantages of the Laplace transform include: the pictorial description of the
behavior of the system obtained by the use of the complex frequency; the ability to
analyze unstable systems or systems with exponentially growing inputs; automatic
inclusion of the initial conditions of the system in finding the output; and easier
manipulation of the expressions involving the variable s rather than jω.

Example 11.1. Find the Laplace transform of the unit-impulse signal, δ(t).

Solution
Using the Laplace transform definition, we get

X(s) =
∫ ∞

0−
δ(t)e−stdt = 1 for all s and δ(t) ⇐⇒ 1, for all s

This transform pair can also be obtained by applying a limit process to any function
that degenerates into an impulse and its transform. �

The exponential signal, e−atu(t), is fundamental to the study of linear continuous
systems, as it is more convenient to express the natural response of systems in that
form.



The Laplace Transform 261

Example 11.2. Find the Laplace transform of the real exponential signal, x(t) =
e−atu(t). Deduce the Laplace transform of the unit step signal, x(t) = u(t).

Solution
Using the Laplace transform definition, we get

X(s) =
∫ ∞

0−
e−atu(t)e−stdt =

∫ ∞

0−
e−ate−stdt

=
∫ ∞

0−
e−(s+a)tdt = −e−(s+a)t

s + a

∣∣∣∣∣
∞

0−
= 1

s + a
−e−(s+a)t

s + a

∣∣∣∣∣
t=∞

For the integral to converge, limt→∞ e−(s+a)t must be equal to zero. This implies that
the real part of (s + a) is greater than zero and, hence, the convergence condition is
Re(s) > −a. This condition describes a region in the s-plane (a complex plane used for
displaying the Laplace transform) that lies to the right of the vertical line characterized
by the equation Re(s) = −a. Note that the Fourier transform of e−atu(t) does not exist
for negative values of a, whereas the Laplace transform exists for all values of a as
long as Re(s) > −a. Therefore, we get the Laplace transform pair

e−atu(t) ⇐⇒ 1

s + a
Re(s) > −a

This transform pair remains the same for complex-valued a with the convergence
condition, Re(s) > Re(−a).

With a = 0, we get the transform pair

u(t) ⇐⇒ 1

s
Re(s) > 0 �

The region, consisting of the set of all values of s in the s-plane for which the defining
integral of the Laplace transform converges, is called the region of convergence (ROC).
For the signal in Example 11.2, the region to the right of the vertical line at Re(s) =
Re(−a) is the ROC.

The frequency content of a signal is usually displayed by the locations of zeros
and poles, and the magnitude of its Laplace transform. Figure 11.1(a) shows the
pole-zero plot and Figure 11.1(b) shows the magnitude of the Laplace transform
X(s) = 1/(s + 2) of the signal e−2tu(t). When s = −2, |X(s)| = ∞. This point marked
by the cross in Figure 11.1(a) is called a pole of X(s) (the peak in Figure 11.1b). Except
for a constant factor, the Laplace transform of a signal can be reconstructed from its
pole-zero plot. For all values of s in the ROC (the region to the right of the dotted vertical
line at Re(s) = −2 shown in Figure 11.1a), X(s) exists and is a valid representation
of the signal. In general, the ROC of a Laplace transform is the region in the s plane
that is to the right of the vertical line passing through the rightmost pole location. If
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Figure 11.1 (a) The pole-zero plot of the Laplace transform, 1/(s + 2), of the signal, e−2tu(t); (b) the
magnitude of the Laplace transform

the ROC includes the imaginary axis, Re(s) = 0, in the s plane (as in Figure 11.1a),
then the FT can be obtained from the Laplace transform by replacing s with jω.

Example 11.3. Find the Laplace transform of the signal ejω0tu(t). Deduce the Laplace
transform of cos(ω0t)u(t).

Solution
Using the transform of e−atu(t) with a = −jω0, we get

ejω0tu(t) ⇐⇒ 1

s − jω0
Re(s − jω0) = Re(s) > 0

Using the fact that 2 cos(ω0t) = (ejω0t + e−jω0t), we get

2X(s) = 1

s − jω0
+ 1

s + jω0
Re(s) > 0

cos(ω0t)u(t) ⇐⇒ s

s2 + ω2
0

Re(s) > 0 �

Figure 11.2(a) shows the pole-zero plot and Figure 11.2(b) shows the magnitude
of the Laplace transform, s/[s2 + (π

4 )2] of the signal cos(π
4 t)u(t). When s = ±j π

4 ,
|X(s)| = ∞. These points marked by the symbol × in Figure 11.2(a) are the poles of
X(s) (the peaks in Figure 11.2(b). When s = 0, X(s) = 0. This point marked by the
symbol o in Figure 11.2(a) is the zero of X(s) (the valley in Figure 11.2(b).

11.1.1 Relationship Between the Laplace Transform and the z-Transform

A relationship between the FT of a sampled signal and the DTFT of the corresponding
discrete signal was derived in Chapter 9. Now, we derive a similar relationship between
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the Laplace transform and the z-transform. The sampled version of a signal x(t)u(t)
is xs(t) = ∑∞

n=0 x(n)δ(t − n), with a sampling interval of one second. As the Laplace
transform of δ(t − n) is e−sn and due to the linearity property of the Laplace transform,
the Laplace transform of the sampled signal xs(t) is given by

Xs(s) =
∞∑

n=0

x(n)e−sn

With z = es, this equation becomes

Xs(s) =
∞∑

n=0

x(n)z−n

The right-hand side of this equation is the z-transform of x(n).
For example, let x(t) = e−2tu(t). Then, the corresponding discrete signal is x(n) =

e−2nu(n) with its z-transform z/(z − e−2) Now, the Laplace transform of the sampled
version of x(t), xs(t) = ∑∞

n=0 e−2nδ(t − n), is es/(es − e−2), which is obtained from
z/(z − e−2) by the substitution z = es.

11.2 Properties of the Laplace Transform

Properties present the frequency-domain effect of time-domain characteristics and
operations on signals and vice versa. In addition, they are used to find new transform
pairs more easily.

11.2.1 Linearity

The Laplace transform of a linear combination of signals is the same linear combina-
tion of their individual Laplace transforms. If x(t) ⇐⇒ X(s) and y(t) ⇐⇒ Y (s), then
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ax(t) + by(t) ⇐⇒ aX(s) + bY (s), where a and b are arbitrary constants. This prop-
erty is due to the linearity of the defining integral of the Laplace transform. We use this
property often to decompose a time-domain function in finding its Laplace transform
(as in Example 11.3) and to decompose a transform in order to find its inverse.

11.2.2 Time Shifting

If x(t)u(t) ⇐⇒ X(s), then

x(t − t0)u(t − t0) t0 ≥ 0 ⇐⇒ e−st0X(s)

Now, e−st0 = e−(σ+jω)t0 = e−σt0e−jωt0 . The term e−jωt0 is the linear shift of the phase
of sinusoids, as in the case of the Fourier analysis. Due to the fact that the basis
functions are sinusoids with varying amplitudes, we need another factor e−σt0 to set
the amplitude of the sinusoids appropriately so that the reconstructed waveform is the
exact time-shifted version of x(t).

Consider the waveform x(t)u(t) = e−0.1tu(t) and its shifted version e−0.1(t−8)

u(t − 8). The Laplace transforms of the two functions are, respectively, 1/(s + 0.1)
and e−8s/(s + 0.1).

This property holds only for causal signals and for right shift only. Remember
that the transform of the shifted signal is expressed in terms of that of the original
signal, which is assumed to be zero for t < 0. To find the transform of signals such as
x(t − t0)u(t) and x(t)u(t − t0), express the signal so that the arguments of the signal
and the unit-step signal are the same and then apply the property. Of course, the
transform can also be computed using the defining integral.

11.2.3 Frequency Shifting

If x(t)u(t) ⇐⇒ X(s), then

es0tx(t)u(t) ⇐⇒ X(s − s0)

Multiplying the signal x(t) by the exponential es0t amounts to changing the complex
frequency of its spectral components by s0. Therefore, the spectrum X(s) is shifted in
the s-plane by the amount s0.

Consider finding the transform of the signal e2tu(t). This signal can be considered
as the unit-step, u(t), multiplied by the exponential with s0 = 2. Therefore, according
to this property, the transform of e2tu(t) is the transform of u(t), which is 1

s
, with the

substitution s = s − 2, that is 1/(s − 2).
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11.2.4 Time-differentiation

The time-differentiation property is used to express the transform of the derivative,
dx(t)/dt, of a signal x(t) in terms of its transform X(s). If x(t) ⇐⇒ X(s), then

dx(t)

dt
⇐⇒ sX(s) − x(0−)

As the signal, in the frequency-domain, is expressed in terms of exponentials est and
the derivative of the exponential is sest , the differentiation of a signal in time-domain
corresponds to multiplication of its transform by the frequency variable s, in addition
to a constant term due to the initial value of the signal at t = 0−. The point is that
two signals x(t) and x(t)u(t) have the same unilateral Laplace transform. However,
the Laplace transforms of their derivatives will be different if x(t) and x(t)u(t) have
different values of discontinuity at t = 0. The derivative of x(t) with a different value
of x(0−) differs from that of x(t)u(t), only at t = 0. sX(s) is the derivative of x(t)u(t),
that is the derivative of x(t) with x(0−) = 0.

A signal x(t), with step discontinuities, for example, at t = 0 of height (x(0+) −
x(0−)) and at t = t1 > 0 of height (x(t+1 ) − x(t−1 )) can be expressed as

x(t) = xc(t) + (x(0+) − x(0−))u(t) + (x(t+1 ) − x(t−1 ))u(t − t1),

where xc(t) is x(t) with the discontinuities removed and x(t+1 ) and x(t−1 ) are, respec-
tively, the right- and left-hand limits of x(t) at t = t1. The derivative of x(t) is given
by generalized function theory as

dx(t)

dt
= dxc(t)

dt
+ (x(0+) − x(0−))δ(t) + (x(t+1 ) − x(t−1 ))δ(t − t1),

where dxc(t)/dt is the ordinary derivative of xc(t) at all t except at t = 0 and t = t1.
The Laplace transform of dx(t)/dt is given by

sXc(s) + (x(0+) − x(0−)) + (x(t+1 ) − x(t−1 ))e−st1 = sX(s) − x(0−)

Consider the signal, shown in Figure 3.8(a),

x(t) = u(−t − 1) + e−t(u(t + 1) − u(t − 1)) + 2t(u(t − 1) − u(t − 2))

+ cos
(

π

2
t

)
u(t − 2)

= xc(t) + 1.7183u(t + 1) + 1.6321u(t − 1) − 5u(t − 2),
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and its derivative

dx(t)

dt
= 0 − e−t(u(t + 1) − u(t − 1)) + 2(u(t − 1) − u(t − 2))

−
(

π

2

)
sin

(
π

2
t

)
u(t − 2)

+ 1.7183δ(t + 1) + 1.6321δ(t − 1) − 5δ(t − 2),

shown in Figure 3.8(b). The transform of x(t) is

X(s) = 1

s + 1
− e−1e−s

s + 1
+ 2e−s

s2
+ 2e−s

s
− 2e−2s

s2
− 4e−2s

s
− se−2s

s2 + (
π
2

)2

Remember that the value of x(t) for t < 0 is ignored in computing the unilat-
eral Laplace transform. The term cos(π

2 t)u(t − 2) can be rewritten as − cos(π
2 (t − 2))

u(t − 2) and then the time-shifting theorem can be applied to find its transform. The
initial value is x(0−) = 1. Now,

sX(s) − x(0−) = s

s + 1
− se−1e−s

s + 1
+ 2e−s

s
+ 2e−s − 2e−2s

s
− 4e−2s − s2e−2s

s2 + (
π
2

)2 − 1

The transform of dx(t)/dt is

− 1

s + 1
+ e−1e−s

s + 1
+ 2e−s

s
− 2e−2s

s
+

(
π
2

)2
e−2s

s2 + (
π
2

)2 + (2 − e−1)e−s − 5e−2s

= sX(s) − x(0−)

This property can be extended, by repeated application, to find the transform of
higher-order derivatives. For example,

d

dt

(
dx(t)

dt

)
= d2x(t)

dt2
⇐⇒

s(sX(s) − x(0−)) − dx(t)

dt
|t=0− = s2X(s) − sx(0−) − dx(t)

dt
|t=0−

One common application of this property is in the modeling of system components
such as an inductor. The relationship between the current i(t) through an inductor
of value L henries and the voltage v(t) across it is v(t) = L(di(t)/dt). Assuming the
initial value of current in the inductor is i(0−), using this property, we get the Laplace
transform of the voltage across the inductor as V (s) = L(sI(s) − i(0−)).
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The application of time-differentiation and linearity properties reduces a differen-
tial equation to an algebraic equation, which can be easily solved. Consider solving
the differential equation dy(t)/dt + 1

2y(t) = 0, with the initial condition y(0−) = 3.

The solution using time-domain method (Chapter 5) is y(t) = 3e− 1
2 tu(t). Taking the

transform of the differential equation, we get sY (s) − 3 + 1
2Y (s) = 0. Solving for Y (s),

Y (s) = 3/(s + 1
2 ). Finding the inverse transform, we get the same solution.

11.2.5 Integration

If x(t) ⇐⇒ X(s), then

∫ t

0−
x(τ) dτ ⇐⇒ 1

s
X(s)

As the signal, in the frequency-domain, is expressed in terms of exponentials est

and the integral of the exponential is est/s, the integration of a signal in time-domain
corresponds to a division of its transform by the frequency variable s. From another
point of view, the product (1/s)X(s) corresponds to the convolution of x(t) and u(t)
in the time-domain, which, of course, is equivalent to the integral of x(t) from 0 to
t. For example, the transform of the unit-step signal, which is the integral of the unit
impulse function with X(s) = 1, is 1/s. Similarly, tu(t) ⇐⇒ 1/s2.

Consider the function sin(t)u(t) with its transform 1/(s2 + 1). Using this property,

∫ t

0−
sin(τ)dτ ⇐⇒ 1

s(s2 + 1)

Finding the inverse transform, we get (1 − cos(t))u(t), which can be verified to be
the time-domain integral of the sine function.

As the definite integral
∫ 0−
−∞ x(τ) dτ is a constant,

∫ t

−∞
x(τ) dτ =

∫ 0−

−∞
x(τ) dτ +

∫ t

0−
x(τ) dτ ⇐⇒ 1

s

∫ 0−

−∞
x(τ) dτ + 1

s
X(s)

One common application of this property is in the modeling of system components
such as a capacitor. The relationship between the current i(t) through a capacitor
of value C farads and the voltage v(t) across it is v(t) = 1

C

∫ t
0− i(τ)dτ + v(0−), where

v(0−) is the initial voltage across the capacitor. Using this property, we get the Laplace
transform of the voltage across the capacitor as

V (s) = I(s)

sC
+ v(0−)

s
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11.2.6 Time Scaling

If x(t)u(t) ⇐⇒ X(s), then

x(at)u(at) ⇐⇒ 1

a
X

(
s

a

)
a > 0

The Laplace transform of x(at)u(at), from the definition, is

∫ ∞

0−
x(at)u(at)e−stdt

Substituting at = τ, we get t = τ/a and dt = dτ/a. Note that u(at) = u(t), a > 0.
With these changes, the transform becomes

1

a

∫ ∞

0−
x(τ)e− s

a
τdτ = 1

a
X

(
s

a

)

Compression (expansion) of a signal in the time-domain, by changing t to at, results
in the expansion (compression) of its spectrum with the change s to s/a, in addition
to scaling by 1/a (to take into account the change in energy).

Consider the transform pair

e−2t sin(t)u(t) ⇐⇒ 1

s2 + 4s + 5
= 1

(s + 2 − j)(s + 2 + j)

The two poles are located at −2 + j1 and −2 − j1. With a = 2, we get

e−4t sin(2t)u(2t) ⇐⇒ 1

2

1(
s
2

)2 + 4
(

s
2

) + 5
= 2

(s + 4 − j2)(s + 4 + j2)

The two poles are located at −4 + j2 and −4 − j2.

11.2.7 Convolution in Time

If x(t)u(t) ⇐⇒ X(s) and h(t)u(t) ⇐⇒ H(s), then

y(t) = x(t)u(t) ∗ h(t)u(t) =
∫ ∞

0
x(τ)h(t − τ)dτ ⇐⇒ X(s)H(s)

The FT of x(t)e−σt is the Laplace transform X(s) of x(t). The convolution of x(t)e−σt

and h(t)e−σt corresponds to X(s)H(s) in the frequency-domain. The inverse FT of
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X(s)H(s), therefore, is the convolution of x(t)e−σt and h(t)e−σt given by

∫ ∞

0
x(τ)e−στh(t − τ)e−σ(t−τ)dτ = e−σt

∫ ∞

0
x(τ)h(t − τ)dτ = e−σt(x(t) ∗ h(t))

As finding the inverse Laplace transform is the same as finding the inverse FT in
addition to multiplying the signal by eσt , as will be seen later, we get the convolution
of x(t) and h(t) by finding the inverse Laplace transform of X(s)H(s).

Consider the convolution of e2tu(t) and e−2tu(t). The inverse of the product of their
transforms,

1

(s − 2)(s + 2)
= 1

4

(
1

(s − 2)
− 1

(s + 2)

)
,

is the convolution output 1
4 (e2t − e−2t)u(t).

11.2.8 Multiplication by t

If x(t)u(t) ⇐⇒ X(s), then

tx(t)u(t) ⇐⇒ −dX(s)

ds

Differentiating the defining expression for −X(s) with respect to s, we get

−dX(s)

ds
= − d

ds

(∫ ∞

0−
x(t)u(t)e−stdt

)
=

∫ ∞

0−
tx(t)e−stdt

In general,

tnx(t)u(t) ⇐⇒ (−1)n
dnX(s)

dsn
n = 0, 1, 2, . . .

For example, tδ(t) = 0 ⇐⇒ −d(1)/ds = 0. Another example is tu(t) ⇐⇒
−d(1/s)/ds = 1/s2.

11.2.9 Initial Value

If only the initial and final values of a function x(t) are required, these values can
be found directly, from X(s), using the following properties rather than finding the
function x(t) by inverting X(s).
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If x(t) ⇐⇒ X(s) and the degree of the numerator polynomial of X(s) is less than
that of the denominator polynomial, then

x(0+) = lim
s→∞ sX(s)

As s → ∞, the value of any term with a higher-order denominator tends to zero
and

lim
s→∞ sX(s) = lim

s→∞

(
sA1

s − s1
+ sA2

s − s2
+ · · · + sAN

s − sN

)
= A1 + A2 + · · · + AN

The inverse transform of X(s), as t → 0, is

x(t) = A1e
s1t + A2e

s2t + · · · + ANesNt

The right-hand limit of x(t), as t → 0, is

x(0+) = A1 + A2 + · · · + AN = lim
s→∞ sX(s)

Similarly,

dx(t)

dt
|t=0+ = lim

s→∞(s2X(s) − sx(0−))

11.2.10 Final Value

If x(t) ⇐⇒ X(s) and the ROC of sX(s) includes the jω axis, then

lim
t→∞ x(t) = lim

s→0
sX(s)

As t → ∞, the value x(∞), if it is nonzero, is solely due to the scaled unit-step
component of x(t). Multiplying X(s) by s and setting s = 0 is just finding the partial
fraction coefficient of the unit-step component of x(t).

The initial and final values from the transform 1/[s(s + 2)] are

x(0+) = lim
s→∞

1

s + 2
= 0 and lim

t→∞ x(t) = lim
s→0

1

s + 2
= 1

2

11.2.11 Transform of Semiperiodic Functions

Consider the function x(t)u(t) that is periodic of period T for t ≥ 0, that is x(t +
T ) = x(t), t ≥ 0. Let x1(t) = x(t)u(t) − x(t − T )u(t − T ) ⇐⇒ X1(s). x1(t) is equal
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to x(t)u(t) over its first period and is zero elsewhere. Then,

x(t)u(t) = x1(t) + x1(t − T ) + · · · + x1(t − nT ) + · · ·

Using the time-shifting property, the transform of x(t)u(t) is

X(s) = X1(s)(1 + e−sT + · · · + e−nsT + · · ·) = X1(s)

1 − e−sT

Let us find the transform of a semiperiodic square wave, the first period of which
is defined as

x1(t) =
{

1 for 0 < t < 2

0 for 2 < t < 4

As x1(t) = (u(t) − u(t − 2)), X1(s) = (1 − e−2s)/s. From the property,

X(s) = 1

(1 − e−4s)

(1 − e−2s)

s
= 1

s(1 + e−2s)

11.3 The Inverse Laplace Transform

Consider the transform pair x(t)u(t) ⇐⇒ 1/(s − 4), Re(s) > 4. Multiplying x(t)u(t)
by e−5tu(t) gives x(t)e−5tu(t) ⇐⇒ 1/[(s + 5) − 4] = 1/(s + 1) Re(s) > −1, due to
the frequency-shift property. Now, the ROC includes the jω axis in the s-plane. Let us
substitute s = jω in 1/(s + 1) to get 1/(jω + 1). The inverse FT of this transform is the
signal e−tu(t) = x(t)e−5tu(t). Now, multiplying both sides by e5tu(t) gives the original
time-domain signal x(t)u(t) = e4tu(t). This way of finding the inverse Laplace trans-
form gives us a clear understanding of how the Laplace transform is the generalized
version of the FT.

