التحليل الإحمائي للتجارب الزراعية باستخدام برنامج

MSTAT-C 2.1

2+11

عنوان الكتاب : التحليل الإحصائي للتجارب الزراعية باستخدام برنامج MSTAT-C 2.1 اســـم المؤلف : محمد كمال عبد الفتاح محمد البريد الإلكترونيَّ : Mohammedkamal8@hotmail.com رقــم الإيــداع : 20023/2011 التـرقيم الدوليَّ : --34-977-716-384

> © بيع حقوق الطبع والنشر والتوزيع معوظة للمؤلف . لا يجوز استنساخ أو طباعة أو تصوير أب جزء من هذا الكتاب أو اخترائه بأب وسيلة إلا بأذت مسبق من المؤلف .

المحتويات

الصفحة	
١	تقديم
۲	مقدمة
٤	الفصل الأول التعامل مع ملف البيانات
٤	الأمر FILES
0	فتح و غلق ملف بيانات موجود بالفعل
٦	إنشاء ملف بيانات جديد
V	تغيير المسار الافتراضي للبرنامج
Α	عرض قائمة بملفات البيانات الموجودة
٩	حذف ملف البيانات
۱.	تغيير اسم ملف البيانات
۱.	عمل نسخة احتياطية من ملف البيانات واسترجاعها
١٢	الخروج من نافذة FILES
۱ ٤	الأمر SEDIT
۱ ٤	أو لا: الأمر File
1 2	ثانيا: الأمر Options
10	إدر اج / حذَّف حالات إلي / من ملف البيانات
17	تعريف المتغيرات
14	تعديل معلومات عن متغير ما
19	عمل إخفاء مؤقت للمتغير ات
19	الذهاب إلي حالة ما داخل المتغير
۲.	الخروج من نافذة Options
۲.	ثالثا: الأمر Edit/Enter
21	رابعا: الأمر Quit
21	نقل البيانات من برنامج Excel إلي برنامج MSTAT-C
۲٤	الفصل الثاني إجراء عمليات رياضية، طباعة ملف البيانات وعمل ماكرو
۲٤	إجراء عمليات رياضية علي البيانات
22	طباعة ملف البيانات
۳.	عمل ماکرو
٣٢	الفصل الثالث التلاعب بالبيانات
37	فرز وترتيب البيانات
39	نقل بيانات من متغير إلي متغير

٤٢	إلحاق بيانات بملف البيانات
٤٧	عمل ملف الاختيار Selection File
07	تحويل المتغيرات إلى حالات والعكس
٦٨	الفصل الرابع الإحصاء الوصفي للبيانات
٦٨	أولا : STAT
\mathbf{v})	ثانیا : MEAN
V٣	ثالثا : FREQ
٨.	رابعا : TABLES
۲۸	خامسا: PLOT
٨٤	سادسا: CURVES
$\wedge \vee$	ملحق ١ : الإحصاء الوصفي باستخدام برنامج SAS
$\Lambda\Lambda$	ملحق٢: حساب المتوسطات باستخدام برنامج SAS
٨٩	الفصل الخامس اختبار T، اختبار مربع كاي وحساب قيمة الاحتمال
٨٩	اختبار T
97	اختبار مربع كاي
1.7	حساب قيمة الاحتمال
1.0	ملحق ۱: إجراء اختبار T باستخدام برنامج SAS
۱۰۸	ملحق ٢: إجراء اختبار مربع كاي باستخدام برنامج SAS
1.9	الفصل السادس تحليل التباين وحساب القيمة المفقودة
1.9	التقسيم أحادي الجهة
110	التقسيم ثنائي الجهة
12.	التصميم الشبكي المربع أو المستطيل
122	تصميم المربع اللاتيني
121	تحليل التباين الهرمي
13.	حساب القيمة المفقودة
	ملحق ١: إجراء تحليل التباين لتصميم القطاعات كاملة العشو ائية RCBD
١٣٣	والتصميم العشوائي التام CRD باستخدام برنامج SAS
122	ملحق٢: إجراء تحليل التباين للتصميم الشبكي باستخدام برنامج SAS
	ملحق٣: إجراء تحليل التباين لتصميم المربع اللاتيني باستخدام برنامج
177	SAS
139	الفصل السابع المقارنات بين متوسطات المعاملات
139	المقارنات العديدة بين متوسطات المعاملات
122	المقارنات المصممة المتعامدة
107	ملحق ١: إجراء المقارنات العديدة بين متوسطات المعاملات باستخدام
	برنامج SAS
100	ملحق٢: إجراء المقارنات المصممة باستخدام برنامج SAS