The inverse FT of X(σ + jω), defined in (Equation 11.1), is given as

x(t)e−σt = 1

2π

∫ ∞

−∞
X(σ + jω)ejωtdω

Multiplying both sides by eσt , we get

x(t) = 1

2π

∫ ∞

−∞
X(σ + jω)e(σ+jω)tdω

The complex frequency (σ + jω) can be replaced by a complex variable s = (σ +
jω) with the limits of the integral changed to σ − j∞ and σ + j∞. As ds = jdω, we



272 A Practical Approach to Signals and Systems

get the inverse Laplace transform of X(s) as

x(t) = 1

2πj

∫ σ+j∞

σ−j∞
X(s)estds

where σ is any real value that lies in the ROC of X(s). Note that the integral converges
to the value zero for t < 0 and to the mid-point value at any discontinuity of x(t). This
equation is not often used for finding the inverse transform, as it requires integration in
the complex plane. The partial fraction method, which is essentially the same as that
described in Chapter 10, is commonly used. The difference is that the partial fraction
terms are of the form k/(s − p) in contrast to kz/(z − p), as shown in Example 11.4.

11.4 Applications of the Laplace Transform

11.4.1 Transfer Function and System Response

Consider the second-order differential equation of a causal LTI continuous system
relating the input x(t) and the output y(t),

d2y(t)

dt2
+ a1

dy(t)

dt
+ a0y(t) = b2

d2x(t)

dt2
+ b1

dx(t)

dt
+ b0x(t)

Taking the Laplace transform of both sides, we get, assuming initial conditions are
all zero,

(s2 + a1s + a0)Y (s) = (b2s
2 + b1s + b0)X(s)

The transfer function H(s), which is the ratio of the transforms of the output and
the input signals with the initial conditions zero, is obtained as

H(s) = Y (s)

X(s)
= b2s

2 + b1s + b0

s2 + a1s + a0
=

∑2
l=0 bls

l

s2 + ∑1
l=0 alsl

In general,

H(s) = Y (s)

X(s)
= bMsM + bM−1s

M−1 + · · · + b1s + b0

sN + aN−1sN−1 + · · · + a1s + a0

If the input to the system is the unit-impulse signal, then its transform is one and
H(s) = Y (s). That is, the transform of the impulse response is the transfer function of
the system. For stable systems, the frequency response H(jω) is obtained from H(s)
by replacing s by jω.
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11.4.2 Characterization of a System by its Poles and Zeros

The numerator and denominator polynomials of the transfer function can be factored
to get

H(s) = K
(s − z1)(s − z2) · · · (s − zM)

(s − p1)(s − p2) · · · (s − pN)
= K

∏M
l=1(s − zl)∏N
l=1(s − pl)

,

where K is a constant. As the coefficients of the polynomials of H(s) are real for
practical systems, the zeros and poles are real-valued or they always occur as complex-
conjugate pairs.

The pole-zero plot of the transfer function H(s) of a system is a pictorial description
of its characteristics, such as speed of response, frequency selectivity, and stability.
Poles located farther from the imaginary axis in the left half of the s-plane result in a
fast-responding system with its transient response decaying rapidly. On the other hand,
poles located close to the imaginary axis in the left half of the s-plane result in a sluggish
system. Complex-conjugate poles located in the left-half of the s-plane result in an
oscillatory transient response that decays with time. Complex-conjugate poles located
on the imaginary axis result in a steady oscillatory transient response. Poles located on
the positive real axis in the left-half of the s-plane result in an exponentially decaying
transient response. The frequency components of an input signal with frequencies close
to a zero will be suppressed while those close to a pole will be readily transmitted.
Poles located symmetrically about the negative real axis in the left half of the s-plane
and close to the imaginary axis in the passband results in a lowpass system that more
readily transmits low-frequency signals than high-frequency signals. Zeros placed in
the stopband further enhances the lowpass character of the frequency response. For
example, pole-zero plots of some lowpass filters are shown in Figures 11.1 and 11.12.
The stability of a system can also be determined from its pole-zero plot, as presented
later.

Example 11.4. Find the zero-input, zero-state, transient, steady-state, and complete
responses of the system governed by the differential equation

d2y(t)

dt2
+ 4

dy(t)

dt
+ 4y(t) = d2x(t)

dt2
+ dx(t)

dt
+ 2x(t)

with the initial conditions

y(0−) = 2 and
dy(t)

dt
|t=0− = 3

and the input x(t) = u(t), the unit-step function.
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Solution
The Laplace transforms of the terms of the differential equation are

x(t) ⇐⇒ 1

s

dx(t)

dt
⇐⇒ 1

d2x(t)

dt2
⇐⇒ s

y(t) ⇐⇒ Y (s)
dy(t)

dt
⇐⇒ sY (s) − 2

d2y(t)

dt2
⇐⇒ s2Y (s) − 2s − 3

Substituting the corresponding transform for each term in the differential equation
and solving for Y (s), we get

Y (s) = s2 + s + 2

s(s2 + 4s + 4)
+ 2s + 11

s2 + 4s + 4

The first term on the right-hand side is H(s)X(s) and corresponds to the zero-state
response. The second term is due to the initial conditions and corresponds to the
zero-input response. Expanding into partial fractions, we get

Y (s) = 0.5

s
+ 0.5

(s + 2)
− 2

(s + 2)2
+ 2

(s + 2)
+ 7

(s + 2)2

Taking the inverse Laplace transform, we get the complete response.

y(t) = (

zero-state︷ ︸︸ ︷
0.5 + 0.5e−2t − 2te−2t +

zero-input︷ ︸︸ ︷
2e−2t + 7te−2t)u(t)

= (0.5 + 2.5e−2t + 5te−2t)u(t)

The steady-state response is 0.5u(t) and the transient response is (2.5e−2t +
5te−2t)u(t). The initial and final values of y(t) are 3 and 0.5, respectively. These values
can be verified by applying the initial and final value properties to Y (s). We can also
verify that the initial conditions at t = 0− are satisfied by the zero-input component
of the response. �

11.4.3 System Stability

The zero-input response of a system depends solely on the locations of its poles. A
system is considered stable if its zero-input response due to finite initial conditions,
converges, marginally stable if its zero-input response tends to a constant value or
oscillates with a constant amplitude, and unstable if its zero-input response diverges.
Commonly used marginally stable systems are oscillators, which produce a bounded
zero-input response. The response corresponding to each pole p of a system is of the
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form eat , where a is the location of the pole in the s-plane. If the real part of a is less
than zero, then eat tends to zero as t tends to ∞. If the real part of a is greater than
zero, then eat tends to ∞ as t tends to ∞. If the real part of a is equal to zero, then eat

remains bounded as t tends to ∞. However, the response tends to infinity, for poles of
order more than one lying on the imaginary axis of the s-plane, as the expression for
the response includes a factor that is a function of t. Poles of any order lying to the
left of the imaginary axis of the s-plane do not cause instability. Figure 11.3 shows
pole locations of some transfer functions and the corresponding impulse responses.

−1 0 1
−1

0

1

Re(s)

Im
(s

) marginally

stable

(a)

0 3.1416
−1

0

1

h(
t)

t

(b)

sin(t)u(t)

0 5 10
0

1

h(
t)

t

(c)

u(t)

−2 −0.5 0
−1

0

1

Re(s)

Im
(s

)

stable

(d)

0 5
−0.1

0

0.5

h(
t)

t

(e)

e−0.5tsin(t)u(t)

0 1
0

1

h(
t)

t

(f)

e−2tu(t)

0 0.5
−1

0

1

Re(s)

Im
(s

)

2
unstable

(g)

0 5
−11

20

h(
t)

t

(h)

 e0.5tsin(t)u(t) 

0 5 10
0

5

10

h(
t)

t

(i)

tu(t)

0 2
−1

0

1 2

2

Re(s)

Im
(s

)

unstable

(j)

0 3.1416
−3

0

1.5

h(
t)

t

(k)

0.5(sin(t)−tcos(t))u(t)

0 1
0
1

h(
t)

t

(l)

e2tu(t)

Figure 11.3 The poles of some transfer functions H(s) and the corresponding impulse responses
h(t). The imaginary axis is shown by a dashed line. (a) H(s) = 1/(s2 + 1) = 1/[(s + j)(s − j)]
and H(s) = 1/s; (b) h(t) = sin(t)u(t) and (c) h(t) = u(t); (d) H(s) = 1/[(s + 0.5)2 + 1] =
1/[(s + 0.5 + j)(s + 0.5 − j)] and H(s) = 1/(s + 2); (e) h(t) = e−0.5t sin(t)u(t) and (f) h(t) =
e−2tu(t); (g) H(s) = 1/[(s − 0.5)2 + 1] = 1/[(s − 0.5 + j)(s − 0.5 − j)] and H(s) = 1/s2; (h) h(t) =
e0.5t sin(t)u(t); (i) h(t) = tu(t); (j) H(s) = 1/[(s2 + 1)2] = 1/[(s + j)2(s − j)2] and H(s) = 1/(s − 2);
(k) h(t) = 0.5(sin(t) − t cos(t))u(t) and (l) h(t) = e2tu(t)
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Therefore, we conclude that, in terms of the locations of the poles of a system,:

• All the poles, of any order, of a stable system must lie to the left of the imaginary
axis of the s-plane. That is, the ROC of H(s) must include the imaginary axis.

• Any pole lying to the right of the imaginary axis or any pole of order more than one
lying on the imaginary axis makes a system unstable.

• A system is marginally stable if it has no poles to the right of the imaginary axis
and has poles of order one on the imaginary axis.

If all the poles of a system lie to the left of the imaginary axis of the s-plane, the
bounded-input bounded-output stability condition (Chapter 5) is satisfied. However,
the converse is not necessarily true, since the impulse response is an external descrip-
tion of a system and may not include all its poles. The bounded-input bounded-output
stability condition is not satisfied by a marginally stable system.

11.4.4 Realization of Systems

Most of the transfer functions of practical continuous and discrete systems are rational
functions of two polynomials, the difference being that the independent variable is s

in H(s) and it is z in H(z). For example,

H(s) = b2s
2 + b1s + b0

s2 + a1s + a0
and H(z) = b2z

2 + b1z + b0

z2 + a1z + a0

We realized discrete systems using multipliers, adders, and delay units, in Chap-
ter 10. By comparison of the corresponding difference and differential equations, we
find that the only difference being that integrators are required in realizing contin-
uous systems instead of delay units. Therefore, the realization of continuous-time
systems is the same as that for discrete systems, described in Chapter 10, except that
delay units are replaced by integrators. Figure 11.4 shows the realization of a second-
order continuous system. Integrators with feedback are used to simulate differential
equations.

11.4.5 Frequency-domain Representation of Circuits

By replacing each element in a circuit, along with their initial conditions, by the
corresponding frequency-domain representation, we can analyze the circuit in a way
similar to a resistor network. This procedure is quite effective for circuits with nonzero
initial conditions compared with writing the differential equation and then finding the
Laplace transform.

In time-domain representation, a capacitor with initial voltage v(0−) is modeled as
a uncharged capacitor in series with a voltage source v(0−)u(t). The voltage–current
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Figure 11.4 The realization of a second-order continuous system

relationship of a capacitor is

v(t) = 1

C

∫ t

−∞
i(τ)dτ = 1

C

∫ 0−

−∞
i(τ)dτ + 1

C

∫ t

0−
i(τ)dτ = v(0−) + 1

C

∫ t

0−
i(τ)dτ

Taking the Laplace transform, the voltage across the capacitor is given as

V (s) = I(s)

sC
+ v(0−)

s

The capacitor is modeled as an impedance 1
sC

in series with an ideal voltage source
v(0−)/s. By taking the factor 1/sC out, an alternate representation is obtained as

V (s) = 1

sC

(
I(s) + Cv(0−)

)

The voltage across the capacitor is due to the current (I(s) + Cv(0−)) flowing
through it. This representation, in the time-domain, implies an uncharged capacitor in
parallel with an impulsive current source Cv(0−)δ(t).

In time-domain representation, an inductor with initial current i(0−) is modeled
as an inductor, with no initial current, in series with an impulsive voltage source
Li(0−)δ(t). The voltage–current relationship of an inductor is

v(t) = L
di(t)

dt
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Figure 11.5 A RCL circuit

Taking the Laplace transform, the voltage across the inductor is given as

V (s) = L(sI(s) − i(0−))

The inductor is modeled as an impedance sL in series with an ideal voltage source
−Li(0−). By taking the factor sL out, an alternate representation is obtained as

V (s) = sL

(
I(s) − i(0−)

s

)

The voltage across the inductor is due to the current {I(s) − [i(0−)/s]} flowing
through it.

Example 11.5. Find the current in the circuit, shown in Figure 11.5, with the ini-
tial current through the inductor i(0−) = 3A and the initial voltage across capacitor
v(0−) = 2 volts and, the input x(t) = 3u(t) V.

Solution
The Laplace transform representation of the circuit in Figure 11.5 is shown in
Figure 11.6. The sum of the voltages in the circuit is

3

s
+ 6 − 2

s
= 6s + 1

s

Figure 11.6 The Laplace transform representation of the circuit in Figure 11.5
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The circuit impedance is

5

3
+ 2s + 1

3s
= 6s2 + 5s + 1

3s

Dividing the voltage by the impedance, we get the current in the circuit as

I(s) = 6s + 1

s

3s

6s2 + 5s + 1
= (3s + 1

2 )

s2 + 5
6s + 1

6

Expanding into partial fractions, we get

I(s) = 6

s + 1
2

− 3

s + 1
3

Finding the inverse Laplace transform, we get the current in the circuit as

i(t) = (6e− 1
2 t − 3e− 1

3 t)u(t) �

11.4.6 Feedback Systems

Consider the two systems connected in a feedback configuration, shown in Figure 11.7.
The feedback signal R(s) can be expressed as R(s) = F (s)Y (s), where F (s) is the
feedback transfer function of the system and Y (s) is the output. Now, the error signal
E(s) is

E(s) = X(s) − R(s) = X(s) − F (s)Y (s)

The output Y (s) is expressed as

Y (s) = G(s)E(s) = G(s)(X(s) − F (s)Y (s))

Figure 11.7 Two systems connected in a feedback configuration
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where G(s) is the forward transfer function of the system. Therefore, the transfer
function of the feedback system is given as

H(s) = Y (s)

X(s)
= G(s)

1 + G(s)F (s)

If G(s) is very large, the transfer function of the feedback system approximates to
the inverse of the feedback transfer function of the system.

H(s) = Y (s)

X(s)
≈ 1

F (s)

11.4.6.1 Operational Amplifier Circuits

The frequency-domain representation of a scalar multiplier unit using an operational
amplifier is shown in Figure 11.8. Operational amplifier circuits, shown in Figure 11.8
by a triangular symbol, are very large gain (of the order of 106) amplifiers with almost
infinite input impedance and zero output impedance. There are two input terminals,
indicated by the symbols + and − (called, respectively, the noninverting and inverting
input terminals), and one output terminal. The output voltage is specified as v0 =
A(v+ − v−). As the gain A is very large, the voltage at the inverting terminal, in
Figure 11.8, is very small and can be considered as virtual ground. Further, the large
input impedance makes the input terminal current negligible. Therefore, the currents
in the forward and feedback paths must be almost equal and

X(s)

R1
≈ −Y (s)

R2

The transfer function of the circuit is, therefore,

H(s) = Y (s)

X(s)
≈ −R2

R1

Figure 11.8 Realization of a scalar multiplier unit using an operational amplifier
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In general, the elements in the circuit can be impedances and the transfer function
is expressed as

H(s) = Y (s)

X(s)
≈ −Z2(s)

Z1(s)

The transfer function of the integrator circuit, shown in Figure 11.9, is

H(s) = −Z2(s)

Z1(s)
= − 1

sRC

This is an ideal integrator with gain −1/RC. Let x(t) = u(t), the unit-step signal.
Then, X(s) = 1/s and

Y (s) = − 1

RCs

1

s
= − 1

RCs2

The inverse transform of Y (s) is y(t) = − 1
RC

tu(t), as the integral of unit-step is
the unit-ramp. Compare this response with that of a passive RC network, y(t) =
(1 − e− t

RC )u(t) ≈ 1
RC

tu(t). Due to the large gain of the amplifier and the feedback, we
get an ideal response. In addition, the amplifier, due to its large input impedance, does
not load the source of the input signal much and can feed several circuits at the output.

The output Y (s) of the summer, shown in Figure 11.10, is given as

Y (s) = −
(

Rf

R1
X1(s) + Rf

R2
X2(s)

)

Remembering that the basic elements of a continuous system are scalar multipliers,
integrators, and summers, we can build any system, however complex it may be, using
the three operational amplifier circuits described.

Figure 11.9 Realization of an integrator unit using an operational amplifier
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Figure 11.10 Realization of a summer unit using an operational amplifier

11.4.7 Analog Filters

We present, in this subsection, an example of the design of lowpass filters. The rectan-
gle, shown in Figure 11.13 by dashed line, is the magnitude of the frequency response
of an ideal analog lowpass filter. As the ideal filter is practically unrealizable, actual fil-
ters approximate the ideal filters to a desirable accuracy. While there are several types
of filters with different characteristics, we describe the commonly used Butterworth
filter.

11.4.7.1 Butterworth Filters

While active filters and digital filters are more commonly used, the word filter
instantaneously reminds us the resister–capacitor lowpass filter circuit shown in
Figure 11.11. The impedance, 1/sC, of the capacitor is small at higher frequencies
compared with that at lower frequencies. Therefore, the voltage across it is composed
of high-frequency components with smaller amplitudes than low-frequency compo-
nents compared with those of the input voltage. The reverse is the case for the voltage
across the resistor. For example, there is no steady-state current with dc input (fre-
quency = 0) and, therefore, all the input voltage appears across the capacitor.

In the Laplace transform model of the RC circuit, the input voltage is X(s).
The circuit impedance is R + 1/(sC). Therefore, the current in the circuit is

Figure 11.11 The representation of a resister-capacitor filter circuit in the frequency-domain
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X(s)/[R + (1/sC)]. The output voltage Y (s) across the capacitor is

Y (s) =
(

X(s)

R + 1
sC

) (
1

sC

)

Therefore, the transfer function is

H(s) = Y (s)

X(s)
= 1

1 + sRC

Letting s = jω, we get the frequency response of the filter as

H(jω) = 1

1 + jωRC

Let the cutoff frequency of the filter be ωc = 1
RC

= 1 radian/second. Then,

H(jω) = 1

1 + j ω
ωc

= 1

1 + jω
and |H(jω)| = 1√

1 + ω2

The filter circuit is a first-order system and a first-order lowpass Butterworth filter.
For a Butterworth filter of order N, the magnitude of the frequency response, with
ωc = 1, is

|H(jω)| = 1√
1 + ω(2N)

The filter with ωc = 1 is called the normalized filter. From the transfer function of
this filter, we can find the transfer function of other types of filters, such as highpass,
with arbitrary cutoff frequencies using appropriate frequency transformations.

To find the transfer function of the normalized Butterworth filter, we substitute
ω = s/j in the expression for the squared magnitude of the frequency response and
get

|H(jω)|2 = H(jω)H(−jω) = H(s)H(−s) = 1

1 + ω(2N)
= 1

1 +
(

s
j

)(2N)

The poles of H(s)H(−s) are obtained by solving the equation

s2N = −(j)2N = ejπ(2n−1)(ej π
2 )(2N) = ejπ(2n−1+N)

where n is an integer. Note that ejπ(2n−1) = −1 for an integral n and ej π
2 = j. As the

transfer function H(s) is to represent a stable system, all its poles must lie in the left
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half of the s-plane. Therefore, the poles pn of H(s), which are the N roots (of the 2Nth
roots of −(j)2N) with negative real parts, are specified as

pn = e
jπ

2N
(2n+N−1) n = 1, 2, . . . , N

The transfer function is given by

H(s) = 1∏N
n=1(s − pn)

For N = 1, the pole is p1 = e
jπ

2(1) (2(1)+1−1) = ejπ = −1. The transfer function is
specified as

H(s) = 1

(s + 1)

The pole locations of the filter for N = 2 and N = 3 are shown in Figure 11.12.
The symmetrically located poles are equally spaced around the left half of the unit
circle. There is a pole on the real axis for N odd.

Consider the magnitude of the frequency response of normalized Butterworth low-
pass filters shown in Figure 11.13. As the frequency response is an even function of ω,
the figure shows the response for the positive half of the frequency range only. In both
the passband and the stopband, the gain is monotonically decreasing. The asymptotic
falloff rate, beyond the 3-dB frequency, is −6N dB per octave (as the frequency is dou-
bled) or −20N dB per decade (as the frequency becomes ten times) approximately,
where N is the order of the filter. Normalized filters of any order have the −3 dB
(−10 log10(2) to be more precise) or 1/

√
2 response point at the same frequency,

ω3dB = 1 radian per second. An higher-order filter approximates the ideal response,
shown by the dashed line, more closely compared with a lower-order filter.
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Figure 11.12 Pole locations of: (a) second-; (b) third-order normalized lowpass Butterworth analog
filters
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Figure 11.13 (a) The magnitude of the frequency response of the first- and second-order normalized
lowpass Butterworth analog filters; (b) the passbands are shown on an expanded scale

11.5 Summary
• In this chapter, the theory of the one-sided Laplace transform, its properties, and

some of its applications have been described. As practical systems are causal, the
one-sided Laplace transform is mostly used in practice.

• The Laplace transform is a generalization of the Fourier transform. The basis
waveforms include sinusoids with varying amplitudes or exponentials with complex
exponents. The larger set of basis waveforms makes this transform suitable for the
analysis of a larger class of signals and systems.

• The Laplace transform corresponding to a signal is a surface, since it is a function of
two variables (the real and imaginary parts of the complex frequency). The Laplace
transform of a signal, along with its ROC, uniquely represents the signal in the
frequency-domain. The spectral values along any straight line in the ROC can be
used to reconstruct the corresponding time-domain signal.

• The inverse Laplace transform is defined by an integral in the complex plane. How-
ever, the partial fraction method, along with a short list of Laplace transform pairs,
is adequate for most practical purposes to find the inverse Laplace transform.

• The Laplace transform is essential for the design, and transient and stability analysis
of continuous LTI systems. The Laplace transform of the impulse response of a
system, the transfer function, is a frequency-domain model of the system.

Further Reading

1. Lathi, B. P., Linear Systems and Signals, Oxford University Press, New York, 2004.

Exercises

11.1 Find the Laplace transform of the unit-impulse signal, δ(t), by applying a
limiting process to the rectangular pulse, defined as

x(t) =
{

1
2a

for −a < t < a

0 otherwise
a > 0,

and its transform, as a tends to zero.



286 A Practical Approach to Signals and Systems

11.2 Find the Laplace transform of the function x(t) using the time-shifting property
and the transforms of u(t), tu(t), and t2u(t).
11.2.1 x(t) = u(t − 5) .
11.2.2 x(t) = 2, 0 ≤ t ≤ 4 and x(t) = 0 otherwise.
11.2.3 x(t) = 4, 1 ≤ t ≤ 3 and x(t) = 0 otherwise.

∗11.2.4 x(t) = tu(t − 2).
11.2.5 x(t) = (t − 3)u(t).
11.2.6 x(t) = 2t2u(t − 2).

11.3 Find the Laplace transform of the function x(t) using the frequency-shifting
property.
11.3.1 x(t) = e−2t cos(3t)u(t) .
11.3.2 x(t) = e−3t sin(2t)u(t).

11.4 Find the derivative dx(t)/dt of x(t). Verify that the Laplace transform of
dx(t)/dt is sX(s) − x(0−).
11.4.1 x(t) = cos(2t).
11.4.2 x(t) = cos(3t)u(t).
11.4.3 x(t) = u(t) − u(t − 1).
11.4.4 x(t) = 3t(u(t − 2) − u(t − 4)).
11.4.5

x(t) =



(t − 1) for t < 1

2 for 1 < t < 3

cos(π
3 t) for t > 3

11.4.6

x(t) =



2et for t < 0

3 sin(t) for 0 < t < π
2

4u(t − π
2 ) for t > π

2

11.5 Given the Laplace transform X(s) of x(t), find the transform of x(at) using the
scaling property. Find the location of the poles and zeros of the two transforms.
Find x(t) and x(at).
11.5.1 X(s) = s+4

s2+5s+6 and a = 1
2 .

∗11.5.2 X(s) = s−1
s2+3s+2 and a = 2.

11.5.3 X(s) = s−2
s2+1 and a = 3.

11.6 Using the Laplace transform, find the convolution, y(t) = x(t) ∗ h(t), of the
functions x(t) and h(t) .
11.6.1 x(t) = e−2tu(t) and h(t) = u(t).
11.6.2 x(t) = u(t) and h(t) = u(t).
11.6.3 x(t) = e3tu(t) and h(t) = e−4tu(t).
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11.6.4 x(t) = e−2tu(t) and x(t) = e−2tu(t).
∗11.6.5 x(t) = te−tu(t) and h(t) = e−tu(t).
11.6.6 x(t) = 2u(t − 2) and h(t) = 3u(t − 3).
11.6.7 x(t) = 2e−(t−2)u(t − 2) and h(t) = 5u(t).

11.7 Find the Laplace transform of the function x(t) using the multiplication by
t property.
11.7.1 x(t) = 4t cos(2t)u(t).
11.7.2 x(t) = 5t sin(3t)u(t).

11.8 Find the initial and final values of the function x(t) corresponding to the
transform X(s), using the initial and final value properties.
11.8.1 X(s) = s+2

(s+3) .

11.8.2 X(s) = 2
s+3 .

11.8.3 X(s) = 2
s2+1 .

∗11.8.4 X(s) = 3s2+3s+2
s(s2+3s+2) .

11.8.5 X(s) = s+2
s(s−2) .

11.8.6 X(s) = s+1
(s−1) .

11.9 Find the Laplace transform of the semiperiodic signal x(t)u(t), the first period
of which is defined as follows.
11.9.1

x1(t) =
{

1 for 0 < t < 2

−1 for 2 < t < 4

11.9.2

x1(t) = t for 0 < t < 5

∗ 11.9.3

x1(t) =
{

t for 0 < t < 2

4 − t for 2 < t < 4

11.9.4

x1(t) = sin(ωt) for 0 < t < π
ω

11.10 Find the inverse Laplace transform of X(s) using the inverse FT.
11.10.1 x(t)u(t) ⇐⇒ X(s) = 1/s2.
11.10.2 x(t)u(t) ⇐⇒ X(s) = 1/(s − 2).
11.10.3 x(t)u(t) ⇐⇒ X(s) = 1/(s + 2).
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11.11 Find the inverse Laplace transform of

X(s) = s

(s2 + 3s + 2)

11.12 Find the inverse Laplace transform of

X(s) = 3s2 + 2s + 3

(s2 + 5s + 6)

11.13 Find the inverse Laplace transform of

X(s) = 2s + 4

(s2 + 1)

11.14 Find the inverse Laplace transform of

X(s) = s + 3

(s3 + 4s2 + 5s + 2)

∗11.15 Find the inverse Laplace transform of

X(s) = s + 2

(s3 + s2)

11.16 Find the inverse Laplace transform of

X(s) = s + 2e−3s

(s + 2)(s + 3)

11.17 Find the inverse Laplace transform of

X(s) = se−s

(s + 1)(s + 3)

11.18 Using the Laplace transform, derive the closed-form expression for the im-
pulse response h(t) of the system, with input x(t) and output y(t), governed
by the given differential equation.
11.18.1 d2y(t)

dt2 + 6 dy(t)
dt

+ 8y(t) = dx(t)
dt

+ x(t).

11.18.2 d2y(t)
dt2 + 3 dy(t)

dt
+ 2y(t) = x(t).

∗11.18.3 d2y(t)
dt2 − 4 dy(t)

dt
+ 3y(t) = x(t).

11.19 Using the Laplace transform, find the zero-input, zero-state, transient, steady-
state, and complete responses of the system governed by the differential
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equation

d2y(t)

dt2
+ 6

dy(t)

dt
+ 8y(t) = 2

dx(t)

dt
+ 3x(t)

with the initial conditions y(0−) = 2 and

dy(t)

dt
|t=0− = 3

and the input x(t) = u(t), the unit-step function. Find the initial and final values
of the complete and zero-state responses.

∗11.20 Using the Laplace transform, find the zero-input, zero-state, transient, steady-
state, and complete responses of the system governed by the differential
equation

d2y(t)

dt2
+ 2

dy(t)

dt
+ y(t) = x(t)

with the initial conditions y(0−) = 3 and

dy(t)

dt
|t=0− = −2

and the input x(t) = e−2tu(t). Find the initial and final values of the complete
and zero-state responses.

11.21 Using the Laplace transform, find the zero-input, zero-state, transient, steady-
state, and complete responses of the system governed by the differential
equation

d2y(t)

dt2
+ 5

dy(t)

dt
+ 6y(t) = x(t)

with the initial conditions

y(0−) = −1 and
dy(t)

dt
|t=0− = −2

and the input x(t) = tu(t). Find the initial and final values of the complete and
zero-state responses.

11.22 Using the Laplace transform, find the zero-input, zero-state, transient, steady-
state, and complete responses of the system governed by the differential
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equation

d2y(t)

dt2
+ 7

dy(t)

dt
+ 12y(t) = x(t)

with the initial conditions y(0−) = 2 and

dy(t)

dt
|t=0− = −3

and the input x(t) = 2 cos( 2π
4 t − π

6 )u(t). Find the initial and final values of the
complete and zero-state responses.

11.23 Given the differential equation of a system and the input signal x(t), find the
steady-state response of the system.

∗11.23.1 dy(t)
dt

+ 0.5y(t) = x(t) and x(t) = 3 cos(0.5t − π
3 )u(t).

11.23.2 dy(t)
dt

+ y(t) = 2x(t) and x(t) = 2 sin(t + π
4 )u(t).

11.23.3 dy(t)
dt

+ y(t) = x(t) and x(t) = 3e
j
(√

3 t− π
6

)
u(t).

11.24 Using the Laplace transform, derive the closed-form expression of the impulse
response of the cascade system consisting of systems, with input x(t) and
output y(t), governed by the given differential equations.
11.24.1 dy(t)

dt
+ 2y(t) = dx(t)

dt
+ x(t) and dy(t)

dt
+ 3y(t) = 2 dx(t)

dt
+

3x(t).
∗11.24.2 dy(t)

dt
− y(t) = x(t) and dy(t)

dt
= x(t).

11.24.3 dy(t)
dt

+ 3y(t) = 2 dx(t)
dt

− x(t) and dy(t)
dt

+ 2y(t) =
3 dx(t)

dt
+ 2x(t).

11.25 Using the Laplace transform, derive the closed-form expression of the impulse
response of the combined system, connected in parallel, consisting of systems,
with input x(t) and output y(t), governed by the given differential equations.
11.25.1 dy(t)

dt
+ 2y(t) = dx(t)

dt
+ x(t) and dy(t)

dt
+ 3y(t) = 2 dx(t)

dt
+

3x(t).
11.25.2 dy(t)

dt
− y(t) = x(t) and dy(t)

dt
= x(t).

∗11.25.3 dy(t)
dt

+ 3y(t) = 2 dx(t)
dt

− x(t) and dy(t)
dt

+ 2y(t) =
3 dx(t)

dt
+ 2x(t).

11.26 Using the Laplace transform representation of the circuit elements, find the
current in the series resistor-inductor circuit, with R = 2 �, L = 3 H, and the
initial current through the inductor i(0−) = 4 A, excited by the input voltage
x(t) = 10u(t) V.

11.27 Using the Laplace transform representation of the circuit elements, find the
current in the series resistor-inductor circuit, with R = 3 �, L = 4 H, and the
initial current through the inductor i(0−) = 1 A, excited by the input voltage
x(t) = 10δ(t) V.
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11.28 Using the Laplace transform representation of the circuit elements, find the
voltage across the capacitor in the series resistor-capacitor circuit, with R = 2
�, C = 1 F, and the initial voltage across capacitor v(0−) = 1 V, excited by
the input voltage x(t) = e−tu(t) V.

∗11.29 Using the Laplace transform representation of the circuit elements, find the
voltage across the capacitor in the series resistor-capacitor circuit, with R = 4
�, C = 2 F, and the initial voltage across capacitor v(0−) = 3 V, excited by
the input voltage x(t) = δ(t) V.

11.30 Find the response of a differentiator to unit-step input signal: (i) if the circuit
is realized using resistor R and capacitor C; (ii) if the circuit is realized using
resistor R and capacitor C, and an operational amplifier.

11.31 Find the transfer function H(s) of fourth- and fifth-order Butterworth normal-
ized lowpass filters.





12
State-space Analysis of Discrete
Systems

So far, we studied three types of modeling of systems, the difference equation model,
the convolution–summation model, and the transfer function model. Using these mod-
els, we concentrated on finding the output of a system corresponding to an input. How-
ever, in any system, there are internal variables. For example, the values of currents
and voltages at various parts of a circuit are internal variables. The values of these
variables are of interest in the analysis and design of systems. These values could
indicate whether the components of a system work in their linear range and within
their power ratings. Therefore, we need a model that also explicitly includes the inter-
nal description of systems. This type of model, which is a generalization of the other
models of systems, is called the state-space model. In addition, it is easier to extend
this model to the analysis of nonlinear and time-varying systems.

In Section 12.1, we study the state-space model of some common realizations of
systems. The time-domain and frequency-domain solutions of the state equations are
presented, respectively, in Sections 12.2 and 12.3. The linear transformation of state
vector to obtain different realizations of systems is described in Section 12.4.

12.1 The State-space Model

Consider the state-space model, shown in Figure 12.1, of a second-order discrete
system characterized by the difference equation

y(n) + a1y(n − 1) + a0y(n − 2) = b2x(n) + b1x(n − 1) + b0x(n − 2)

In addition to the input x(n) and the output y(n), we have shown two internal
variables (called state variables), q1(n) and q2(n), of the system. State variables are a

A Practical Approach to Signals and Systems D. Sundararajan
© 2008 John Wiley & Sons (Asia) Pte Ltd
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Figure 12.1 A state-space model of the canonical form I of a second-order discrete system

minimal set of variables (N for a Nth-order system) of a system so that a knowledge
of the values of these variables (the state of the system) at n = k and those of the
input for n ≥ k will enable the determination of the values of the state variables for
all n > k and the output for all n ≥ k. An infinite number of different sets, each of N

state variables, are possible for a particular Nth-order system.
From Figure 12.1, we can write down the following state equations defining the

state variables q1(n) and q2(n).

q1(n + 1) = −a1q1(n) − a0q2(n) + x(n)

q2(n + 1) = q1(n)

The (n + 1)th sample value of each state variable is expressed in terms of the nth
sample value of all the state variables and the input. This form of the first-order
difference equation is called the standard form. A second-order difference equation
characterizing the system, shown in Figure 12.1, has been decomposed into a set of two
simultaneous first-order difference equations. Selecting state variables as the output
of the delay elements is a natural choice, since a delay element is characterized by a
first-order difference equation. With that choice, we can write down a state equation
at the input of each delay element. However, the state variables need not correspond
to quantities those are physically observable in a system. In the state-space model
of a system, in general, an Nth-order difference equation characterizing a system is
decomposed into a set of N simultaneous first-order difference equations of a standard
form. With a set of N simultaneous difference equations, we can solve for N unknowns.
These are the N internal variables, called the state variables, of the system. The output
is expressed as a linear combination of the state variables and the input. The concepts
of impulse response, convolution, and transform analysis are all equally applicable to
the state-space model. The difference is that, as the system is modeled using matrix
and vector quantities, the system analysis involves matrix and vector quantities. One
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of the advantages of the state-space model is the easier modeling of systems with
multiple inputs and outputs. For simplicity, we describe systems with single input and
single output only. The output y(n) of the system, shown in Figure 12.1, is given by

y(n) = −b2a1q1(n) − b2a0q2(n)

+ b1q1(n) + b0q2(n) + b2x(n)

The output equation is an algebraic (not a difference) equation. We can write the
state and output equations, using vectors and matrices, as

[
q1(n + 1)

q2(n + 1)

]
=

[−a1 −a0

1 0

] [
q1(n)

q2(n)

]
+

[
1

0

]
x(n)

y(n) = [
b1 − b2a1 b0 − b2a0

] [
q1(n)

q2(n)

]
+ b2x(n)

Let us define the state vector q(n) as

q(n) =
[

q1(n)

q2(n)

]

Then, with

A =
[−a1 −a0

1 0

]
B =

[
1

0

]
C = [

b1 − b2a1 b0 − b2a0
]

D = b2,

the general state-space model description is given as

q(n + 1) = Aq(n) + Bx(n)

y(n) = Cq(n) + Dx(n)

A block diagram representation of the state-space model of an Nth-order system,
with single input and single output, is shown in Figure 12.2. Parallel lines terminating
with an arrowhead indicate that the signal is a vector quantity.

Example 12.1. Derive the state-space model of the system governed by the difference
equation

y(n) − 2y(n − 1) + 3y(n − 2) = 2x(n) − 3x(n − 1) + 4x(n − 2)

Assign the state variables as shown in Figure 12.1.
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Figure 12.2 Block diagram representation of the state-space model of an Nth-order system, with single
input and single output

Solution

With

A =
[−a1 −a0

1 0

]
=

[
2 −3

1 0

]
B =

[
1

0

]

C = [
b1 − b2a1 b0 − b2a0

] = [
1 −2

]
D = b2 = 2

the state-space model of the system is

q(n + 1) =
[

q1(n + 1)

q2(n + 1)

]
=

[
2 −3

1 0

] [
q1(n)

q2(n)

]
+

[
1

0

]
x(n)

y(n) = [
1 −2

] [
q1(n)

q2(n)

]
+ 2x(n) �

While there are several realizations of a system, some realizations are more com-
monly used. The realization, shown in Figure 12.1, is called canonical form I. There
is a dual realization that can be derived by using the transpose operation of a matrix.
This realization, shown in Figure 12.3, is called canonical form II and is characterized
by the matrices defined, in terms of those of canonical form I, as

A = AT B = CT C = BT D = D

The state-space model of the canonical form II of the system in Example 12.1 is

q(n + 1) =
[

q1(n + 1)

q2(n + 1)

]
=

[
2 1

−3 0

] [
q1(n)

q2(n)

]
+

[
1

−2

]
x(n)

y(n) = [
1 0

] [
q1(n)

q2(n)

]
+ 2x(n)
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Figure 12.3 A state-space model of the canonical form II of a second-order discrete system

12.1.1 Parallel Realization

Consider a system characterized by the transfer function

H(z) = z3 + z2 − z + 1

(z + 1)(z2 + 2z + 3)

The transfer function can be expanded into partial fractions as

H(z) = 1 + 1

(z + 1)
+ −3z − 5

(z2 + 2z + 3)

The state-space model, shown in Figure 12.4 using canonical form I, is

q(n + 1) =



q1(n + 1)

q2(n + 1)

q3(n + 1)


 =




−1 0 0

0 −2 −3

0 1 0







q1(n)

q2(n)

q3(n)


 +




1

1

0


 x(n)

y(n) = [
1 −3 −5

] 


q1(n)

q2(n)

q3(n)


 + x(n)

Consider the transfer function with a repeated pole

H(z) = 2z3 − z2 + 3z − 1

(z + 1)(z + 2)2
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Figure 12.4 A state-space model of the parallel realization of a third-order discrete system, using
canonical form I

The transfer function can be expanded into partial fractions as

H(z) = 2 + −7

(z + 1)
+ −4

(z + 2)
+ 27

(z + 2)2

= 2 + −7

(z + 1)
+ 1

(z + 2)

(
−4 + 27

(z + 2)

)

The state-space model, shown in Figure 12.5 using canonical form I, is

q(n + 1) =



q1(n + 1)

q2(n + 1)

q3(n + 1)


 =




−1 0 0

0 −2 0

0 1 −2







q1(n)

q2(n)

q3(n)


 +




1

1

0


 x(n)

y(n) = [−7 −4 27
] 


q1(n)

q2(n)

q3(n)


 + 2x(n)
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Figure 12.5 A state-space model of the parallel realization of a third-order discrete system with a
repeated pole, using canonical form I

12.1.2 Cascade Realization

Consider the transfer function

H(z) = (4z + 1)(z2 + 3z + 2)

(z + 1)(z2 + 2z + 3)

In cascade form, several realizations are possible, depending on the grouping of
the numerators and denominators and the order of the sections in the cascade. Let us
assume that the first and second sections, respectively, have the transfer functions

H1(z) = (4z + 1)

(z + 1)
and H2(z) = (z2 + 3z + 2)

(z2 + 2z + 3)
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Figure 12.6 A state-space model of the cascade realization of a third-order discrete system, using
canonical form I

The state-space model, shown in Figure 12.6 using canonical form I, is

q(n + 1) =



q1(n + 1)

q2(n + 1)

q3(n + 1)


 =




−1 0 0

−3 −2 −3

0 1 0







q1(n)

q2(n)

q3(n)


 +




1

4

0


 x(n)

y(n) = [−3 1 −1
] 


q1(n)

q2(n)

q3(n)


 + 4x(n)

12.2 Time-domain Solution of the State Equation

12.2.1 Iterative Solution

The system response can be found iteratively as in the case of the difference equation
model.

Example 12.2. Find the outputs y(0), y(1), and y(2) of the system, described by
the state-space model given in Example 12.1, iteratively with the initial conditions
y(−1) = 2 and y(−2) = 3 and the input u(n), the unit-step function.