تقديم

الإحصاء فرع من فروع الرياضيات، له من الأهمية في الكثير من العلوم سواء كانت الإنسانية أو العلمية، ظهر ذلك من خلال التحليل الإحصائي والذي أصبح من الأساليب الضرورية لمعالجة وتحليل البيانات لكافة الأبحاث العلمية في مختلف العلوم، لفترة طويلة كانت تلك التحليلات يتم معالجتها يدوياً مما يقلل من دقة النتائج بالإضافة لطول الوقت لعمل تلك التحليلات والجهد الكبير الذي يبذله الباحث لتنفيذ ذلك. ولتحقيق دقة عالية في التحليل وتقليل الجهد والوقت ظهرت العديد من الأساليب الإلكترونية والبرامج ومنها برنامج C-MSTAT.

ونظراً لافتقار المكتبات العربية لمثل هذا النوع من الكتب كانت البادرة الجيدة من قبل المؤلف لإثراء المكتبة العربية بهذا العمل الجيد والذي نطمع فيه الفائدة الكاملة لمستخدميه أملين من الله النفع للجميع ولوطننا العزيز مصر.

الأستاذ الدكتور السيد محسوب نجم أستاذ الإحصاء الرياضي

مقدمسة

ا برنامج MSTAT-C في تحليل التجارب الزراعية؟ قد يتبادر هذا السؤال بعقول البعض وللإجابة على هذا السؤال يكفينا أن نعرف أن برنامج MSTAT-C عبارة عن حزمة من البرامج المُعدة خصيصاً لإدارة وتحليل البيانات إحصائياً ولمعاونة الباحثين المختصين في مجال الزر اعة والعلوم التطبيقية في جميع مراحل البحث حيث تشتمل هذه الحزمة على برامج للمساعدة في تصميم التجربة وإدارتها وتحليل بياناتها، هذا بالإضافة إلى سهولة استخدام هذا البرنامج فهو بعيد كل البعد عن تعقيدات البر امج الأخرى حيث لا يحتوى على قوائم رئيسية ينبثق منها قوائم فرعية والتي بدورها يخرج منها قوائم تحت فرعية مثل البرامج الإحصائية الأخرى والتي تجعل المستخدم غير المتخصص في البرنامج يواجه كثير من الصعوبات بينما فى برنامج MSTAT-C كل الأو امر (بر امج الحزمة إن صبح التعبير) توجد في النافذة الرئيسية للبرنامج والتعامل مع هذه الأوامر لا يحتاج إلى خبرة كبيرة في مجال الحاسب الآلي فكل ما على مستخدم البرنامج فعلة تظليل الأمر (تحت البرنامج Subprogram إن صبح التعبير) ثم الضغط على مفتاح الإدخال Enter في لوحة المفاتيح ثم يجيب عن مجموعة من الأسئلة، على سبيل المثال يسألك عن مدى البيانات المراد تحليها أو عن المتغير المراد تحليله ... الخ وبالإجابة عن هذه الأسئلة يتم تتفيذ التحليل، أما بالنسبة للمخرج النهائي Output للتحليل فهو ذو شكل منظم جداً ويسهل تفسيره. وفي النهاية نستطيع أن نقول أن هذا البرنامج صغير في حجمه كبير في فعله. أخيراً أود أن أوضح بعض الأشياء الهامة

لابد من قراءة الفصل الأول وبعد ذلك يمكن قراءة الفصول التالية بدون ترتيب
 حسب الحاجة للمعلومة حيث أن كل فصل من الفصول التالية للفصل الأول يتناول
 موضوعاً مستقلاً بذاته.

۲

- ليس ضرورياً أن يكون قارئ هذا الكتاب ملماً إلماماً جيداً بعلم الإحصاء أو قوانينها ولكن من الضروري أن يكون قادراً على تفسير نتيجة التحليل الإحصائي وهذا ما سنركز عليه في نهاية كل مثال مطروح في هذا الكتاب.
- الكتاب لا يشرح إحصاء وإنما يشرح كيفية استخدام برنامج MSTAT-C في تحليل البيانات إحصائياً
- الإصدار المشروح بين دفتي الكتاب MSTAT-C 2.1 والذي تم تطويره بو اسطة Russell D. Freed مدير قسم علوم الأراضي والمحاصيل، جامعة ولاية ميتشجان الأمريكية وهذا البرنامج ملكية خاصة لأصحابه وأي رأي مذكور في هذا الكتاب يعبر عن الرأي الشخصي للمؤلف.
 - الموقع الرسمي للبرنامج
 https://www.msu.edu/~freed/mstatc.htm
 - يمكن الحصول على البرنامج من هنا https://www.msu.edu/~freed/disks.htm
 - معظم الأمثلة التي اعتمد عليها المؤلف في شرح البرنامج مأخوذة من
- ٥ كتاب مبادئ الإحصاء وتصميم التجارب قسم المحاصيل كلية الزراعة
 حامعة الزقازيق
- كتاب تصميم وتحليل التجارب تأليف الدكتور محمد محمد الطاهر الإمام
 أستاذ مشارك في الإحصاء جامعة الملك سعود الرياض، دار المريخ

للنشر، الرياض، المملكة العربية السعودية، ١٤١٤هـ / ١٩٩٤م.

في نهاية هذه المقدمة يطيب لي أن أتقدم بخالص الشكر إلي كل من مد يد العون و أخص بالذكر أصدقائي معاوني أعضاء هيئة التدريس بقسم علوم الأراضي كلية الزراعة جامعة الزقازيق الذين دفعوني دفعاً لإخراج هذا الكتاب إلي النور وأرجو أن يكون لهذا الكتاب فائدة ملموسة تعود على البحث العلمي في مصر والوطن العربي.

مع تحياتي د • محمد كمال عبد الفتاح محمد

معني الأولى المعامل هي ملغ الجيانات FILES and SEDIT

التعامل مع ملف البيا نات

FILES يتم التعامل مع ملف البيانات من خلال الأمر FILES MSTAT-C قي النافذة الرئيسية لبرنامج Data file و هي: و الغرض منه:- تأدية و ظائف هامه لملف البيانات Data file و هي: ١- فتح و غلق ملف بيانات موجود بالفعل

- ۲ إنشاء ملفات بيانات جديدة
- ۳- تغيير المسار الافتراضي للبرنامج
- ٤- عرض قائمة بملفات البيانات الموجودة
 - ٥- حذف ملف البيانات النشط
 - ٦- تغيير اسم ملف البيانات النشط
- ٧- عمل نسخة احتياطية من ملف البيانات النشط مع إمكانية استرجاعها

-	MSTAT-C									
	MOTATIC									
	FILES	- Perf	orms	file utili	ty f	unctions fo	r MS	TAT data fi	les.	
					-					
	Selectio	n: OFF								
	Data Fil	e: NONE	Ξ							
	Def. Pat	h: C:∖№	ISTAT	C\DATA\						
	1 466	EDTEC	10	CONTRACT	22		24	DI OT	4 5	CTAT
	1. ACS	ERIES	12.	CORP	23.		25		45.	
	3. ANO	VA-1	14.	CROSSTAB	25.	LATTNSO	36.	PRITST	47.	TABLES
	4. ANO	VA-2	15.	CURVES	26.	LP	37.	PROBABIL	48.	TRANSPOS
	5. ANO	VALAT	16.	DIALLEL	27.	MEAN	38.	PROBIT	49.	T-TEST
	6. ASC	II	17.	ECON	28.	MISVALEST	39.	RANGE	50.	VARSERIES
	7. ASE	DIT	18.	EXPSERIES	29.	MULTIDIS	40.	REGR	51.	MGRAPHICS
	8. BRS	ERIES	19.	FACTOR	30. 21	MULTIREG	41.	SEDIT		
	9. CAL	SUD	20.	FILES	32.	NONORTHO	42.	SELECT		
	11. CON	FTG	22.	GROUPTT	33.	NONPARAM	44.	STABTI		
				0.000.21				UNNEEL		

النافذة الرئيسية لبرنامج MSTAT-C

- ظلل الأمر FILES في النافذة الرئيسية للبرنامج
- اضغط علي مفتاح الإدخال Enter في لوحة المفاتيح
- تظهر النافذة التالية، الجزء السفلي منها يسمى FILES: Current stats يحتوي علي معلومات خاصة بملف البيانات المفتوح فنجد أن