Solution
The input is x(−2) = 0, x(−1) = 0, x(0) = 1, x(1) = 1, and x(2) = 1. We need the
initial state vector values q1(0) and q2(0) to start the iteration. Therefore, we have
to derive these values from the initial output conditions y(−1) = 2 and y(−2) = 3.
Using the state equations, we get

q1(−1) = 2q1(−2) − 3q2(−2)

q2(−1) = q1(−2)
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Using the output equations, we get

y(−2) = q1(−2) − 2q2(−2) = 3

y(−1) = q1(−1) − 2q2(−1) = 2

Solving these equations, we find q1(−1) = 16
3 and q2(−1) = 5

3 . Now,

q1(0) = 2
(

16

3

)
− 3

(
5

3

)
= 17

3

q2(0) = q1(−1) = 16

3

At n = 0, we get

y(0) = [
1 −2

] [
17
3
16
3

]
+ 2 = −3

q(1) =
[

q1(1)

q2(1)

]
=

[
2 −3

1 0

] [
17
3
16
3

]
+

[
1

0

]
1 =

[− 11
3
17
3

]

At n = 1, we get

y(1) = [
1 −2

] [− 11
3
17
3

]
+ 2 = −13

q(2) =
[

q1(2)

q2(2)

]
=

[
2 −3

1 0

] [− 11
3
17
3

]
+

[
1

0

]
1 =

[− 70
3

− 11
3

]

At n = 2, we get

y(2) = [
1 −2

] [− 70
3

− 11
3

]
+ 2 = −14

�

12.2.2 Closed-form Solution

In the state-space model also, convolution–summation gives the zero-state response
of a system in the time-domain. Substituting n = 0 in the state equation, we get

q(1) = Aq(0) + Bx(0)
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Similarly, for n = 1 and n = 2, we get

q(2) = Aq(1) + Bx(1)

= A(Aq(0) + Bx(0)) + Bx(1)

= A2q(0) + ABx(0) + Bx(1)

q(3) = Aq(2) + Bx(2)

= A(A2q(0) + ABx(0) + Bx(1)) + Bx(2)

= A3q(0) + A2Bx(0) + ABx(1) + Bx(2)

Proceeding in this way, we get the general expression for the state vector as

q(n) = Anq(0) + An−1Bx(0) + An−2Bx(1) + · · · + Bx(n − 1)

=
q

zi
(n)︷ ︸︸ ︷

Anq(0) +

q
zs

(n)︷ ︸︸ ︷
n−1∑
m=0

An−1−mBx(m) n = 1, 2, 3, . . .

The first and the second expressions on the right-hand side are, respectively, the
zero-input and zero-state components of the state vector q(n). The second expression
is the convolution-summation An−1u(n − 1) ∗ Bx(n). Convolution of two matrices is
similar to the multiplication operation of two matrices with the multiplication of the
elements replaced by the convolution of the elements. Once we know the state vector,
we get the output of the system using the output equation as

y(n) = Cq(n) + Dx(n)

=
yzi(n)︷ ︸︸ ︷

CAnq(0) +

yzs(n)︷ ︸︸ ︷
n−1∑
m=0

CAn−1−mBx(m) + Dx(n) n = 1, 2, 3, . . .

The term CAnq(0) is the zero-input component and the other two terms constitute
the zero-state component of the system response y(n). The zero-input response of the
system depends solely on the matrix An. This matrix is called the state transition or
fundamental matrix of the system. This matrix, for an Nth-order system, is evaluated,
using the Cayley–Hamilton theorem, as

An = c0I + c1A + c2A
2 + · · · + cN−1A

(N−1)
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where




c0

c1

· · ·
cN−1


 =




1 λ1 λ2
1 · · · λN−1

1

1 λ2 λ2
2 · · · λN−1

2

· · ·
1 λN λ2

N · · · λN−1
N




−1 


λn
1

λn
2

· · ·
λn

N




and λ1, λ2, . . . , λN are the N distinct characteristic values of A. The characteristic
equation of the matrix A is det(zI − A) = 0, where the abbreviation det stands for
determinant and I is the identity matrix of the same size of that of A. The expanded
form of det(zI − A) is a polynomial in z called the characteristic polynomial of A.
The roots, which are the solutions of the characteristic equation, of this polynomial
are the characteristic values of A.

For a value λr repeated m times, the first row corresponding to that value will remain
the same as for a distinct value and the m − 1 successive rows will be successive
derivatives of the first row with respect to λr. For example, with the first value of a
forth-order system repeating two times, we get




c0

c1

c2

c3


 =




1 λ1 λ2
1 λ3

1

0 1 2λ1 3λ2
1

1 λ2 λ2
2 λ3

2

1 λ3 λ2
3 λ3

3




−1 


λn
1

nλn−1
1

λn
2

λn
3




Example 12.3. Derive the characteristic polynomial and determine the characteristic
roots of the system with the state-space model as given in Example 12.1.

Solution

A =
[

2 −3

1 0

]
(zI − A) = z

[
1 0

0 1

]
−

[
2 −3

1 0

]
=

[
z − 2 3

−1 z

]

The characteristic polynomial of the system, given by the determinant of this
matrix, is

z2 − 2z + 3

The characteristic roots, which are the roots of this polynomial, are

λ1 = 1 + j
√

2 and λ2 = 1 − j
√

2 �
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Example 12.4. Find a closed-form expression for the output y(n) of the system,
described by the state-space model given in Example 12.1, using the time-domain
method, with the initial conditions y(−1) = 2 and y(−2) = 3 and the input u(n), the
unit-step function.

Solution
The initial state vector was determined, from the given initial output conditions, in
Example 12.2 as

q1(0) = 17

3
q2(0) = 16

3

The characteristic values, as determined in Example 12.3, are

λ1 = 1 + j
√

2 and λ2 = 1 − j
√

2

The transition matrix is given by

An = c0I + c1A

= c0

[
1 0

0 1

]
+ c1

[
2 −3

1 0

]
=

[
c0 + 2c1 −3c1

c1 c0

]

where

[
c0

c1

]
=

[
1 λ1

1 λ2

]−1 [
λn

1

λn
2

]

= j

2
√

2

[
1 − j

√
2 −1 − j

√
2

−1 1

] [
(1 + j

√
2)n

(1 − j
√

2)n

]

= j

2
√

2

[
(1 − j

√
2)(1 + j

√
2)n + (−1 − j

√
2)(1 − j

√
2)n

−(1 + j
√

2)n + (1 − j
√

2)n

]

An = j

2
√

2

[−(1+j
√

2)(n+1)+(1 − j
√

2)(n+1) 3(1+j
√

2)n−3(1−j
√

2)n

−(1+j
√

2)n+(1−j
√

2)n 3(1+j
√

2)(n−1)−3(1−j
√

2)(n−1)

]

As a check on An, verify that An = I with n = 0 and An = A with n = 1.
The zero-input component of the state vector is

qzi(n) = Anq(0) = j

6
√

2

[
(31 − j17

√
2)(1 + j

√
2)n − (31 + j17

√
2)(1 − j

√
2)n

(−1 − j16
√

2)(1 + j
√

2)n + (1 − j16
√

2)(1 − j
√

2)n

]
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Using the fact that the sum a complex number and its conjugate is twice the real
part of either of the numbers, we get

qzi(n) =

 17

3 (
√

3)n cos(tan−1(
√

2)n) − 31
3
√

2
(
√

3)n sin(tan−1(
√

2)n))

16
3 (

√
3)n cos(tan−1(

√
2)n) + 1

3
√

2
(
√

3)n sin(tan−1(
√

2)n))




The zero-input response yzi(n) is given by

CAnq(0) = [
1 −2

] 
 17

3 (
√

3)n cos(tan−1(
√

2)n) − 31
3
√

2
(
√

3)n sin(tan−1(
√

2)n))

16
3 (

√
3)n cos(tan−1(

√
2)n) + 1

3
√

2
(
√

3)n sin(tan−1(
√

2)n))




= (−5(
√

3)n cos(tan−1(
√

2)n) − 11√
2

(
√

3)n sin(tan−1(
√

2)n))u(n)

The first four values of the zero-input response yzi(n) are

yzi(0) = −5 yzi(1) = −16 yzi(2) = −17 yzi(3) = 14

The zero-state component of the state vector is

qzs(n) =
n−1∑
m=0

An−1−mBx(m)

The convolution-summation, An−1u(n − 1) ∗ Bx(n), can be evaluated, using the
shift theorem of convolution (Chapter 4), by evaluating Anu(n) ∗ Bx(n) first and then
replacing n by n − 1.

Bx(n) =
[

1

0

]
u(n) =

[
u(n)

0

]

An ∗ Bx(n) = j

2
√

2

[
(−(1 + j

√
2)(n+1) + (1 − j

√
2)(n+1)) ∗ u(n)

(−(1 + j
√

2)n + (1 − j
√

2)n) ∗ u(n)

]

Since the first operand of the convolutions is the sum of two complex conjugate
expressions and the convolution of p(n) and u(n) is equivalent to the sum of the first
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n + 1 values of p(n), we get

An ∗ Bx(n)

=




2 Re
{(

− 1
2 − j

2
√

2

) ∑n
m=0(1 + j

√
2)m

}

2 Re
{(

− j

2
√

2

) ∑n
m=0(1 + j

√
2)m

}



=

2 Re

{(
1
2 − j

2
√

2

) (
1−(1+j

√
2)n+1

1−(1+j
√

2)

)}
2 Re

{(
− j

2
√

2

) (
1−(1+j

√
2)n+1

1−(1+j
√

2)

)}



=

 1

2 − 1
2 (

√
3)(n+1) cos(tan−1(

√
2)(n + 1)) + 1√

2
(
√

3)(n+1) sin(tan−1(
√

2)(n + 1))
1
2 − 1

2 (
√

3)(n+1) cos(tan−1(
√

2)(n + 1))




Replacing n = n − 1, we get

qzs(n) = An−1 ∗ Bx(n)

=

 1

2 − 1
2 (

√
3)n cos(tan−1(

√
2)n) + 1√

2
(
√

3)n sin(tan−1(
√

2)n)
1
2 − 1

2 (
√

3)n cos(tan−1(
√

2))




The zero-state response is given by multiplying the state vector with the C vector
and adding the input signal as

yzs(n) =
[

1 − 2
] 
 1

2 − 1
2 (

√
3)n cos(tan−1(

√
2)n) + 1√

2
(
√

3)n sin(tan−1(
√

2)n)
1
2 − 1

2 (
√

3)n cos(tan−1(
√

2))


 u(n − 1)

+ 2u(n)

= (−1

2
+ 1

2
(
√

3)n cos(tan−1(
√

2)n) + 1√
2

(
√

3)n sin(tan−1(
√

2)n))u(n − 1) + 2u(n)

= (1.5 + 1

2
(
√

3)n cos(tan−1(
√

2)n) + 1√
2

(
√

3)n sin(tan−1(
√

2)n))u(n)

The first four values of the zero-state response yzs(n) are

yzs(0) = 2 yzs(1) = 3 yzs(2) = 3 yzs(3) = 0
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Adding the zero-input and the zero-state components, we get the total response of
the system as

y(n) = 1.5 − 4.5(
√

3)n cos(tan−1(
√

2)n)

− 10√
2

(
√

3)n sin(tan−1(
√

2)n) n = 0, 1, 2, . . .

The first four values of the total response y(n) are

y(0) = −3, y(1) = −13, y(2) = −14, y(3) = 14 �

12.2.3 The Impulse Response

The impulse response, h(n), is the output of an initially relaxed system with the input
x(n) = δ(n) and is given by

h(n) =
n−1∑
m=0

CAn−1−mBx(m) + Dx(n) = CAn−1Bu(n − 1) + Dδ(n)

Example 12.5. Find the closed-form expression for the impulse response of the
system, described by the state-space model given in Example 12.1, using the time-
domain method.

Solution
The impulse response is given by

h(n) = CAn−1Bu(n − 1) + Dδ(n)

= [
1 −2

] j

2
√

2

[
(−(1 + j

√
2)n + (1 − j

√
2)n)

(−(1 + j
√

2)(n−1) + (1 − j
√

2)(n−1))

]
+ 2δ(n)

= 1

−j2
√

2

[
(1 − j

√
2)(1 + j

√
2)n−1 + (−1 − j

√
2)(1 − j

√
2)n−1

]
+ 2δ(n)

= 2δ(n) + ((
√

3)n−1 cos((tan−1(
√

2))(n − 1))

− 1√
2

(
√

3)n−1 sin((tan−1(
√

2))(n − 1)))u(n − 1) n = 0, 1, 2, . . .

The first four values of the impulse response h(n) are

h(0) = 2, h(1) = 1, h(2) = 0, h(3) = −3 �
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12.3 Frequency-domain Solution of the State Equation

The z-transform of a vector function, such as q(n), is defined to be the vector function
Q(z), where the elements are the transforms of the corresponding elements of q(n).
Taking the z-transform of the state equation, we get

zQ(z) − zq(0) = AQ(z) + BX(z)

We have used the left shift property of the z-transform and q(0) is the initial state
vector. Solving for Q(z), we get

Q(z) =
Q

zi
(z)︷ ︸︸ ︷

(zI − A)−1zq(0) +
Q

zs
(z)︷ ︸︸ ︷

(zI − A)−1BX(z)

The inverse z-transforms of the first and the second expressions on the right-hand
side yield, respectively, the zero-input and zero-state components of the state vector
q(n). Taking the z-transform of the output equation, we get

Y (z) = CQ(z) + DX(z)

Now, substituting for Q(z), we get

Y (z) =
Yzi(z)︷ ︸︸ ︷

Cz(zI − A)−1q(0) +
Yzs(z)︷ ︸︸ ︷

(C(zI − A)−1B + D)X(z)

The inverse z-transforms of the first and the second expressions on the right-
hand side yield, respectively, the zero-input and zero-state components of the system
response y(n). The inverse z-transform of (z(zI − A)−1), by correspondence with
the equation for state vector in time-domain, is An, the transition or fundamental
matrix of the system. With the system initial conditions zero, the transfer function is
given by

H(z) = Y (z)

X(z)
= (C(zI − A)−1B + D)

Example 12.6. Find a closed-form expression for the output y(n) of the system,
described by the state-space model given in Example 12.1, using the frequency-domain
method, with the initial conditions y(−1) = 2 and y(−2) = 3 and the input u(n), the
unit-step function.
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Solution
The initial state vector

q(0) =
[

17
3
16
3

]

is derived in Example 12.2 from the given initial output conditions.

(zI − A) =
[

z − 2 3

−1 z

]
and (zI − A)−1 =

[
z

z2−2z+3 − 3
z2−2z+3

1
z2−2z+3

z−2
z2−2z+3

]

As a check on (zI − A)−1, we use the initial value theorem of the z-transform to
verify that

lim
z→∞ z(zI − A)−1 = I = A0

The transform of the zero-input component of the state vector is

Qzi(z) = z(zI − A)−1q(0)

= z

[
z

z2−2z+3 − 3
z2−2z+3

1
z2−2z+3

z−2
z2−2z+3

] [
17
3
16
3

]
= z

3

[ 17z−48
z2−2z+3
16z−15
z2−2z+3

]

=



( 17
6 +j 31

6
√

2
)z

z−1−j
√

2
+ ( 17

6 −j 31
6
√

2
)z

z−1+j
√

2

( 8
3 −j 1

6
√

2
)z

z−1−j
√

2
+ ( 8

3 +j 1
6
√

2
)z

z−1+j
√

2




Finding the inverse z-transform and simplifying, we get the zero-input component
of the state vector as

qzi(n) =

 17

3 (
√

3)n cos(tan−1(
√

2)n) − 31
3
√

2
(
√

3)n sin(tan−1(
√

2)n))
16
3 (

√
3)n cos(tan−1(

√
2)n) + 1

3
√

2
(
√

3)n sin(tan−1(
√

2)n))


 u(n)

The transform of the zero-state component of the state vector is

Qzs(z) = z(zI − A)−1BX(z)

=
[

z
z2−2z+3 − 3

z2−2z+3
1

z2−2z+3
z−2

z2−2z+3

] [
z

z−1

0

]
= z

[ z
(z−1)(z2−2z+3)

1
(z−1)(z2−2z+3)

]

=



( 1
2 )z

z−1 − 1
4 (1+j

√
2)z

z−1−j
√

2
− 1

4 (1−j
√

2)z

z−1+j
√

2

( 1
2 )z

z−1 − 1
4 z

z−1−j
√

2
− 1

4 z

z−1+j
√

2
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Finding the inverse z-transform and simplifying, we get the zero-state component
of the state vector as

qzs(n) =

 1

2 − 1
2 (

√
3)n cos(tan−1(

√
2)n) + 1√

2
(
√

3)n sin(tan−1(
√

2)n)
1
2 − 1

2 (
√

3)n cos(tan−1(
√

2))


 u(n)

Using the output equation, the output can be computed as given in Example 12.4.
�

Example 12.7. Find a closed-form expression the impulse response of the system,
described by the state-space model given in Example 12.1, using the frequency-domain
method.

Solution
The transfer function of a system is given by

H(z) = (C(zI − A)−1B + D)

H(z) = [
1 −2

] [
z

z2−2z+3 − 3
z2−2z+3

1
z2−2z+3

z−2
z2−2z+3

] [
1

0

]
+ 2 = z − 2

(z2 − 2z + 3)
+ 2

Expanding into partial fractions, we get

H(z) = 2 +
0.5 + j 1

2
√

2

z − 1 − j
√

2
+

0.5 − j 1
2
√

2

z − 1 + j
√

2

Finding the inverse z-transform and simplifying, we get

h(n) = 2δ(n) + ((
√

3)n−1 cos((tan−1(
√

2))(n − 1))

− 1√
2

(
√

3)n−1 sin((tan−1(
√

2))(n − 1)))u(n − 1), n = 0, 1, 2, . . .

�

12.4 Linear Transformation of State Vectors

For a specific input–output relationship of a system, the system can have different
internal structures. By a linear transformation of a state vector, we can obtain another
vector, implying a different internal structure of the system. Let us find the state-space
model of a system with state vector q using another state vector q such that q = Pq

and q = P−1q, where P is the N × N transformation matrix and P−1 exists. With the
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new state vector, the state equation can be written as

P−1q(n + 1) = AP−1q(n) + Bx(n)

Premultiplying by P , we get

q(n + 1) = PAP−1q(n) + PBx(n)

With A = PAP−1 and B = PB, the state equation can be written as

q(n + 1) = Aq(n) + Bx(n)

With C = CP−1, the output equation can be written as

y(n) = Cq(n) + Dx(n)

Some properties of A and A matrices can be used to check the computation of A.
The determinants of A and A are equal. The determinants of (zI − A) and (zI − A)
are the same. The traces (sum of the diagonal elements) of A and A are equal.

Example 12.8. Derive the state-space model of the system in Example 12.1 with the
new state vector that is related to old state vector as

q1(n) = 2q1(n) + q2(n)

q2(n) = q1(n) − q2(n)

Verify that the transfer function remains the same, using either state-space model.

Solution

P =
[

2 1

1 −1

]
P−1 =

[
1
3

1
3

1
3 − 2

3

]

A = PAP−1 =
[

2 1

1 −1

] [
2 −3

1 0

] [
1
3

1
3

1
3 − 2

3

]
=

[− 1
3

17
3

− 2
3

7
3

]

B = PB =
[

2 1

1 −1

] [
1

0

]
=

[
2

1

]

C = CP−1 = [
1 −2

] [
1
3

1
3

1
3 − 2

3

]
=

[
− 1

3
5
3

]
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Figure 12.7 The state-space model of a second-order discrete system with the new state vector

The state-space model of a second-order discrete system with the new state vector
is shown in Figure 12.7. The transfer function, computed using the new state-space
model, is

H(z) =
[
−1

3

5

3

] [
z + 1

3 − 17
3

2
3 z − 7

3

]−1 [
2

1

]
+ 2 = z − 2

(z2 − 2z + 3)
+ 2

which is the same as that obtained in Example 12.7. �

12.5 Summary
• In this chapter, state-space analysis of discrete systems has been presented.
• The state-space model of a system is a generalization of input–output models, such

as the transfer function.
• State-space model, in addition to the input and the output, includes N internal

variables, called state variables, of an Nth-order system. All the outputs of the
system are expressed in terms of the state variables and the input.

• A system, characterized by an Nth-order difference equation, is characterized, in
the state-space model, by a set of N simultaneous first-order difference equations
and a set of output equations.

• Solution of the N first-order difference equations yields the values of the N state
variables. The output is expressed in terms of these values and the input. Solution of
the state equations can be obtained by time-domain or frequency-domain methods.

• The state-space model of a system can be derived from its difference equation,
transfer function, or realization diagram.
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• The state-space model is not unique, since there are infinite realizations of a system
with the same input–output relationship.

• Since it is an internal description of the system, by using linear transformation
of the state vector, we can obtain another realization of the system, although of
the same input–output relationship, with different characteristics, such as amount
of quantization noise, number of components required, sensitivity to parameter
variations, etc.

• State-space models can be easily extended to the analysis of time-varying and non-
linear systems, and systems with multiple inputs and multiple outputs.

Further Reading

1. Lathi, B. P., Linear Systems and Signals, Oxford University Press, New York, 2004.

Exercises

12.1 Given the difference equation governing a second-order system, with input x(n)
and output y(n): (a) find the state-space model of the system realized as shown in
Figure 12.1; and (b) find the state-space model of the system realized as shown
in Figure 12.3. Find the first four values of the impulse response of the system,
iteratively, using both the state-space models and verify that they are equal.
12.1.1 y(n) − 5y(n − 1) + 3y(n − 2) = −6x(n) + 4x(n − 1) − 2x(n − 2)
12.1.2 y(n) + 5y(n − 1) + 4y(n − 2) = 5x(n) − 2x(n − 1) − 6x(n − 2)
12.1.3 y(n) + 3y(n − 1) + 2y(n − 2) = 4x(n) − 5x(n − 1) + 6x(n − 2)

12.2 Given the difference equation governing a second-order system: (a) find the
state-space model of the system realized as shown in Figure 12.1; and (b) find
the state-space model of the system realized as shown in Figure 12.3. Find the
outputs y(0), y(1), and y(2) of the system for the input x(n), iteratively, using
both the state-space models and verify that they are equal. The initial conditions
of the system are y(−1) = 1 and y(−2) = 2.
12.2.1 y(n) − 5

4y(n − 1) + 3
8y(n − 2) = 3x(n) − 4x(n − 1) − 2x(n − 2),

x(n) = ( 1
2 )nu(n).