Current Data File: NONE

بمعنى أنه لا يوجد ملف بيانات مفتوح، أيضاً يظهر في هذا الجزء المسار الافتر اضي للبرنامج و هو

$C: \ MSTATC \ DATA$

Activate an existing data file Open Close Make Path List Erase Name Backup Restore Quit

بينما الجزء العلوي من هذه النافذة يحتوي علي الأوامر التي تندرج تحت الأمر
 بينما الجزء العلوي من هذه النافذة يحتوي علي الأوامر عن طريق الأسهم
 و الشكل السابق ويتم الانتقال بين هذه الأوامر عن طريق الأسهم
 في لوحة المفاتيح ناحية اليمين أو اليسار وفيما يلي سوف نتعرف علي وظيفة كل
 أمر من هذه الأوامر.

فتح وغلق ملف بيانات موجود بالفعل:

أولاً: الأمر Open: يستخدم لفتح ملف بيانات موجود بالفعل

- ظلل الأمر Open
- اضغط علي مفتاح الإدخال Enter في لوحة المفاتيح
 - تظهر النافذة التالية والتي تحتوي علي خانة نشطة
- اكتب في الخانة النشطة اسم ملف البيانات المراد فتحه ثم اضغط مفتاح الإدخال
 Enter في لوحة المفاتيح

 يمكن استعر اض ملفات البيانات الموجودة بالفعل بالضغط علي مفتاح F1 في لوحة المفاتيح فتنسدل قائمة تحتوي علي ملفات البيانات الموجودة بالفعل كما بالشكل

_ ٥ _

التالي ويتم التنقل داخل هذه القائمة باستخدام الأسهم الموجودة في لوحة المفاتيح لأعلي أو لأسفل

 بعد الوصول للملف المراد فتحه اضغط علي مفتاح الإدخال Enter في لوحة المفاتيح فيتم فتح الملف ويمكن الاستدلال علي ذلك من خلال الجزء السفلي لهذه النافذة حيث تحولت كلمة NONE إلي اسم ملف البيانات الذي تم فتحه.

 بينما إذا لم يكن هناك ملفات بيانات موجودة بالفعل في المسار الافتر اضي للبرنامج وتم الضغط على مفتاح F1 فأن القائمة التي تظهر تخبرك بعدم العثور علي ملفات كما في الشكل التالي

ثانياً: الأمر Close: يستخدم لغلق الملف المفتوح

- ظلل الأمر Close
- اضغط علي مفتاح الإدخال Enter في لوحة المفاتيح
- يتم غلق ملف البيانات المفتوح ويمكن الاستدلال علي ذلك من خلال الجزء السفلي لهذه النافذة حيث يختفي اسم الملف وتظهر كلمة NONE

إنشاء ملف بيانات جديد:

الأمر Make: يستخدم لإنشاء ملف بيانات جديد

ظلل الأمر Make ثم اضغط علي مفتاح الإدخال Enter في لوحة المفاتيح

 تظهر النافذة التالية ونلاحظ أن هذه النافذة تحتوي علي المسار الافتراضي للبرنامج \Default Path C:\MSTATC\DATA، كما أنها تحتوي علي ثلاث خانات

= Enter MSTAT file name (Press F1 for help - ESC to quit) ______ Default path C:\MSTATC\DATA\ Enter File Name: ANALYSIS Title analysis Size 100 Status on Exit of Subprogram ACTIVE

- اكتب في الخانة الأولي "Enter File Name" اسمأ لملف البيانات المراد إنشاؤه وليكن ANALYSIS علي سبيل المثال ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح فينتقل المؤشر إلي الخانة الثانية "Title"
- اكتب في الخانة الثانية "Title" عنو اناً لملف البيانات المراد إنشاؤه وليكن analysis علي سبيل المثال ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح فينتقل المؤشر إلى الخانة الثالثة "Size"
- حدد الحجم في الخانة الثالثة والحجم الافتراضي ١٠٠ ويمكن زيادة هذا الحجم
 حتى ٢٠ كحد أقصي ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح
- وبذلك تم إنشاء ملف بيانات جديد ويمكن الاستدلال علي ذلك من خلال الجزء
 السفلي لهذه النافذة حيث تحولت كلمة NONE إلي ANALYSIS و هو اسم ملف
 البيانات الذي تم إنشاؤه.

تغيير المسار الافتراضى للبرنامج:

ا**لأمر Path**: يستخدم لتغيير المسار الافتراضي للبرنامج وكما ذكرنا أن المسار الافتراضي هو \C:\MSTATC\DATA ويمكن تغيير هذا المسار كما يلي

ظلل الأمر Path

- اضغط مفتاح الإدخال Enter في لوحة المفاتيح
- Enter تحتوي علي خانة نشطة بعنوان CHANGE PATH تحتوي علي خانة نشطة بعنوان new Default Path

- اكتب في هذه الخانة النشطة المسار الجديد للبرنامج وليكن \: D علي سبيل المثال
 ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح
 - تظهر رسالة تخبرك بالمسار الإفتراضي الجديد كما في الشكل التالي
 CHANGE PATH (Press RETURN or ESC) ¬

New default path is D:\

 اضغط مفتاح الإدخالEnter في لوحة المفاتيح وبذلك تم تغيير المسار الافتراضي للبرنامج ويمكن الاستدلال علي ذلك من خلال الجزء السفلي لنافذة FILES حيث تغير المسار الافتراضي \C:\MSTATC\DATA إلي المسار الجديد \:D كما في الشكل التالي

FILES: Current Status ______ Current Data File: ANALYSIS Current Default Path: D:\

جــرب بنفـــسك: غيـــر المـــسار مـــره ثانيـــة إلـــي المـــسار الافتراضـــي \C:\MSTATC\DATA

عرض قائمة بملفات البيانات الموجودة:

الأمر List: يستخدم لعرض ملفات البيانات الموجودة بالفعل في المسار الافتراضي للبرنامج

- ظلل الأمر List ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح.
 - تظهر قائمة بملفات البيانات الموجودة بالفعل كما في الشكل التالي
- يتم التنقل بين أسماء هذه الملفات من خلال مفاتيح الأسهم لأعلي و لأسفل

- للخروج من هذه القائمة اضغط مفتاح الإدخال Enter في لوحة المفاتيح أو مفتاح الهروب Escape.
- إذا لم توجد ملفات في هذا المسار وتم الضغط على الأمر List تظهر عبارة تخبرك بعدم العثور على ملفات كما بالشكل التالي
 C:\MSTATC\DATA\

No files found.

حذف ملف البيانات:

الأمر Erase: يستخدم في مسح / حذف ملف البيانات المفتو ح

- ظلل الأمر Erase
- اضغط مفتاح الإدخال Enter في لوحة المفاتيح
- تظهر رسالة تحذيرية كما بالشكل التالي وتسألك "هل أنت متأكد من أنك تريد مسح الملف؟ وينتظر منك الإجابة بـ [Y/N] حيث عند الضغط علي الحرف Y في لوحة المفاتيح تظهر كلمة Yes بمعني انك موافق ثم اضغط علي Enter فيتم مسح الملف وعند الضغط علي الحرف N في لوحة المفاتيح تظهر كلمة No بمعني انك علية غير موافق ثم اضغط علي الحرف المفاتيح فتظهر رسالة تخبرك بأن عملية الحذف قد ألغيت وتطلب منك الضغط علي مفتاح الإدخال Enter للاستمر ار.

FILES: Delete Current File _______ Are you sure that you want to delete ANALYSIS Y/N

بينما إذا لم يكون هناك ملف بيانات نشط (مفتوح) وتم الضغط علي الأمر Erase
 تظهر رسالة خطأ تخبرك بأنك لا تملك ملف بيانات نشط (مفتوح) كما بالشكل
 التالي.

ERROR: You do not have an active data file.

= FILES :

تغيير اسم ملف البيانات: الأمر Name: يستخدم لتغيير اسم ملف البيانات المفتوح (النشط)

- ظلل الأمر Name
- اضغط مفتاح الإدخال Enter في لوحة المفاتيح
- تظهر نافذة بعنوان FILES: Delete File كما بالشكل التالي تحتوي علي خانة نشطة بعنوان Enter the new name for the file
- اكتب في الخانة النشطة الاسم الجديد للملف ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح فيتم تغيير اسم ملف البيانات
- ويمكن الاستدلال علي ذلك من خلال الجزء السفلي لنافذة FILES حيث تغير اسم ملف البيانات القديم إلي الاسم الجديد

= FILES ====

بينما إذا لم يكون هناك ملف بيانات نشط (مفتوح) وتم التعامل مع الأمر Name
 تظهر رسالة خطأ تخبرك بأنك لا تملك ملف بيانات نشط كما بالشكل التالي.