12.2.2 y(n) + 2y(n − 1) + 4y(n − 2) = 4x(n) − 2x(n − 1) − 6x(n − 2),
x(n) = u(n).

12.2.3 y(n) − y(n − 1) + 2y(n − 2) = 2x(n) − 3x(n − 1) + 2x(n − 2),
x(n) = (−1)n u(n).

12.3 Given the difference equation governing a second-order system, with input x(n)
and output y(n), find the state-space model of the system realized as shown in
Figure 12.1. Derive the closed-form expression of the impulse response of the
system using the time-domain state-space method. Give the first four values of
the impulse response.
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* 12.3.1 y(n) + y(n − 1) + 2
9y(n − 2) = x(n) − 3x(n − 1) + 2x(n − 2).

12.3.2 y(n) − y(n − 1) + y(n − 2) = 2x(n) + 3x(n − 1) + 4x(n − 2).
12.3.3 y(n) + 3y(n − 1) + 2y(n − 2) = 3x(n) − 4x(n − 1) + 2x(n − 2).

12.4 Given the difference equation governing a second-order system, find the state-
space model of the system realized as shown in Figure 12.1. Derive the closed-
form expression of the zero-input and zero-state components of the state vector,
zero-input and zero-state components of the response, and the total response of
the system, using the time-domain state-space method, for the input x(n). Give
the first four values of the zero-input, zero-state, and total responses. The initial
conditions of the system are y(−1) = −1 and y(−2) = 2.
12.4.1 y(n) + 5

6y(n − 1) + 1
6y(n − 2) = 4x(n) + 2x(n − 1) − x(n − 2),

x(n) = ( 1
2 )nu(n).

* 12.4.2 y(n) + y(n − 1) + 1
4y(n − 2) = 2x(n) − x(n − 1) + x(n − 2),

x(n) = u(n).
12.4.3 y(n) + 3y(n − 1) + 2y(n − 2) = −2x(n) − x(n − 1) + 3x(n − 2),

x(n) = cos( 2π
4 n)u(n).

12.5 Given the difference equation governing a second-order system, with input x(n)
and output y(n), find the state-space model of the system realized as shown in
Figure 12.1. Derive the closed-form expression of the impulse response of the
system using the frequency-domain state-space method. Give the first four values
of the impulse response.
12.5.1 y(n) + y(n − 1) + 2

9y(n − 2) = x(n) − 2x(n − 1) − 2x(n − 2).
12.5.2 y(n) − 3

4y(n − 1) + 1
8y(n − 2) = 3x(n) − 2x(n − 1) + x(n − 2).

*12.5.3 y(n) + 2
3y(n − 1) + 1

9y(n − 2) = 2x(n) + x(n − 1) + x(n − 2).
12.5.4 y(n) + √

2y(n − 1) + y(n − 2) = x(n − 1).
12.6 Given the difference equation governing a second-order system, find the state-

space model of the system realized as shown in Figure 12.1. Derive the closed-
form expression of the zero-input and zero-state components of the state vector,
zero-input and zero-state components of the response, and the total response of
the system, using the frequency-domain state-space method, for the given input
x(n) and the initial conditions y(−1) and y(−2). Give the first four values of the
zero-input, zero-state, and total responses.
12.6.1 y(n) − 5

6y(n − 1) + 1
6y(n − 2) = x(n − 1), x(n) = sin( 2π

4 n)u(n),
y(−1) = 0 and y(−2) = 0.

*12.6.2 y(n) + y(n − 1) + 1
4y(n − 2) = x(n) + x(n − 1) + x(n − 2),

x(n) = ( 1
3 )nu(n), y(−1) = 1 and y(−2) = 1.

12.6.3 y(n) + y(n − 1) + y(n − 2) = x(n) − 2x(n − 1) + x(n − 2),
x(n) = u(n), y(−1) = 2 and y(−2) = 1.

12.7 The state-space model of a system is given. Derive another state-space model
of the system using the given transformation matrix P . Verify that the transfer
function remains the same using either state-space model. Further verify that:
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(i) the traces and determinants of matrices A and A are equal; and (ii) the
determinants of (zI − A) and (zI − A) are the same.

12.7.1 A =
[

1 2

1 3

]
B =

[
1

2

]
C = [

2 2
]

D = 1

P =
[

1 1

1 −1

]

12.7.2 A =
[

3 −1

2 3

]
B =

[
1

2

]
C = [−2 1

]
D = 3

P =
[

2 3

1 1

]

12.7.3 A =
[

2 −1

2 1

]
B =

[
1

−1

]
C = [

2 3
]

D = 3

P =
[

0 1

1 0

]





13
State-space Analysis of
Continuous Systems

The state-space analysis of continuous systems is similar to that of discrete systems.
The realization diagrams are the same, with the delay elements replaced by integrators.
Therefore, we concentrate, in this chapter, on time-domain and frequency-domain
solutions of the state equation. The state-space model is presented in Section 13.1.
Time-domain and frequency-domain solutions of the state equation are presented,
respectively, in Sections 13.2 and 13.3. The linear transformation of state vector to
obtain different realizations of systems is described in Section 13.4.

13.1 The State-space Model

Consider the state-space model, shown in Figure 13.1, of a second-order continuous
system, characterized by the differential equation

ÿ(t) + a1ẏ(t) + a0y(t) = b2ẍ(t) + b1ẋ(t) + b0x(t)

(In this chapter, a dot over a variable indicates its first derivative and two dots
indicates its second derivative. For example, ẏ(t) = dy(t)/dt and ÿ(t) = d2y(t)/dt2.)
In addition to the input x(t) and the output y(t), we have shown two internal variables
(called the state variables), q1(t) and q2(t), of the system. State variables are a minimal
set of variables (N for an Nth-order system) of a system so that a knowledge of the
values of these variables (the state of the system) at t = t0 and those of the input for
t ≥ t0 will enable the determination of the values of the state variables for t > t0 and
the output for t ≥ t0. An infinite number of different sets, each of N state variables,
are possible for a particular Nth-order system.

A Practical Approach to Signals and Systems D. Sundararajan
© 2008 John Wiley & Sons (Asia) Pte Ltd
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Figure 13.1 A state-space model of the canonical form I of a second-order continuous system

From Figure 13.1, we can write down the following state equations defining the
state variables q1(t) and q2(t).

q̇1(t) = −a1q1(t) − a0q2(t) + x(t)

q̇2(t) = q1(t)

The first derivative of each state variable is expressed in terms of all the state
variables and the input. No derivatives of either the state variables or the input is
permitted, on the right-hand side, to have the equation in a standard form. A second-
order differential equation characterizing the system, shown in Figure 13.1, has been
decomposed into a set of two simultaneous first-order differential equations. Selecting
state variables as the output of the integrators is a natural choice, since an integrator
is characterized by a first-order differential equation. With that choice, we can write
down a state equation at the input of each integrator. However, the state variables need
not correspond to quantities those are physically observable in a system. In the state-
space model of a system, in general, an Nth-order differential equation characterizing
a system is decomposed into a set of N simultaneous first-order differential equations
of a standard form. With a set of N simultaneous differential equations, we can solve
for N unknowns. These are the N internal variables, called the state variables, of the
system. The output is expressed as a linear combination of the state variables and the
input. The concepts of impulse response, convolution, and transform analysis are all
equally applicable to the state-space model. The difference is that, as the system is
modeled using matrix and vector quantities, the system analysis involves matrix and
vector quantities. One of the advantages of the state-space model is the easier extension
to multiple inputs and outputs. For simplicity, we describe systems with single input
and single output only. The output y(t) of the system, shown in Figure 13.1, is given
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by

y(t) = −b2a1q1(t) − b2a0q2(t)

+b1q1(t) + b0q2(t) + b2x(t)

The output equation is an algebraic (not a differential) equation. We can write the
state and output equations, using vectors and matrices, as

[
q̇1(t)

q̇2(t)

]
=

[−a1 −a0

1 0

] [
q1(t)

q2(t)

]
+

[
1

0

]
x(t)

y(t) = [
b1 − b2a1 b0 − b2a0

] [
q1(t)

q2(t)

]
+ b2x(t)

Let us define the state vector q(t) as

q(t) =
[

q1(t)

q2(t)

]

Then, with

A =
[−a1 −a0

1 0

]
B =

[
1

0

]

C = [
b1 − b2a1 b0 − b2a0

]
D = b2,

the general state-space model description for continuous systems is given as

q̇(t) = Aq(t) + Bx(t)

y(t) = Cq(t) + Dx(t)

The block diagram representation of the state-space model of an Nth-order con-
tinuous system, with single input and single output, is shown in Figure 13.2. Parallel
lines terminating with an arrowhead indicate that the signal is a vector quantity.

Example 13.1. Consider the RLC circuit analyzed in Example 11.5, shown in
Figure 13.3. It is a series circuit with a resistor of 5/3 �, an inductance of two henries,
and a capacitor of 3 F. The initial current through the inductor is three amperes and the
initial voltage across the capacitor is two volts. This circuit is excited with a voltage
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Figure 13.2 Block diagram representation of the state-space model of an Nth-order continuous system,
with single input and single output

source of 3u(t) V. Assuming the capacitor voltage as the output of the circuit, find a
state space model of the circuit.

Solution
The first step in finding the model is to write down the equations governing the circuit,
using the circuit theorems and the input–output behavior of the components. Let the
current through the circuit be i(t), the voltage across the capacitor be vc(t), the input
voltage be x(t), and the output voltage be y(t). The sum of the voltages across the
components of the circuit must be equal to the input voltage. Therefore, we get

2i̇(t) + 5

3
i(t) + vc(t) = x(t)

The current in the circuit is given by i(t) = 3v̇c(t). The next step is to select the
minimum set of state variables required. Let the current through the inductor, i(t),
be the first state variable q1(t). Let the capacitor voltage, vc(t), be the second state
variable q2(t). The next step is to substitute the state variables for the variables in
the circuit differential equations. After substituting, these equations are rearranged
such that only the first derivatives of the state variables appear on the left side and no

Figure 13.3 A RLC circuit
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derivatives appear on the right side. For this example, we get

q̇1(t) = −5

6
q1(t) − 1

2
q2(t) + 1

2
x(t)

q̇2(t) = 1

3
q1(t)

These are the state equations of the circuit. The output equation of the circuit is
y(t) = vc(t) = q2(t). Using matrices, we get the state space model as

q̇(t) =
[

q̇1(t)

q̇2(t)

]
=

[− 5
6 − 1

2
1
3 0

] [
q1(t)

q2(t)

]
+

[
1
2

0

]
x(t)

y(t) = [
0 1

] [
q1(t)

q2(t)

]

Therefore,

A =
[− 5

6 − 1
2

1
3 0

]
B =

[
1
2

0

]
C = [

0 1
]

D = 0

The state-space model of the RCL circuit is shown in Figure 13.4. It is similar to that
shown in Figure 13.1, except that there is a multiplier with coefficient 1/3 between
the two integrators. �

Figure 13.4 State-space model of the RCL circuit shown in Figure 13.3
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13.2 Time-domain Solution of the State Equation

We have to find the solution to the state equation. For this purpose, we need the
exponential of a matrix eAt and its derivative. Similar to the infinite series defining
an exponential of a scalar,

eAt = I + At + A2 t2

2!
+ A3 t3

3!
+ · · ·

This series is absolutely and uniformly convergent for all values of t. Therefore, it
can be differentiated or integrated term by term.

d(eAt)

dt
= A + A2t + A3 t2

2!
+ A4 t3

3!
+ · · · = AeAt = eAtA

By premultiplying both sides of state equation by e−At , we get

e−At q̇(t) = e−AtAq(t) + e−AtBx(t)

By shifting the first term on the right-hand side to the left, we get

e−At q̇(t) − e−AtAq(t) = e−AtBx(t)

Since

d(e−Atq(t))

dt
= e−At q̇(t) − e−AtAq(t),

we can write the previous equation as

d(e−Atq(t))

dt
= e−AtBx(t)

Integrating both sides of this equation from 0− to t, we get

e−Atq(t)
∣∣∣t
0− =

∫ t

0−
e−AτBx(τ)dτ

Applying the limit and then premultiplying both sides by eAt , we get

q(t) =
q

zi
(t)︷ ︸︸ ︷

eAtq(0−) +

q
zs

(t)︷ ︸︸ ︷∫ t

0−
eA(t−τ)Bx(τ)dτ
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The first and second expressions on the right-hand side are, respectively, the zero-
input and zero-state components of the state vector q(t). Note that the part of the
expression

∫ t

0−
eA(t−τ)Bx(τ)dτ

is the convolution of the matrices eAt and Bx(t), eAt ∗ Bx(t). Convolution of matrices
is the same as the multiplication of two matrices, except that the product of two
elements is replaced by their convolution. If the initial state vector values are given at
t = t−0 , rather than at t = 0−, the state equation is modified as

q(t) = eA(t−t0)q(t−0 ) +
∫ t

t−0
eA(t−τ)Bx(τ)dτ

The matrix eAt is called the state-transition matrix or the fundamental matrix of
the system.

Once we know the state vector, we get the output of the system using the output
equation as

y(t) = C

(
eAtq(0−) +

∫ t

0−
eA(t−τ)Bx(τ)dτ

)
+ Dx(t)

=
yzi(t)︷ ︸︸ ︷

CeAtq(0−) +

yzs(t)︷ ︸︸ ︷
C

∫ t

0−
eA(t−τ)Bx(τ)dτ + Dx(t)

The first expression on the right-hand side is the zero-input component of the system
response y(t) and the other two expressions yield the zero-state component. The zero-
input response of the system depends solely on the state-transition matrix eAt . This
matrix, for an Nth-order system, is evaluated, using the Cayley–Hamilton theorem,
as

eAt = c0I + c1A + c2A
2 + · · · + cN−1A

(N−1)

where




c0

c1

· · ·
cN−1


 =




1 λ1 λ2
1 · · · λN−1

1

1 λ2 λ2
2 · · · λN−1

2

· · ·
1 λN λ2

N · · · λN−1
N




−1 


eλ1t

eλ2t

· · ·
eλNt
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and λ1, λ2, . . . , λN are the N distinct characteristic roots of A. For a root λr repeated
m times, the first row corresponding to that root will remain the same as for a distinct
root and the m − 1 successive rows will be successive derivatives of the first row with
respect to λr. For example, with the first root of a fourth-order system repeating two
times, we get




c0

c1

c2

c3


 =




1 λ1 λ2
1 λ3

1

0 1 2λ1 3λ2
1

1 λ2 λ2
2 λ3

2

1 λ3 λ2
3 λ3

3




−1 


eλ1t

teλ1t

eλ2t

eλ3t




Example 13.2. Find a closed-form expression for the output y(t) of the system,
described by the differential equation

ÿ(t) + 4ẏ(t) + 4y(t) = ẍ(t) + ẋ(t) + 2x(t)

using the time-domain method, with the initial conditions y(0−) = 2 and ẏ(0−) = 3
and the input u(t), the unit-step function. Assume canonical form I realization of the
system as shown in Figure 13.1.

Solution

A =
[−4 −4

1 0

]
B =

[
1

0

]
C = [−3 −2

]
D = 1

The initial state vector has to be found from the given initial output conditions using
the state and output equations. From the state equation, we get

q̇1(0−) = −4q1(0−) − 4q2(0−)

q̇2(0−) = q1(0−)

Note that the input x(t) is zero at t = 0−. From the output equation, we get

−3q̇1(0−) − 2q̇2(0−) = 3

−3q1(0−) − 2q2(0−) = 2

Solving these equations, we get the initial state vector as

q1(0−) = −15

8
q2(0−) = 29

16
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The characteristic polynomial of a system is given by the determinant of the matrix
(sI − A), where I is the identity matrix of the same size as A. While we can write
down the characteristic polynomial from the differential equation, we just show how
it can be found using the matrix A. For this example,

(sI − A) = s

[
1 0

0 1

]
−

[−4 −4

1 0

]
=

[
s + 4 4

−1 s

]

The characteristic polynomial of the system, given by the determinant of this matrix,
is

s2 + 4s + 4

With each of the infinite different realizations of a system, we get the A matrix with
different values. However, as the system is the same, its characteristic polynomial,
given by the determinant of (sI − A), will be the same for any valid A. The charac-
teristic roots, which are the roots of this polynomial, are λ1 = −2 and λ2 = −2. The
transition matrix is given by

eAt = c0I + c1A

where

[
c0

c1

]
=

[
1 λ1

0 1

]−1 [
eλ1t

teλ1t

]
=

[
1 2

0 1

] [
e−2t

te−2t

]

=
[

e−2t + 2te−2t

te−2t

]

eAt = c0

[
1 0

0 1

]
+ c1

[−4 −4

1 0

]
=

[
c0 − 4c1 −4c1

c1 c0

]

=
[

e−2t − 2te−2t −4te−2t

te−2t e−2t + 2te−2t

]

Since q(t) = eAtq(0), with t = 0, we get q(0) = eA0q(0). That is, I = eA0. This
result, which can be used to check the state transition matrix, is also obvious from the
infinite series for eAt .
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The state vector q(t) can be computed as follows.

q(t) =
[

e−2t − 2te−2t −4te−2t

te−2t e−2t + 2te−2t

] [− 15
8
29
16

]

+
[

e−2t − 2te−2t −4te−2t

te−2t e−2t + 2te−2t

]
∗

([
1

0

]
u(t)

)

=
[

e−2t − 2te−2t −4te−2t

te−2t e−2t + 2te−2t

] [− 15
8
29
16

]

+
[∫ t

0(e−2τ − 2τe−2τ)dτ∫ t
0(τe−2τ)dτ

]

=
[− 15

8 e−2t − 7
2 te−2t

29
16e

−2t + 7
4 te

−2t

]
+

[
te−2t

− 1
4e

−2t − 1
2 te−2t + 1

4

]

=
[ − 15

8 e−2t − 5
2 te−2t

1
4 + 25

16e
−2t + 5

4 te
−2t

]

The output y(t) can be computed using the output equation. The zero-input com-
ponent of the output is given by

yzi(t) = [−3 −2
] [− 15

8 e−2t − 7
2 te−2t

29
16e

−2t + 7
4 te

−2t

]

= 2e−2t + 7te−2t

The zero-state component of the output is given by

yzs(t) = [−3 −2
] [

te−2t

− 1
4e

−2t − 1
2 te−2t + 1

4

]
+ 1

= 0.5 + 0.5e−2t − 2te−2t

The total response of the system is the sum of the zero-input and zero-state com-
ponents of the response and is given as

y(t) = (0.5 + 2.5e−2t + 5te−2t)u(t) �

Example 13.3. Find the closed-form expression for the impulse response of the sys-
tem, described by the state-space model given in Example 13.2, using the time-domain
method.
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Solution

CeAt = [−3 −2
] [

c0 − 4c1 −4c1

c1 c0

]

= [−3c0 + 10c1 −2c0 + 12c1
]

Since the convolution output of a function with the unit-impulse is itself and the
vector B is a constant, the impulse response is given by

h(t) = CeAtB + Dδ(t) = −3c0 + 10c1 + δ(t)

h(t) = (δ(t) − 3e−2t + 4te−2t)u(t)
�

13.3 Frequency-domain Solution of the State Equation

The Laplace transform of a vector function, such as q(t), is defined to be the vector
function Q(s), where the elements are the transforms of the corresponding elements
of q(t). Taking the Laplace transform of the state equation, we get

sQ(s) − q(0−) = AQ(s) + BX(s)

We have used the time-differentiation property of the Laplace transform and q(0−)
is the initial state vector. Since IQ(s) = Q(s), where I is the identity matrix of the
same size as the matrix A, and collecting the terms involving Q(s), we get

(sI − A)Q(s) = q(0−) + BX(s)

The inclusion of the identity matrix is necessary to combine the terms involving
Q(s). Premultiplying both sides by (sI − A)−1, which is the inverse of (sI − A), we
get

Q(s) =
q

zi
(s)︷ ︸︸ ︷

(sI − A)−1q(0−) +
q

zs
(s)︷ ︸︸ ︷

(sI − A)−1BX(s)

The inverse Laplace transforms of the first and second expressions on the right-hand
side are, respectively, the zero-input and zero-state components of the state vector q(t).
Taking the Laplace transform of the output equation, we get

Y (s) = CQ(s) + DX(s)
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Substituting for Q(s), we get

Y (s) =
yzi(s)︷ ︸︸ ︷

C(sI − A)−1q(0−) +
yzs(s)︷ ︸︸ ︷

(C(sI − A)−1B + D)X(s)

The inverse Laplace transforms of the first and second expressions on the right-
hand side are, respectively, the zero-input and zero-state components of the system
response y(t). Comparing with the expression for Q(t), we find that the inverse Laplace
transform of ((sI − A)−1) is eAt , the transition or fundamental matrix of the system.
With the system initial conditions zero, the transfer function is given by

H(s) = Y (s)

X(s)
= (C(sI − A)−1B + D)

Example 13.4. Solve the problem of Example 13.2 using the frequency-domain
method.