ERROR: You do not have an active data file.

عمل نسخة احتياطية من ملف البيانات واسترجاعها: أولاً: عمل نسخة احتياطية: الأمر Backup: يستخدم لعمل نسخة احتياطه من ملف البيانات المفتوح بحيث لو حدث خطأ في ملف البيانات الأصلي يمكن استرجاع ملف البيانات الاحتياطي من خلال الأمر Restore

- ظلل الأمر Backup
- اضغط مفتاح الإدخال Enter في لوحة المفاتيح

- تظهر رسالة بعنوان Backup successful كما بالشكل التالي ومضمون هذه الرسالة أن عملية عمل نسخة احتياطية من ملف البيانات قد نجحت ومكان هذه النسخة الاحتياطية هو نفسه مكان الملف الأصلي ولكن بامتداد TX and. DA&.
 - اضغط مفتاح الإدخال Enter في لوحة المفاتيح.

بینما إذا لم یکون هناك ملف بیانات نشط (مفتوح) وتم الضغط على الأمر
 Backup تظهر رسالة خطأ تخبرك بأنك لا تملك ملف بیانات نشط كما بالشكل
 التالي.

ثانياً: استرجاع النسخة الاحتياطية:

الأمر Restore: يستخدم لاسترجاع النسخة الاحتياطية التي أنشأت باستخدام الأمر Backup

- ظلل الأمر Restore
- اضغط مفتاح الإدخال Enter في لوحة المفاتيح
- تظهر نافذة بعنوان FILES: Restore file from backup كما بالشكل التالي تحتوي علي سؤال "هل تريد استخدام ملف البيانات الاحتياطي الذي تم إنشاؤه بتاريخ (كذا) الساعة (كذا)" وينتظر منك الإجابة بـ [Y/N]
 FILES: Restore file from backup
 Use backup created on 8/14/111 at 2:31? Y/N
 - اضغط علي حرف Y في لوحة المفاتيح للمو افقة فتظهر كلمة Yes
- اضغط Enter في لوحة المفاتيح فتظهر رسالة كما بالشكل التالي تخبرك باكتمال
 المهمة وأن ملف البيانات الاحتياطي قد تم استرجاعه.

= Restore Backups ------Mission Accomplished. Your backups have been restored.

الخروج من نافذة الأمر FILES:

الأمر Quit: يستخدم للخروج من نافذة FILES إلي النافذة الرئيسية للبرنامج حيث عند تظليل هذا الأمر ثم الضغط علي مفتاح الإدخال Enter في لوحة المفاتيح نعود إلي النافذة الرئيسية لبرنامج MSTAT ويمكن الوصول لنفس النتيجة بالضغط على مفتاح حرف Q في لوحة المفاتيح أو بالضغط علي مفتاح الهروب ESC.

إدخال وتحرير البيانات

يتم إدخال وتحرير البيانات الرقمية أو النصية داخل SEDIT ملف البيانات الذي تم إنشاؤه سالفاً باستخدام الأمر FILES من خلال الأمر SEDIT رقم ٤١ في النافذة الرئيسية لبرنامج FILES

- ظلل الأمر SEDIT في النافذة الرئيسية للبرنامج
 - اضغط مفتاح الإدخال Enter في لوحة المفاتيح
- تظهر نافذة بعنوان SEDIT تحتوي علي الأوامر التي تندرج تحت الأمر
 SEDIT كما بالشكل التالي

Sedit Options Command Menu File Options Enter/Edit Quit

ويتم التنقل بين هذه الأوامر عن طريق مفاتيح الأسهم في لوحة المفاتيح ناحية اليمين أو اليسار وسوف نتعرف علي وظيفة كل أمر من هذه الأوامر

أولا الأمر File:

هذا الأمر شبيه بالأمر FILES الموجود في الفصل الأول حيث من خلاله يتم فتح ملف بيانات جديد أو موجود بالفعل من خلال الأمر For Writing كما يمكن من خلاله تغيير المسار الافتراضي للبرنامج من خلال الأمر Path وللعودة إلي قائمة SEDIT يكون من خلال الأمر Quit وحيث أننا تحدثنا عن أو امر مشابهه تقوم بنفس الوظائف في الفصل الأول سوف أتركك تستكشف هذا الأمر بنفسك.