Solution
The initial state vector is

q(0−) =
[− 15

8
29
16

]

as derived in Example 13.2 from the given initial output conditions.

(sI − A) = s

[
1 0

0 1

]
−

[−4 −4

1 0

]
=

[
s + 4 4

−1 s

]

(sI − A)−1 = 1

s2 + 4s + 4

[
s −4

1 s + 4

]
=

[
s

s2+4s+4
−4

s2+4s+4
1

s2+4s+4
s+4

s2+4s+4

]

We used the fact that I = eA0 to check the computation of eAt . In the frequency-
domain, the corresponding check, using the initial value theorem of the Laplace trans-
form, is lims→∞ s(sI − A)−1 = I.

The zero-input component of the state vector is

qzi(s) = (sI − A)−1q(0−) =
[

s
s2+4s+4

−4
s2+4s+4

1
s2+4s+4

s+4
s2+4s+4

] [− 15
8
29
16

]

=

 − 15

8 s− 29
4

s2+4s+4
29
16 s+ 43

8
s2+4s+4


 =


− 7

2
(s+2)2 − 15

8
s+2

7
4

(s+2)2 + 29
16

s+2
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Taking the inverse Laplace transform, we get

qzi(t) =
[− 15

8 e−2t − 7
2 te−2t

29
16e

−2t + 7
4 te

−2t

]

The zero-state component of the state vector is

qzs(s) = (sI − A)−1B)X(s) =
[

s
s2+4s+4

−4
s2+4s+4

1
s2+4s+4

s+4
s2+4s+4

] [
1

0

]
1

s

=
[ 1

s2+4s+4
1

s(s2+4s+4)

]
=


 1

(s+2)2

1
4
s

− 1
2

(s+2)2 − 1
4

s+2




Taking the inverse Laplace transform, we get

qzs(t) =
[

te−2t

1
4 − 1

4e
−2t − 1

2 te−2t

]

Using the output equation, the output can be computed as given in Example 13.2.
�

Example 13.5. Find the closed-form expression for the impulse response of the sys-
tem, described by the state-space model given in Example 13.2, using the frequency-
domain method.

Solution
The transfer function is given by

H(s) = Y (s)

X(s)
= (C(sI − A)−1B + D)

H(s) = [−3 −2
] [

s
s2+4s+4

−4
s2+4s+4

1
s2+4s+4

s+4
s2+4s+4

] [
1

0

]
+ 1

= −3s − 2

(s2 + 4s + 4)
+ 1 = 1 − 3

s + 2
+ 4

(s + 2)2

Finding the inverse Laplace transform, we get

h(t) = (δ(t) − 3e−2t + 4te−2t)u(t) �
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13.4 Linear Transformation of State Vectors

In common with discrete systems, for a specific input–output relationship of a continu-
ous system, the system can have different internal structures. By a linear transformation
of a state vector, we can obtain another vector, implying different internal structure
of the system. Let us find the state-space model of a system with state vector q using
another state vector q such that q = Pq and q = P−1q, where P is the N × N trans-
formation matrix and P−1 exists. With the new state vector, the state equation can be
written as

P−1 ˙q(t) = AP−1q(t) + Bx(t)

Premultiplying by P , we get

˙q(t) = PAP−1q(t) + PBx(t)

With A = PAP−1 and B = PB, the state equation can be written as

˙q(t) = Aq(t) + Bx(t)

With C = CP−1, the output equation can be written as

y(t) = Cq(t) + Dx(t)

Some properties of A and A matrices can be used to check the computation of A.
The determinants of A and A are equal. The determinants of (sI − A) and (sI − A)
are the same. The traces (sum of the diagonal elements) of A and A are equal.

Example 13.6. Derive the state-space model of the system in Example 13.1 with the
new state vector that is related to old state vector as

q1(t) = q1(t) + 2q2(t)

q2(t) = −3q1(t) + 4q2(t)

Verify that the transfer function remains the same using either state-space model.

Solution

P =
[

1 2

−3 4

]
P−1 =

[
4

10 − 2
10

3
10

1
10

]

A = PAP−1 =
[

1 2

−3 4

] [− 5
6 − 1

2
1
3 0

] [
4

10 − 2
10

3
10

1
10

]
=

[− 13
60 − 1

60
119
60 − 37

60

]
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Figure 13.5 The state-space model of a second-order continuous system with the new state vector

B = PB =
[

1 2

−3 4

] [
1
2

0

]
=

[
1
2

− 3
2

]

C = CP−1 = [
0 1

] [
4

10 − 2
10

3
10

1
10

]
=

[
3

10
1

10

]

The state-space model of a second-order continuous system with the new state
vector is shown in Figure 13.5. This realization requires more components than that
shown in Figure 13.4. However, it must be noted that, while minimum number of
components is of great importance, there are other criteria, such as less coefficient
sensitivity, that could decide which of the realizations of a system is suitable for a
particular application.

The transfer function, using the new state-space model, is computed as follows.

(sI − A) = s

[
1 0

0 1

]
−

[− 13
60 − 1

60
119
60 − 37

60

]
=

[
s + 13

60
1

60

− 119
60 s + 37

60

]

(sI − A)−1 = 1

s2 + 5
6s + 1

6

[
s + 37

60 − 1
60

119
60 s + 13

60

]
=




s+ 37
60

s2+ 5
6 s+ 1

6

− 1
60

s2+ 5
6 s+ 1

6
119
60

s2+ 5
6 s+ 1

6

s+ 13
60

s2+ 5
6 s+ 1

6




H(s) =
[

3

10

1

10

] 


s+ 37
60

s2+ 5
6 s+ 1

6

− 1
60

s2+ 5
6 s+ 1

6
119
60

s2+ 5
6 s+ 1

6

s+ 13
60

s2+ 5
6 s+ 1

6




[
1
2

− 3
2

]
=

1
6

(s2 + 5
6s + 1

6 )
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The transfer function, using the old state-space model, is computed as follows.

(sI − A) = s

[
1 0

0 1

]
−

[− 5
6 − 1

2
1
3 0

]
=

[
s + 5

6
1
2

− 1
3 s

]

(sI − A)−1 = 1

s2 + 5
6s + 1

6

[
s − 1

2
1
3 s + 5

6

]
=




s

s2+ 5
6 s+ 1

6

− 1
2

s2+ 5
6 s+ 1

6
1
3

s2+ 5
6 s+ 1

6

s+ 5
6

s2+ 5
6 s+ 1

6




H(s) = [0 1]




s

s2+ 5
6 s+ 1

6

− 1
2

s2+ 5
6 s+ 1

6
1
3

s2+ 5
6 s+ 1

6

s+ 5
6

s2+ 5
6 s+ 1

6




[
1
2

0

]
=

1
6

(s2 + 5
6s + 1

6 )
,

which is the same as that obtained above. �

13.5 Summary
• In this chapter, state-space analysis of continuous systems has been presented.
• The state-space model of a system is a generalization of input–output models, such

as the transfer function.
• The state-space model, in addition to the input and the output, includes N internal

variables of the system, called state variables, for an Nth-order system. All the
outputs of the system are expressed in terms of the state variables and the input.

• A system, characterized by an Nth-order differential equation, is characterized, in
the state-space model, by a set of N simultaneous first-order differential equations
and a set of output equations.

• Solution of the N first-order differential equations yields the values of the state
variables. The output is expressed in terms of these values and the input. Solution of
the state equations can be obtained by time-domain or frequency-domain methods.

• The state-space model of a system can be derived from its differential equation,
transfer function, or realization diagram.

• The state-space model is not unique, since there are infinite realizations of a system
with the same input–output relationship.

• Since it is an internal description of the system, by using linear transformation of
the state vector, we can obtain another realization of the system, although of the
same input–output relationship, with different characteristics, such as sensitivity to
parameter variations, number of components required, etc.

• State-space models can be easily extended to the analysis of time-varying and non-
linear systems, and systems with multiple inputs and multiple outputs.
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Further Reading

1. Lathi, B. P., Linear Systems and Signals, Oxford University Press, New York, 2004.

Exercises

13.1 Find the zero-input and zero-state components of the output of the circuit,
described in Example 13.1, using the time-domain state-space method. Find
the total output also.

13.2 Consider the series RLC circuit with a resistor of 9 �, an inductance of 3 H,
and a capacitor of 1/6 F. The initial current through the inductor is 2 A and the
initial voltage across the capacitor is 3 V. This circuit is excited with a voltage
source x(t) = 2e−3tu(t) V. Assuming the current in the circuit as the output
and the current through the inductor, q1, and the voltage across the capacitor,
q2, as the state variables, find the state space model of the circuit. Find the
zero-input and zero-state components of the output of the circuit using the
frequency-domain state-space method. Find the total output also.

13.3 Consider the series RLC circuit with a resistor of 8 �, an inductance of 2 H,
and a capacitor of 1/6 F. The initial current through the inductor is 4 A and
the initial voltage across the capacitor is 3 V. This circuit is excited with a
voltage source x(t) = 3u(t) V. Assuming the inductor voltage as the output
and the current through the inductor, q1, and the voltage across the capacitor,
q2, as the state variables, find the state space model of the circuit. Find the
zero-input and zero-state components of the output of the circuit using the
time-domain state-space method. Find the total output also.

*13.4 Consider the series RLC circuit with a resistor of 2 �, an inductance of 1 H,
and a capacitor of 1 F. The initial current through the inductor is 0 A and
the initial voltage across the capacitor is 0 V. This circuit is excited with a
voltage source x(t) = 4e−tu(t) V. Assuming the voltage across the resistor as
the output and the current through the inductor, q1, and the voltage across the
capacitor, q2, as the state variables, find the state space model of the circuit.
Find the output of the circuit using the frequency-domain state-space method.

13.5 Consider the system described by the differential equation

ÿ(t) + 5ẏ(t) + 6y(t) = 2ẍ(t) − 3ẋ(t) + 4x(t)

with the initial conditions y(0−) = 2 and ẏ(0−) = 1 and the input x(t) = 2u(t).
Assign two state variables to the output of each integrator and assume canoni-
cal form I realization of the system as shown in Figure 13.1. Find the zero-input
and zero-state components of the output of the system using the time-domain
state-space method. Find the total output also.



334 A Practical Approach to Signals and Systems

*13.6 Consider the system described by the differential equation

ÿ(t) + 4ẏ(t) + 3y(t) = ẍ(t) − 2ẋ(t) + 3x(t)

with the initial conditions y(0−) = 3 and ẏ(0−) = 1 and the input x(t) =
3e−2tu(t). Assign two state variables to the output of each integrator and
assume canonical form I realization of the system as shown in Figure 13.1.
Find the zero-input and zero-state components of the output of the system
using the time-domain state-space method. Find the total output also.

13.7 Consider the system described by the differential equation

ÿ(t) + 5ẏ(t) + 4y(t) = x(t)

with the input x(t) = sin(t + π
3 )u(t). Assign two state variables to the output of

each integrator and assume canonical form I realization of the system as shown
in Figure 13.1. Find the zero-state output of the system using the time-domain
state-space method.

13.8 Find the impulse response of the system characterized by the differential
equation, with input x(t) and output y(t),

ÿ(t) + 2ẏ(t) + y(t) = ẍ(t) + ẋ(t) + 2x(t)

using the time-domain state-space method. Assign two state variables to the
output of each integrator and assume canonical form I realization of the system
as shown in Figure 13.1.

*13.9 Find the impulse response of the system characterized by the differential
equation, with input x(t) and output y(t),

ÿ(t) + 5

6
ẏ(t) + 1

6
y(t) = ẋ(t) + x(t)

using the time-domain state-space method. Assign two state variables to the
output of each integrator and assume canonical form I realization of the system
as shown in Figure 13.1.

13.10 Find the impulse response of the system characterized by the differential
equation, with input x(t) and output y(t),

ÿ(t) + 6ẏ(t) + 5y(t) = 2ẍ(t)

using the time-domain state-space method. Assign two state variables to the
output of each integrator and assume canonical form I realization of the system
as shown in Figure 13.1.
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*13.11 Consider the system described by the differential equation

ÿ(t) + 3ẏ(t) + 2y(t) = 3ẍ(t) − ẋ(t) + 4x(t)

with the initial conditions y(0−) = 2 and ẏ(0−) = 3 and the input x(t) = 3u(t).
Assign two state variables to the output of each integrator and assume canoni-
cal form I realization of the system as shown in Figure 13.1. Find the zero-input
and zero-state components of the output of the system using the frequency-
domain state-space method. Find the total output also.

13.12 Consider the system described by the differential equation

ÿ(t) + 6ẏ(t) + 9y(t) = −2ẍ(t) + ẋ(t) − 3x(t)

with the initial conditions y(0−) = −2 and ẏ(0−) = −3 and the input x(t) =
2e−4tu(t). Assign two state variables to the output of each integrator and
assume canonical form I realization of the system as shown in Figure 13.1.
Find the zero-input and zero-state components of the output of the system
using the frequency-domain state-space method. Find the total output also.

13.13 Consider the system described by the differential equation

ÿ(t) + 6ẏ(t) + 8y(t) = x(t)

with the input x(t) = cos(2t − π
6 )u(t). Assign two state variables to the output

of each integrator and assume canonical form I realization of the system as
shown in Figure 13.1. Find the zero-state output of the system using the
frequency-domain state-space method.

13.14 Find the impulse response of the system characterized by the differential
equation, with input x(t) and output y(t),

ÿ(t) + 4ẏ(t) + 3y(t) = 3ẍ(t) − 2ẋ(t) + x(t)

using the frequency-domain state-space method. Assign two state variables to
the output of each integrator and assume canonical form I realization of the
system as shown in Figure 13.1.

*13.15 Find the impulse response of the system characterized by the differential
equation, with input x(t) and output y(t),

ÿ(t) + 2ẏ(t) + y(t) = −2ẍ(t) + 3ẋ(t) − 4x(t)

using the frequency-domain state-space method. Assign two state variables to
the output of each integrator and assume canonical form I realization of the
system as shown in Figure 13.1.
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13.16 Find the impulse response of the system characterized by the differential
equation, with input x(t) and output y(t),

ÿ(t) + 7ẏ(t) + 12y(t) = −3ẋ(t) + 2x(t)

using the frequency-domain state-space method. Assign two state variables to
the output of each integrator and assume canonical form I realization of the
system as shown in Figure 13.1.

13.17 Derive the state-space model of the system in Example 13.1 with the new state
vector q that is related to old state vector q as

q1(t) = q2(t)

q2(t) = q1(t)

Verify that the transfer function remains the same using either state-space
model. Further verify that: (i) the traces and determinants of matrices A and
A are equal; and (ii) the determinants of (sI − A) and (sI − A) are the same.

13.18 Derive the state-space model of the system in Example 13.1 with the new state
vector q that is related to old state vector q as

q1(t) = q1(t) + q2(t)

q2(t) = q1(t) − q2(t)

Verify that the transfer function remains the same using either state-space
model. Further verify that: (i) the traces and determinants of matrices A and
A are equal; and (ii) the determinants of (sI − A) and (sI − A) are the same.

13.19 Derive the state-space model of the system in Example 13.1 with the new state
vector q that is related to old state vector q as

q1(t) = q1(t)

q2(t) = q1(t) + q2(t)

Verify that the transfer function remains the same using either state-space
model. Further verify that: (i) the traces and determinants of matrices A and
A are equal; and (ii) the determinants of (sI − A) and (sI − A) are the same.



Appendix A:
Transform Pairs and Properties

Table A.1. DFT pairs

x(n), period = N X(k), period = N

δ(n) 1

1 Nδ(k)

e
j(

2π

N
mn)

Nδ(k − m)

cos

(
2π

N
mn

)
N

2
(δ(k − m) + δ(k − (N − m)))

sin

(
2π

N
mn

)
N

2
(−jδ(k − m) + jδ(k − (N − m)))

x(n) =
{

1 for n = 0, 1, . . . , L − 1
0 for n = L, L + 1, . . . , N − 1

e(−j π
N

(L−1)k) sin ( π
N

kL)

sin ( π
N

k)
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Table A.2. DFT properties

Property x(n), h(n), period = N X(k), H(k), period = N

Linearity ax (n) + bh(n) aX(k) + bH(k)

Duality
1

N
X(N ∓ n) x (N ± k)

Time-shifting x(n ± m) e
±j

2π

N
mk

X(k)

Frequency-shifting e
∓j

2π

N
mn

x(n) X(k ± m)

Time-convolution
∑N−1

m=0 x(m)h(n − m) X(k)H(k)

Frequency-convolution x(n)h(n)
1

N

N−1∑
m=0

X(m)H(k − m)

Time-expansion h(mn) =
{

x(n) for n = 0, 1, . . . , N − 1
0 otherwise

H(k) = X(k mod N),

where m is any positive integer k = 0, 1, . . . , mN − 1

Time-reversal x(N − n) X(N − k)

Conjugation x∗(N ± n) X∗(N ∓ k)

Parseval’s theorem
∑N−1

n=0 |x(n)|2 1

N

N−1∑
k=0

|X(k)|2

Table A.3. FS pairs

x(t), period = T Xcs(k), ω0 = 2π/T{
1 for |t| < a

0 for a < |t| ≤ T

2

sin (kω0a)

kπ∑∞
n=−∞ δ(t − nT )

1

T

ejk0ω0 t δ(k − k0)

cos(k0ω0t) 0.5(δ(k + k0) + δ(k − k0))

sin(k0ω0t) 0.5j(δ(k + k0) − δ(k − k0))
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Table A.4. FS properties

Property x(t), h(t), period = T Xcs(k), Hcs(k), ω0 = 2π/T

Linearity ax(t) + bh(t) aXcs(k) + bHcs(k)

Time-shifting x(t ± t0) e±jkω0 t0Xcs(k)

Frequency-shifting x(t)e±jk0ω0 t Xcs(k ∓ k0)

Time-convolution
∫ T

0
x(τ)h(t − τ)dτ TXcs(k)Hcs(k)

Frequency-convolution x(t)h(t)
∑∞

l=−∞ Xcs(l)Hcs(k − l)

Time-scaling x(at), a > 0, Period = T

a
Xcs(k), ω0 = a

2π

T

Time-reversal x(−t) Xcs(−k)

Time-differentiation
dnx(t)

dtn
(jkω0)n Xcs(k)

Time-integration
∫ t

−∞ x(τ)dτ
Xcs(k)

jkω0
, if (Xcs(0) = 0)

Parseval’s theorem
1

T

∫ T

0

|x(t)|2dt
∑∞

k=−∞ |Xcs(k)|2

Conjugate symmetry x(t) real Xcs(k) = X∗
cs(−k)

Even symmetry x(t) real and even Xcs(k) real and even

Odd symmetry x(t) real and odd Xcs(k) imaginary and odd
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Table A.5. DTFT pairs

x(n) X(ejω), period= 2π

{
1 for −N ≤ n ≤ N

0 otherwise

sin

(
ω

(2N + 1)

2

)

sin
(

ω

2

)
sin (an)

πn
, 0 < a ≤ π

{
1 for |ω| < a

0 for a < |ω| ≤ π

anu(n), |a| < 1
1

1 − ae−jω

(n + 1)anu(n), |a| < 1
1

(1 − ae−jω)2

a|n|, |a| < 1
1 − a2

1 − 2a cos (ω) + a2

an sin (ω0n)u(n), |a| < 1
(a)e−jω sin (ω0)

1 − 2(a)e−jω cos (ω0) + (a)2e−j2ω

an cos (ω0n)u(n), |a| < 1
1 − (a)e−jω cos (ω0)

1 − 2(a)e−jω cos (ω0) + (a)2e−j2ω

δ(n) 1

∞∑
k=−∞

δ(n − kN)
2π

N

∞∑
k=−∞

δ

(
ω − 2π

N
k

)

u(n) πδ(ω) + 1

1 − e−jω

1 2πδ(ω)

ejω0n 2πδ(ω − ω0)

cos (ω0n) π(δ(ω + ω0) + δ(ω − ω0))

sin (ω0n) jπ(δ(ω + ω0) − δ(ω − ω0))
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Table A.6. DTFT properties

Property x(n), h(n) X(ejω), H(ejω)

Linearity ax(n) + bh(n) aX(ejω) + bH(ejω)

Time-shifting x(n ± n0) e±jωn0X(ejω)

Frequency-shifting x(n)e±jω0n X(ej(ω∓ω0))

Time-convolution
∑∞

m=−∞ x(m)h(n − m) X(ejω)H(ejω)

Frequency-convolution x(n)h(n)
1

2π

∫ 2π

0

X(ejv)H(ej(ω−v))dv

Time-expansion h(n) H(ejω) = X(ejaω)

h(an) = x(n), a > 0 is a positive integer

and h(n) = 0 zero otherwise

Time-reversal x(−n) X(e−jω)

Conjugation x∗(±n) X∗(e∓jω)

Difference x(n) − x(n − 1) (1 − e−jω)X(ejω)

Summation
∑n

l=−∞ x(l)
X(ejω)

(1 − e−jω)
+ πX(ej0)δ(ω)

Frequency-differentiation (n)mx(n) (j)m
dmX(ejω)

dωm

Parseval’s theorem
∑∞

n=−∞ |x(n)|2 1

2π

∫ 2π

0

|X(ejω)|2dω

Conjugate symmetry x(n) real X(ejω) = X∗(e−jω)

Even symmetry x(n) real and even X(ejω) real and even

Odd symmetry x(n) real and odd X(ejω) imaginary and odd
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Table A.7. FT pairs

x(t) X(jω)

u(t + a) − u(t − a) 2
sin (ωa)

ω

sin (ω0t)

πt
u(ω + ω0) − u(ω − ω0)

e−atu(t), Re(a) > 0
1

a + jω

te−atu(t), Re(a) > 0
1

(a + jω)2

e−a|t|, Re(a) > 0
2a

a2 + ω2

1

a
((t + a)u(t + a) − 2tu(t) + (t − a)u(t − a)) a


 sin (ω

a

2
)

ω
a

2




2

e−at sin (ω0t)u(t), Re(a) > 0
ω0

(a + jω)2 + ω2
0

e−at cos (ω0t)u(t), Re(a) > 0
a + jω

(a + jω)2 + ω2
0

δ(t) 1

∑∞
n=−∞ δ(t − nT )

2π

T

∞∑
k=−∞

δ

(
ω − k

2π

T

)

u(t) πδ(ω) + 1

jω

1 2πδ(ω)

ejω0 t 2πδ(ω − ω0)

cos (ω0t) π(δ(ω + ω0) + δ(ω − ω0))

sin (ω0t) jπ(δ(ω + ω0) − δ(ω − ω0))
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Table A.8. FT properties

Property x(t), h(t) X(jω), H(jω)

Linearity ax(t) + bh(t) aX(jω) + bH(jω)

Duality X(±t) 2πx(∓jω)

Time-shifting x(t ± t0) X(jω)e±jωt0

Frequency-shifting x(t)e±jω0 t X(j(ω ∓ ω0))

Time-convolution x(t) ∗ h(t) X(jω)H(jω)

Frequency-convolution x(t)h(t)
1

2π
(X(jω) ∗ H(jω))

Time-scaling x(at), a �= 0 and real
1

|a|X(j
ω

a
)

Time-reversal x(−t) X(−jω)

Conjugation x∗(±t) X∗(∓jω)

Time-differentiation
dnx(t)

dtn
(jω)n X(jω)

Time-integration
∫ t

−∞ x(τ)dτ
X(jω)

jω
+ πX(j0)δ(ω)

Frequency-differentiation tnx(t) (j)n
dnX(jω)

dωn

Parseval’s theorem
∫ ∞

−∞ |x(t)|2dt
1

2π

∫ ∞

−∞
|X(jω)|2dω

Autocorrelation x(t) ∗ x(−t) = ∫ ∞
−∞ x(τ)x(τ − t)dτ |X(jω)|2

Conjugate symmetry x(t) real X(jω) = X∗(−jω)

Even symmetry x(t) real and even X(jω) real and even

Odd symmetry x(t) real and odd X(jω) imaginary and odd
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Table A.9. z-Transform pairs

x(n) X(z) ROC

δ(n) 1 |z| ≥ 0

δ(n − p), p > 0 z−p |z| > 0

u(n)
z

z − 1
|z| > 1

anu(n)
z

z − a
|z| > |a|

nanu(n)
az

(z − a)2
|z| > |a|

nu(n)
z

(z − 1)2
|z| > |1|

cos (ω0n)u(n)
z(z − cos (ω0))

z2 − 2z cos (ω0) + 1
|z| > 1

sin (ω0n)u(n)
z sin (ω0)

z2 − 2z cos (ω0) + 1
|z| > 1

an cos (ω0n)u(n)
z(z − a cos (ω0))

z2 − 2az cos (ω0) + a2
|z| > |a|

an sin (ω0n)u(n)
az sin (ω0)

z2 − 2az cos (ω0) + a2
|z| > |a|
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Table A.10. z-Transform properties

Property x(n)u(n), h(n)u(n) X(z), H(z)

Linearity ax(n)u(n) + bh(n)u(n) aX(z) + bH(z)

Left shift x(n + m)u(n), m > 0 zmX(z) − zm
∑m−1

n=0 x(n)z−n

Right shift x(n − m)u(n), m > 0 z−mX(z) + z−m
∑m

n=1 x(−n)zn

Multiplication by an anx(n)u(n) X(
z

a
)

Time-convolution x(n)u(n) ∗ h(n)u(n) X(z)H(z)

Summation
∑n

m=0 x(m)
z

z − 1
X(z)

Multiplication by n nx(n)u(n) −z
dX(z)

dz

Initial value x(0) limz→∞ X(z)

Final value limn→∞ x(n) limz→1((z − 1)X(z))

ROC of (z − 1)X(z)

includes the unit-circle
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Table A.11. Laplace transform pairs

x(t) X(s) ROC

δ(t) 1 All s

u(t)
1

s
Re(s) > 0

tnu(t), n = 0, 1, 2, . . .
n!

sn+1
Re(s) > 0

e−atu(t)
1

s + a
Re(s) > −a

tne−atu(t), n = 0, 1, 2, . . .
n!

(s + a)n+1
Re(s) > −a

cos (ω0t) u(t)
s

s2 + ω2
0

Re(s) > 0

sin (ω0t) u(t)
ω0

s2 + ω2
0

Re(s) > 0

e−at cos (ω0t) u(t)
s + a

(s + a)2 + ω2
0

Re(s) > −a

e−at sin (ω0t) u(t)
ω0

(s + a)2 + ω2
0

Re(s) > −a

t cos (ω0t) u(t)
s2 − ω2

0

(s2 + ω2
0)2

Re(s) > 0

t sin (ω0t) u(t)
2ω0s

(s2 + ω2
0)2

Re(s) > 0
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Table A.12. Laplace transform properties

Property x(t)u(t), h(t)u(t) X(s), H(s)

Linearity ax(t) + bh(t) aX(s) + bH(s)

Time-shifting x(t − t0)u(t − t0), t0 ≥ 0 X(s)e−st0

Frequency-shifting x(t)u(t)es0 t X(s − s0)

Time-convolution x(t) ∗ h(t) X(s)H(s)

Time-scaling x(at), a > 0 and real
1

a
X(

s

a
)

Time-differentiation
dx(t)

dt
sX(s) − x(0−)

Time-differentiation
d2x(t)

dt2
s2X(s) − sx(0−) − d x(t)

dt
|t=0−

Time-integration
∫ t

0− x(τ)dτ
X(s)

s

Time-integration
∫ t

−∞ x(τ)dτ
X(s)

s
+ 1

s

∫ 0−

−∞
x(τ) dτ

Frequency-differentiation tx(t)u(t) −dX(s)

ds

Frequency-differentiation tnx(t)u(t), n = 0, 1, 2, . . . (−1)n
dnX(s)

dsn

Initial value x(0+) lims→∞ sX(s), if X(s) is strictly proper

Final value limt→∞ x(t) lims→0 sX(s), (ROC of sX(s) includes the
jω axis)
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Useful Mathematical Formulas

Trigonometric Identities

Pythagorean identity

sin2 x + cos2 x = 1

Addition and subtraction formulas

sin(x ± y) = sin x cos y ± cos x sin y

cos(x ± y) = cos x cos y ∓ sin x sin y

Double-angle formulas

cos 2x = cos2 x − sin2 x = 2 cos2 x − 1 = 1 − 2 sin2 x

sin 2x = 2 sin x cos x

Product formulas

2 sin x cos y = sin(x − y) + sin(x + y)

2 cos x sin y = − sin(x − y) + sin(x + y)

2 sin x sin y = cos(x − y) − cos(x + y)

2 cos x cos y = cos(x − y) + cos(x + y)

A Practical Approach to Signals and Systems D. Sundararajan
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Sum and difference formulas

sin x ± sin y = 2 sin
x ± y

2
cos

x ∓ y

2

cos x + cos y = 2 cos
x + y

2
cos

x − y

2

cos x − cos y = −2 sin
x + y

2
sin

x − y

2

Other formulas

sin(−x) = sin(2π − x) = − sin x

cos(−x) = cos(2π − x) = cos x

sin(π ± x) = ∓ sin x

cos(π ± x) = − cos x

cos
(

π

2
± x

)
= ∓ sin x

sin
(

π

2
± x

)
= cos x

cos
(

3π

2
± x

)
= ± sin x

sin
(

3π

2
± x

)
= − cos x

e±jx = cos x ± j sin x

cos x = ejx + e−jx

2

sin x = ejx − e−jx

2j
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Series Expansions

ejx = 1 + (jx) + (jx)2

2!
+ (jx)3

3!
+ (jx)4

4!
+ · · · + (jx)r

(r)!
+ · · ·

cos(x) = 1 − x2

2!
+ x4

4!
− · · · + (−1)r

x2r

(2r)!
− · · ·

sin(x) = x − x3

3!
+ x5

5!
− · · · + (−1)r

x2r+1

(2r + 1)!
− · · ·

sin−1 x = x + 1

2

x3

3
+ (1)(3)

(2)(4)

x5

5
+ (1)(3)(5)

(2)(4)(6)

x7

7
+ · · · , |x| < 1

cos−1 x = π

2
− sin−1 x, |x| < 1

Summation Formulas
N−1∑
k=0

(a + kd) = N(2a + (N − 1)d)

2

N−1∑
k=0

ark = a(1 − rN)

1 − r
, r �= 1

∞∑
k=0

rk = 1

1 − r
, |r| < 1

∞∑
k=0

krk = r

(1 − r)2
, |r| < 1

1 + cos(t) + cos(2t) + · · · + cos(Nt) = 1

2
+ sin(0.5(2N + 1)t)

2 sin(0.5t)

Indefinite Integrals ∫
udv = uv −

∫
v du

∫
eatdt = eat

a
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∫
teatdt = eat

a2
(at − 1)

∫
ebt sin(at)dt = ebt

a2 + b2
(b sin(at) − a cos(at))

∫
ebt cos(at)dt = ebt

a2 + b2
(b cos(at) + a sin(at))

∫
sin(at)dt = −1

a
cos(at)

∫
cos(at)dt = 1

a
sin(at)

∫
t sin(at)dt = 1

a2
(sin(at) − at cos(at))

∫
t cos(at)dt = 1

a2
(cos(at) + at sin(at))

∫
sin2(at)dt = t

2
− 1

4a
sin(2at)

∫
cos2(at)dt = t

2
+ 1

4a
sin(2at)

Differentiation Formulas
d(uv)

dt
= u

dv

dt
+ v

du

dt

d(u
v
)

dt
= v du

dt
− u dv

dt

v2

d(xn)

dt
= nxn−1

d(eat)

dt
= aeat

d(sin(at))

dt
= a cos(at)
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d(cos(at))

dt
= −a sin(at)

L’Hôpital’s Rule

If lim
x→a

f (x) = 0 and lim
x→a

g(x) = 0, or

If lim
x→a

f (x) = ∞ and lim
x→a

g(x) = ∞, then

lim
x→a

f (x)

g(x)
= lim

x→a

df (x)/dx

dg(x)/dx

The rule can be applied as many times as necessary.

Matrix Inversion

The inverse, A−1, of a 2 × 2 matrix

A =
[

a b

c d

]

is defined as

A−1 = 1

ad − bc

[
d −b

−c a

]

provided ad − bc �= 0.





Answers to Selected Exercises

Chapter 2

2.1.2 Energy 100/9.

2.3.3 xe(n) =




(0.4)n

2 for n > 0

1 for n = 0
(0.4)−n

2 for n < 0

xe(−3) = 0.032 xe(−2) = 0.08 xe(−1) = 0.20 xe(0) = 1,

xe(1) = 0.20 xe(2) = 0.08 xe(3) = 0.032

xo(n) =




(0.4)n

2 for n > 0

0 for n = 0

− (0.4)−n

2 for n < 0

xo(−3) = −0.032 xo(−2) = −0.08 xo(−1) = −0.20 xo(0) = 0

xo(1) = 0.20 xo(2) = 0.08 xo(3) = 0.032

x(n) = xe(n) + x0(n)

x(−3) = 0 x(−2) = 0 x(−1) = 0 x(0) = 1.0000

x(1) = 0.4000 x(2) = 0.16 x(3) = 0.064

The sum of the values of the even component is 1.624 and that of the signal
is also 1.624.
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2.4.2 0

2.6.5 Periodic with period 9.

2.7.6 x(n) = 2
√

3 cos
(

π

6
n

)
+ 2 sin

(
π

6
n

)

3.4641, 4, 3.4641, 2, 0, −2, −3.4641, −4, −3.4641, −2, 0, 2

2.8.3 x(n) = 2
√

3 cos
(

π

6
n − π

6

)

3, 3.4641, 3, 1.7321, 0, −1.7321, −3, −3.4641, −3, −1.7321, 0, 1.7321

2.10.5 x(n) = 5.9544ej( π
3 n+0.6984).

1.7321 + j1, j2, −1.7321 + j1, −1.7321 − j1, −j2, 1.7321 − j1

2.8284 + j2.8284, −1.0353 + j3.8637, −3.8637 + j1.0353, −2.8284

−j2.8284, 1.0353 − j3.8637, 3.8637 − j1.0353

4.5605 + j3.8284, −1.0353 + j5.8637, −5.5958 + j2.0353, −4.5605

−j3.8284, 1.0353 − j5.8637, 5.5958 − j2.0353

2.11.3 x(n) = (0.5)n.

x(0) = 1 x(1) = 0.5 x(2) = 0.25

x(3) = 0.125 x(4) = 0.0625 x(5) = 0.0313

2.13.4 −3 sin
(

5 2π
8 n + π

3

)
, 3 sin

(
11 2π

8 n − π
3

)
, −3 sin

(
13 2π

8 n + π
3

)
.

2.14.3 11 samples per second.

2.15.5 0, −
√

3

2
, −

√
3

2
, 0,

√
3

2
,

√
3

2

x(n − 7) = cos
(

2π

6
n + π

6

)
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√
3

2
, 0, −

√
3

2
, −

√
3

2
, 0,

√
3

2

2.16.3

√
3

2
,

√
3

2
, 0, −

√
3

2
, −

√
3

2
, 0

x(−n + 1) = cos
(

2π
6 n − π

6

)
= x(n)

√
3

2
,

√
3

2
, 0, −

√
3

2
, −

√
3

2
, 0

2.17.3 0.5, 1, 0.5, −0.5, −1, −0.5
x(−n + 1) = cos

(
2π
6 n

)
1, 0.5, −0.5, −1, −0.5, 0.5

2.18.8 x(−3) = 0 x(−2) = 0 x(−1) = 0 x(0) = −1

x(1) = −2 x(2) = −1 x(3) = 1

x(−3) = −1 x(−2) = −1 x(−1) = 2 x(0) = −1

x(1) = −1 x(2) = 0 x(3) = 0
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Chapter 3

3.1.9 Energy 4.

3.3.4 xe(t) =
{

3
2 |t|, |t| < 1

0 otherwise

xo(t) =
{

3
2 t, −1 < t < 1

0 otherwise

The integral of the odd component is zero. The integral of the even compo-
nent is 1.5 and that of the signal is also 1.5.

3.4.4 3.

3.5.3 −1.2622, −1.4975, −1.5000, −1.5000, and − 1.5000
3.6.3 7.3891.

3.7.2 x(t) ≈
3∑

n=0

cos
(

π

6
(n)(1)

)
δq(t − (n)(1))(1)

x(t) ≈
7∑

n=0

cos
(

π

6
(n)(0.5)

)
δq(t − (n)(0.5))(0.5)

3.8.3 −6e−3tu(t) + 2δ(t)
3.9.4 0.

3.10.3 x(t) = − 5√
2

cos(2πt) − 5√
2

sin(2πt)

5

8
,

9

8
,

13

8

3.11.4 x(t) =
√

2 cos
(

2π

6
t − π

4

)

9

4
,

21

4
,

33

4

3.12.3 x(t) = 1.3483 cos( 2π
6 t − 2.9699).

1.5, −1.5, −3

2.8284, −1.0353, −3.8637

−1.3284, −0.4647, 0.8637
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3.14.2 1, 2
The shift of x(t) to the right by 1 s makes the positive peak of the shifted
waveform, sin( 2π

6 t − π
6 ), occurs after one second of the occurrence of that of

the given sinusoid.

3.15.2
3

4
,

5

4

3.16.4
10

3
, 10

3.17.5 x(−3) = 0 x(−2) = 0 x(−1) = 0 x(0) = −1.7321

x(1) = −1.7321 x(2) = 0 x(3) = 1.7321

x(−3) = −1.7321 x(−2) = −1.7321 x(−1) = 0 x(0) = 1.7321

x(1) = 1.7321 x(2) = 0 x(3) = −1.7321

x(−3) = 0 x(−2) = 0 x(−1) = −1.7321 x(0) = 1.7321

x(1) = 0 x(2) = −1.7321 x(3) = 1.7321
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Chapter 4

4.1.3 h(n) = 3(−1

3
)nu(n)

h(0) = 3 h(1) = −1 h(2) = 1

3
h(3) = −1

9

h(4) = 1

27
h(5) = − 1

81

4.2.4 h(n) = 3δ(n) + (−1)nu(n) n = 0, 1, 2, . . .

h(0) = 4 h(1) = −1 h(2) = 1 h(3) = −1 h(4) = 1 h(5) = −1

4.3.3 Linear.

4.4.3 Time-invariant.

4.5.3 {y(n), n = −1, 0, 1, 2, 3, 4, 5} = {6, 10, 13, 28, 19, 16, 16}.

4.6.5 y(n) = 0.9(1 − (0.6)n−2)u(n − 3)

y(0) = 0 y(1) = 0 y(2) = 0 y(3) = 0.36

y(4) = 0.576 y(5) = 0.7056

4.10 8.4276 cos( 2π
5 n + π

4 − 0.9964).

4.2138ej( 2π
5 n−0.9964).

4.13 The zero-state response is

y(n) = 20

9
+ 4

3
n − 20

9

(
1

4

)n

The zero-input response is

(
1

4

)(n+1)
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The complete response is

y(n) = 20

9
+ 4

3
n − 71

36

(
1

4

)n

n = 0, 1, 2, . . .

y(0) = 0.2500 y(1) = 3.0625 y(2) = 4.7656 y(3) = 6.1914

y(4) = 7.5479 y(5) = 8.8870

The transient response is

−71

36

(
1

4

)n

n = 0, 1, 2, . . .

The steady-state response is ( 20
9 + 4

3n)u(n).

4.17.2 (i)

h(n) =
(

25

3

)
δ(n) − 4

(
1

5

)n

−
(

7

3

) (
3

5

)n

The first four values of h(n) are

{2, 0.6, −1, 0.472}
(ii)

h(n) =
(

50

3

)
δ(n) −

(
14

3

) (
−3

5

)n

− 11
(

1

5

)n

, n = 0, 1, 2, . . .

The first four values of h(n) are

{1, 0.6, −2.12, 0.92}



362 A Practical Approach to Signals and Systems

Chapter 5

5.1.9 Nonlinear.

5.2.4 Time-invariant.

5.3.4 y(t) = tu(t) − 2(t − 3)u(t − 3) + (t − 6)u(t − 6)

y(0) = 0 y(1) = 1 y(2) = 2 y(3) = 3 y(4) = 2, y(5) = 1

5.7.2 h(t) = 2δ(t) + 5etu(t)

y(t) = (−3 + 5et)u(t)

5.11 The zero-input response is 3e−tu(t). The zero-state response is (2 sin(t) −
2e−t)u(t). The complete response is

y(t) = (2 sin(t) + e−t)u(t)

The transient response is e−tu(t).
The steady-state response is (2 sin(t))u(t).

5.14 y(t) = 4 sin( 2π
6 t − π

6 + 1.5247).

y(t) = 2ej( 2π
6 t+1.5247).



Answers to Selected Exercises 363

Chapter 6

6.1.3 x(n) = 1

4

(
1 + 8 cos

(
2π

4
n − π

3

)
− 3 cos(πn)

)
6.2.2 {x(0) = 0 x(1) = −3 +

√
3 x(2) = 2 x(3) = −3 −

√
3}

{X(0) = −4 X(1) = −2 − j2
√

3 X(2) = 8 X(3) = −2 + j2
√

3}

6.3.4

{
x(0) = −2 − 3√

2
x(1) = −6 + 3√

2

x(2) = −2 + 3√
2

x(3) = −6 − 3√
2

}

6.5.1 {x(0) = 2.25 x(1) = 0.25 x(2) = 0.25 x(3) = −1.75 − j1}
6.6.2 X(k) = {6 − j3, −j1, j11, −2 + j1}

x(−14) = 2 + j2, x(43) = 1 − j4

X(12) = 6 − j3, X(−7) = −j1

6.9.2 {208, 224, 208, 224}
6.11.3 {−4, −13, 24, −9}
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Chapter 7

7.2.4 ω0 = 2.

Xc(0) = 3

8
Xc(1) = 1

2
Xc(2) = 1

8

Xp(0) = 3

8
Xp(1) = 1

2
θ(1) = 0 Xp(2) = 1

8
θ(2) = 0

Xcs(0) = 3

8
Xcs(±1) = 1

4
Xcs(±2) = 1

16

7.3.5 ω0 = 2π.

Xc(0) = 1 Xc(1) =
√

3

2
Xs(1) = 1

2
Xc(3) =

√
3 Xs(3) = 1

Xp(0) = 1 Xp(1) = 1 θ(1) = −π

6
Xp(3) = 2 θ(3) = −π

6

Xcs(0) = 1 Xcs(1) = 1

4
(
√

3 − j1) Xcs(3) = 1

2
(
√

3 − j1),

Xcs(−1) = 1

4
(
√

3 + j1) Xcs(−3) = 1

2
(
√

3 + j1)

7.4.2 ω0 = 1
63 .

Xc(0) = 2 Xs(14) = −2 Xc(27) = −5

7.9.6 Xcs(0) = 2/π and Xcs(k) = 2/[π(1 − 4k2)] k �= 0.

7.11 x(t) = 1

2
− 4

π2

(
cos

π

2
t + 1

9
cos 3

π

2
t + 1

25
cos 5

π

2
t · · ·

)

x(t + 2) = 1

2
+ 4

π2

(
cos

π

2
t + 1

9
cos 3

π

2
t + 1

25
cos 5

π

2
t · · ·

)

3x(t) − 2 = −1

2
− 12

π2

(
cos

π

2
t + 1

9
cos 3

π

2
t + 1

25
cos 5

π

2
t · · ·

)
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π2

8
= 1 + 1

9
+ 1

25
+ 1

49
+ · · ·

The DFT approximation of the trigonometric FS coefficients are
{Xc(0) = 1

2 Xc(1) = − 1
2 Xc(2) = 0}.

The power of the signal is 1
3 .

The power of the signal, up to the third harmonic, is 0.3331.
The power of the signal, up to the fifth harmonic, is 0.3333.

7.15 y(t) = 1√
5
ej(2t+tan−1( −2

1 )) + 1√
10

ej(3t+tan−1( −3
1 ))
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Chapter 8

8.2 X(ejω) =
sin

(
2N+1

2 ω
)

sin
(

ω
2

)
X(ej0) = 11 and X(ejπ) = −1.

8.4 X(ejω) = (a)e−jω sin(ω0)

1 − 2(a)e−jω cos(ω0) + (a)2e−j2ω

X(ej0) = 0.7/1.49andX(ejπ) = −0.7/1.49.

8.9.5 X(ejω) = 0.36e−j2ω

1 − 0.6e−jω

8.10.2

{
X(ej0) = 10

(
2π

4

)
δ(ω) X(ej 2π

4 ) = (2 + j2)
(

2π

4

)
δ

(
ω − 2π

4

)

X(ej2 2π
4 ) = 2

(
2π

4

)
δ

(
ω − 2

2π

4

)
,

X(ej3 2π
4 ) = (2 − j2)

(
2π

4

)
δ

(
ω − 3

2π

4

) }
.

8.16.2 2(0.5)nu(n) − (0.25)nu(n).

8.21.1 y(n) = {x(n) ∗ h(n) n = 1, 2, . . . , 6} = {−2, 1, −8, −4, −5, −12}.

8.24.2 1
1−(0.6)ej4ω − π < ω ≤ π.

8.26.4 Y (ejω) = 1
(1−0.6e−jω)(1−e−jω) + 2.5πδ(ω).

8.29 The IDFT values are {1.0082, 0.3024, 0.0907, 0.0272}.
The exact values of x(n) are {x(0) = 1 x(1) = 0.3 x(2) = 0.09 x(3) =

0.027}.

8.31 h(n) =
(

56

5

(
−2

3

)n

− 51

5

(
−1

4

)n)
u(n)

The first four values of the impulse response are 1, −4.9167, 4.3403,

−3.1591.
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8.35

y(n) = 55
(

1

2

)n

− 90
(

1

3

)n

+ 38
(

1

5

)n

n = 0, 1, . . .

8.36.2 xH (n) = −0.5 sin(n).
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Chapter 9

9.7 X(jω) = 1

(2 + jω)2
X(j0) = 1

4

9.14.2 X(jω) =
{

2π for |ω| < 3

0 for |ω| > 3

9.15.3 X(jω) = sin((ω − ω0)a)

(ω − ω0)
+ sin((ω + ω0)a)

(ω + ω0)

9.16 x(t) =



−2 for t < 0

(t − 2) for 0 < t < 4

2 for t > 4

9.18.2
−jπ

2
(δ(ω − ω0) − δ(ω + ω0)) − ω0

(ω2 − ω2
0)

9.20.9 πδ(ω) − 1

jω

9.22.4 X(jω) = −1 + e−jω + e−j2ω − e−j3ω

ω2

9.23.6 Y (jω) = πδ(ω) + 1

jω
− 1

1 + jω

9.24.4
(1 + jω)e−jω − 1

ω2

9.28.3 {X(0) = −1 X(3) = j3

2
X(−3) = −j3

2
X(5) = 1

X(−5) = 1 X(−7) = 6}

X(jω) = π(−2δ(ω) + j3(δ(ω − 3) − δ(ω + 3)) + 2(δ(ω − 5)

+δ(ω + 5)) + 12δ(ω + 7))

9.29.4 Xcs(k) = j

kπ
k �= 0 and Xcs(0) = 1

9.31.2 X(jω) = 2

1 + ω2
and Xs(jω) = 1

Ts

∞∑
k=−∞

2

1 + (ω − kωs)2
ωs = 2π

Ts

X(j0) = 2 Xs(j0) = 200.0017 Ts = 0.01

Xs(j0) = 20.0167 Ts = 0.1,
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Xs(j0) = 2.1640 Ts = 1 Xs(j0) = 1.0001 Ts = 10

9.33 The exact values of the FT are X(j0) = 1 and X(jπ) = 4/π2 = 0.4053. The
four samples of the signal are {x(0) = 1, x(1) = 0.5, x(2) = 0, x(3) = 0.5} and
the DFT is {X(0) = 2, X(1) = 1, X(2) = 0, X(3) = 1}. As the sampling inter-
val is 0.5 s, the first two samples of the spectrum obtained by the DFT are
0.5{2, 1} = {1, 0.5}.
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Chapter 10

10.1.3 X(z) = 2 − 4z−3.

10.2.4 {x(0) = 1, x(1) = 1, x(2) = −1}.

10.3.4 X(z) =
(

−2z2 + 3z

(z − 1)2

)

10.4.1 The nonzero values of y(n) are {y(1) = 4, y(3) = −2, y(5) = −16, y(7) =
8}.

10.5.2 X(z) = 2z

(z − 2)2

10.6.2 X(z) = 4z

(z − 4)2

10.7.2 y(n) = (0.5 + 0.5 sin( 2π
4 n) − 0.5 cos( 2π

4 n))u(n).

10.8.3 x(0) = 2. x(∞) = 16.

10.9.4 X(z) = z(z + 1)

(z2 + 1)

10.13 x(n) = (
√

2)n+1 cos
(

3π

4
n − π

4

)
u(n)

x(0) = 1 x(1) = 0 x(2) = −2 x(3) = 4

10.19.2 y(n) = (0.8192)(3) cos( 2π
4 n − π

3 − 0.6107)u(n).

10.21 y(n) = −16

21
(−1)n + 325

56

(
3

4

)n

− 23

12

(
1

2

)n

n = 0, 1, 2, . . .

The first four values of y(n) are

{3.1250, 4.1563, 2.0234, 2.9707}
The zero-input response is

27

8

(
3

4

)n

− 5

4

(
1

2

)n

The zero-state response is

−16

21
(−1)n + 17

7

(
3

4

)n

− 2

3

(
1

2

)n



Answers to Selected Exercises 371

The transient response is

325

56

(
3

4

)n

− 23

12

(
1

2

)n

The steady-state response is − 16
21 (−1)nu(n).

10.25.1 h(n) = 12δ(n) −
(

6
(

1

4

)n)
u(n), n = 0, 1, 2, . . .

The first four values of the impulse response are

{6, −1.5, −0.3750, −0.0938}

10.26.3 h(n) = −10δ(n) +
(

7
(

1

3

)n

+ 7
(

1

2

)n)
u(n), n = 0, 1, 2, . . .

The first four values of the impulse response are

{4, 5.8333, 2.5278, 1.1343}
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Chapter 11

11.2.4 X(s) =
(

e−2s

s2
+ 2e−2s

s

)

11.5.2 The poles of X(s) are located at s = −1 and s = −2. The zero is located at
s = 1. x(t) = (−2e−t + 3e−2t)u(t).

The transform of the scaled signal is

s − 2

(s + 2)(s + 4)

The poles are located at s = −2 and s = −4. The zero is located at s = 2.
x(at) = (−2e−2t + 3e−4t)u(t).

11.6.5 y(t) = 1

2

(
t2e−t

)
u(t)

11.8.4 x(0+) = 3. x(∞) = 1.

11.9.3 X(s) = (1 − e−2s)

s2(1 + e−2s)
11.15 x(t) = (

2t − 1 + e−t
)
u(t)

11.18.3 h(t) = (−0.5et + 0.5e3t)u(t)

11.20 y(t) = (

zero-state︷ ︸︸ ︷
e−2t + te−t − e−t +

zero-input︷ ︸︸ ︷
te−t + 3e−t)u(t)

= (e−2t + 2te−t + 2e−t)u(t)

The steady state response is e−2tu(t) and the transient response is
(2te−t + 2e−t)u(t). The initial and final values of y(t) are 3 and 0 , respec-
tively. The initial and final values of the zero-state response are 0 and 0,
respectively.

11.23.1 y(t) = 3
√

2 cos(0.5t − π
3 − π

4 )u(t).

11.24.2 h(t) = (
et − 1

)
u(t)

11.25.3 h(t) = 5δ(t) −
(

7e−3t + 4e−2t
)

u(t)

11.29 v(t) = 25
8 e− 1

8 tu(t).
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Chapter 12

12.3.1 h(n) = δ(n)+
(

28

3

(
− 1

3

)n−1

− 40

3

(
− 2

3

)n−1)
u(n − 1) n = 0, 1, 2, . . .

h(0) = 1 h(1) = −4 h(2) = 52

9
h(3) = −44

9

12.4.2 The zero-input component of the state-vector is given by
− 1

8

(
− 1

2

)n

1
4

(
− 1

2

)n




The zero-input response is given by(
1

2

(
−1

2

)n)
u(n)

The first four values of the zero-input response y(n) are

y(0) = 1

2
y(1) = −1

4
y(2) = 1

8
y(3) = − 1

16

The zero-state component of the state-vector is given by


2
3

(
1 − (− 1

2 )n
)

+
(
− 2

9 + 2
9 (− 1

2 )n − 2
3n(− 1

2 )n
)

−2
(
− 2

9 + 2
9 (− 1

2 )n − 2
3n(− 1

2 )n
)


 u(n)

The zero-state response is given by(
8

9
+ 10

9

(
−1

2

)n

+ 8

3
n

(
−1

2

)n)
u(n)

The first four values of the zero-state response y(n) are

y(0) = 2 y(1) = −1 y(2) = 5

2
y(3) = −1

4

The total response is

y(n) =
(

8
9 + 29

18

(
− 1

2

)n + 8
3n

(
− 1

2

)n)
u(n) n = 0, 1, 2, . . .
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The first four values of the total response y(n) are

y(0) = 5

2
y(1) = −5

4
y(2) = 21

8
y(3) = − 5

16

12.5.3 h(n) = (9δ(n) − 7(−1

3
)n + 8n(−1

3
)n)u(n) n = 0, 1, 2, . . .

The first four values of the sequence h(n) are

h(0) = 2 h(1) = −1

3
h(2) = 1 h(3) = −17

27

12.6.2 The zero-input component of the state vector is

q(n) =
[− 1

4n(− 1
2 )n−1 + 4

3 (− 1
2 )n

1
2n(− 1

2 )n−1 − 5
3 (− 1

2 )n

]
u(n)

The zero-input response is given by(
−3

4
n

(
−1

2

)n

− 5

4

(
−1

2

)n)
u(n)

The first four values of the zero-input response y(n) are

y(0) = −5

4
y(1) = 1 y(2) = −11

16
y(3) = 7

16

The zero-state component of the state vector is

q(n) =
[

3
5n(− 1

2 )n−1 − 12
25 (− 1

2 )n + 12
25 ( 1

3 )n

− 6
5n(− 1

2 )n−1 − 36
25 (− 1

2 )n + 36
25 ( 1

3 )n

]
u(n)

The zero-state response is given by(
9

5
n

(
−1

2

)n

− 27

25

(
−1

2

)n

+ 52

25

(
1

3

)n)
u(n)

The first four values of the zero-state response y(n) are

y(0) = 1 y(1) = 1

3
y(2) = 31

36
y(3) = −25

54

The total response is

y(n) =
(

21

20
n

(
−1

2

)n

− 233

100

(
−1

2

)n

+ 52

25

(
1

3

)n)
u(n) n = 0, 1, 2, . . .
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The first four values of the total response y(n) are

y(0) = −1

4
y(1) = 4

3
y(2) = 25

144
y(3) = − 11

432
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13.4 A =
[−2 −1

1 0

]
B =

[
1

0

]
C = [

2 0
]
, D = 0

(−4t2e−t + 8te−t)u(t)

13.6 The zero-input component of the output is given by

5e−t − 2e−3t

The zero-state component of the output is given by

9e−t − 33e−2t + 27e−3t

The total response of the system is

y(t) = (14e−t − 33e−2t + 25e−3t)u(t)

13.9 h(t) = (−3e− 1
2 t + 4e− 1

3 t)u(t)

13.11 The zero-input component of the output is given by

7e−t − 5e−2t

The zero-state component of the output is given by

6 − 24e−t + 27e−2t

The total response of the system is

y(t) = (6 − 17e−t + 22e−2t)u(t)

13.15 h(t) = (−2δ(t) + 7e−t − 9te−t)u(t)
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convolution in frequency, 113
convolution in time, 112
linearity, 110
periodicity, 110
shift of a sequence, 110
shift of a spectrum, 111
symmetry, 111
Table of, 338

Table of, 337
discrete signal, 6
discrete systems

cascade realization, 73
causal system, 63
characteristic equation, 58
characteristic modes, 58
characteristic polynomial, 58
characteristic roots, 58
characterization by impulse response, 60
characterization by unit-step response, 60
complete response, 56
convolution, 64
difference equation, 54

iterative solution, 55
dynamic, 64
feedback systems, 74
frequency response, 70
impulse response, 58
initial condition, 54
instantaneous, 64
inverse systems, 64
linearity, 61
order of a system, 54
parallel realization, 73
realization, 72
stability, 71
steady-state response, 56
time-invariance, 62
transient response, 56
zero-input response, 55, 58
zero-state response, 55

discrete-time Fourier transform
as limiting case of the DFT, 151
convergence, 153
definition, 152, 153
inverse, 153
numerical evaluation of, 168
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of cosine function, 160
of dc signal, 156

of exponential, 154
of impulse, 154
of periodic signals, 158
of sinc function, 154
of sine function, 160
of unit-step, 155
properties, 159

convolution in frequency, 162
convolution in time, 161
difference, 166
frequency-differentiation, 166
frequency-shifting, 160
linearity, 159
summation, 167
symmetry, 163
Table of, 341
time-expansion, 164
time-reversal, 164
time-shifting, 159

relation to DFT, 158
relation to FS, 156
Table of, 340

energy signal, 7, 31
energy spectral density, 168, 199
even-symmetric signal, 8, 31
exponential, 5, 16, 29

feedback systems, 251, 279
filters

Butterworth, 282
highpass, 283
lowpass, 283

folding frequency, 19
Fourier analysis, 102
Fourier series, 123

as limiting case of the DFT, 123
compact trigonometric form, 125
existence, 126
exponential form, 125
fundamental frequency, 129
Gibbs phenomenon, 130
numerical evaluation of, 141
of a square wave, 130
of an impulse train, 131
periodicity, 126
properties, 132

convolution in frequency, 137
convolution in time, 136
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frequency-shifting, 135
linearity, 133
symmetry, 133
Table of, 339
time-differentiation, 139
time-integration, 140
time-scaling, 138
time-shifting, 135

rate of convergence, 140
relation to DTFT, 138
Table of, 338
trigonometric form, 126

Fourier transform, 183
as limiting case of the DTFT, 183
definition, 184
Dirichlet conditions, 185
existence of, 185
inverse, 184
numerical evaluation of, 209
of a sampled signal, 203
of complex sinusoid, 189
of cosine function, 201
of dc, 189
of exponential, 187
of impulse, 189
of periodic signals, 200
of pulse, 186
of sine function, 201
of unit-step, 187
properties, 190

conjugation, 194
convolution in frequency, 194
convolution in time, 193
duality, 190
frequency-differentiation, 198
frequency-shifting, 192
linearity, 190
symmetry, 191
Table of, 343
time-differentiation, 195
time-integration, 197
time-reversal, 194
time-scaling, 194
time-shifting, 192

relation to DFT, 207
relation to DTFT, 206
relation to FS, 202
Table of, 342

frequency-domain, 101

representation of circuits, 276
frequency response, 171, 211
fundamental range of frequencies, 20

Gibbs phenomenon, 130

half-wave symmetry, 134
harmonic, 102
Hilbert transform, 175

ideal filters
lowpass, 214
Paley-Wiener criterion, 215

impulse response, 58, 88
impulse signal, continuous, 34

approximation of, 36
as the derivative of step signal, 40
product with a continuous signal, 36
representation of arbitrary signals, 37
scaling property, 42
sifting property, 36

interpolation, 115
interpolation and decimation, 117

L’Hôpital’s rule, 353
Laplace transform

definition, 260
existence of, 260
inverse, 271
of an exponential, 261
of cosine function, 262
of semiperiodic functions, 270
of unit-impulse, 260
of unit-step, 261
properties, 263

convolution in time, 268
final value, 270
frequency-shifting, 264
initial value, 269
integration, 267
linearity, 263
multiplication by t, 269
Table of, 347
time-differentiation, 265
time-scaling, 268
time-shifting, 264

region of convergence, 261
relation to Fourier transform, 260
relation to z-transform, 262
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Table of, 346

least squares error criterion, 103
linear time-invariant systems, 63, 82
linearity, 61, 80
long division, 243

mathematical formulas, 349
modulation, 215

DSB-SC, 216
DSB-WC, 217
PAM, 218

noncausal signal, 10, 33

odd-symmetric signal, 8, 31
operational amplifier circuits, 280
orthogonality, 106

Paley-Wiener criterion, 215
Parseval’s theorem

for DFT, 114
for DTFT, 168
for FS, 140
for FT, 198

partial fraction, 239
period, 7, 30
periodic signal, 7, 30
pole, 230, 231, 261, 262
poles and zeros, 245, 273
pole-zero plot, 230, 231, 245, 261, 262, 273
power signal, 7, 31

realization of systems, 248, 276
region of convergence, 229, 230, 261
rise time, 60, 91

sampling frequency, 19
sampling theorem, 18
signals

aperiodic, 7, 30
causal, 10, 33
continuous, 5, 29
deterministic, 10
digital, 6
discontinuous, 41

derivative of, 41
discrete, 6
energy, 7, 31

even-symmetric, 8, 31
exponential, 5, 16, 29
noncausal, 10, 33
odd-symmetric, 8, 31
periodic, 7, 30
power, 7, 31
random, 10
sinusoid, 13, 43
time reversal, 21, 46
time scaling, 22, 47
time shift, 21, 45
unit-impulse, 11, 35
unit-ramp, 13, 42
unit-step, 12, 33

sinc function, 154, 183, 186
sinusoids, 13, 43

amplitude, 14, 43
angular frequency, 14, 43
complex, 17, 44
cyclic frequency, 14, 43
exponentially varying amplitudes, 17, 45
period, 14, 43
phase, 13, 43
polar form, 13, 43
rectangular form, 14, 43
sum of, 15, 44

s-plane, 261
stability, 71, 93, 247, 274
state-space analysis

frequency-domain, 308, 327
iterative solution, 300
linear transformation

state vectors, 310, 330
output equation, 295, 319
state equation, 294, 318
state-space model, 295, 319

canonical form I realization, 296
canonical form II realization, 296
cascade realization, 299
parallel realization, 297

state-transition matrix, 302, 323
state variables, 293, 317
state vector, 295, 319
time-domain, 301, 322

steady-state response, 144, 171, 211
system response, 172, 212, 245, 273

time-domain, 101
time-invariance, 62, 81
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time-limited, 105
transfer function, 171, 211, 243, 272

poles and zeros, 245, 273

unit-impulse, 11, 35
unit-ramp, 13, 42
unit-step, 12, 33

zero, 230, 231, 262
zero-order hold filter, 209
z-plane, 229
z-transform

definition, 229
existence of, 229
inverse, 237
of exponential, 230, 231
of semiperiodic functions, 237
of sine function, 231

of unit-impulse, 229
properties, 232

convolution, 234
final value, 237
initial value, 236
left shift of a sequence, 233
linearity, 232
multiplication by an, 235
multiplication by n, 235
right shift of a sequence, 234
summation, 236
Table of, 345

region of convergence, 229, 230
relation to Fourier analysis, 227
relation to the DTFT, 229
solving difference equation, 246
Table of, 344
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