ثانيا الأمر Options:

يعتبر الأمر الرئيس في قائمة الأوامر الخاصة بالأمر SEDIT حيث من خلاله نقوم بوظائف عدة مثل تحديد عدد الحالات في ملف البيانات وإضافة أو حذف عدد معين من الحالات من ملف البيانات وأيضا من خلاله يمكن تعريف المتغيرات داخل ملف البيانات وإعادة تسميتها، وعند تظليل هذا الأمر ثم الضغط علي مفتاح الإدخال Enter

التالية

ويتم التنقل بين هذه الأوامر عن طريق الأسهم في لوحة المفاتيح ناحية اليمين أو اليسار وسوف نتعرف علي وظيفة كل أمر من هذه الأوامر إدراج / حذف حالات داخل / من ملف البيانات: أولاً إدراج حالات داخل ملف البيانات من خلال الأمر Insert cases بإتباع الخطوات

- ظلل الأمر Insert cases ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح
 - INSERT CASES (Press ESC to quit) ______ (iber of first case to insert: 1
 Number of last case to insert: 100
 Tere ی علی خانتین کما فی

الشكل المقابل، حدد في الخانتين مدى الحالات المطلوب إدر اجه

 بعد تحديد مدى الحالات المطلوب إدر اجها اضغط مفتاح الإدخال Enter في لوحة المفاتيح فتظهر رسالة تخبرك بعدد الحالات التي تم إدر اجها في ملف البيانات كما بالشكل التالي

100 cases (1-100) inserted in C:\MSTATC\DATA\ANALYSIS

= INSERT CASES ====

* الحالات Cases هي إجمالي المشاهدات (الوحدات التجريبية) الموجودة في التجربة وتساوي حاصل ضرب عدد معاملات التجربة وعدد المكررات فمثلاً إذا كانت عدد معاملات التجربة ٣ وكل معاملة تم تكررها ٣ مرات فإن عدد الحالات يساوي ٣ × ٣ = ٩ ثانيا حذف حالات من ملف البيانات: يتم حذف كل الحالات أو مدى معين من حالات ملف البيانات من خلال الأمر Remove cases بإتباع الخطوات التالية

- ظلل الأمر Remove cases ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح
- تظهر نافذة بعنوان REMOVE CASES كما بالشكل التالي، تحتوي علي خانتين، حدد فيهما مدى الحالات المطلوب حذفه من ملف البيانات

= REMOVE CASES (Press ESC to quit) — Number of first case to remove: 20 Number of last case to remove: 75

 بعد تحديد مدى الحالات المطلوب حذفه اضغط مفتاح الإدخال Enter في لوحة المفاتيح فتظهر رسالة تخبرك بعدد الحالات التي تم حذفها من ملف البيانات كما بالشكل التالي

تعريف المتغيرات:

يتم تعريف المتغيرات Variables داخل ملف البيانات من خلال الأمر Define بإتباع الخطوات التالية

- ظلل الأمر Define ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح
 - تظهر نافذة بعنوان DEFINE variable 1 كما بالشكل التالى

 في الخانة الأولي "Title" أكتب عنوان المتغير الجديد (تستقبل هذه الخانة حتى ٦٥ حرف كحد أقصى) ثم اضغط علي مفتاح الإدخال Enter في لوحة المفاتيح فينتقل المؤشر إلي الخانة الثانية Type

- في الخانة الثانية "Type" حدد نوع البيانات هل هي بيانات رقمية Numeric أم بيانات نصية Type" حدد نوع البيانات هل مفتاح المسافة Spacebar في بيانات نصية Text ويتم التنقل بينهما من خلال مفتاح المسافة Enter في لوحة المفاتيح وبعد الانتهاء من تحديد نوع البيانات اضغط مفتاح الإدخال Size فينتقل المؤشر إلى الخانة الثالثة Size
- في الخانة الثالثة Size حدد حجم المتغير (الحجم الافتر اضي ٤ بايت ويمكن زيادة هذا الحجم إلى ٦٥ بايت كحد أقصي) وبعد الانتهاء اضغط مفتاح الإدخال Enter فينتقل المؤشر إلى الخانة الرابعة
- خانة Display Format تحتوي علي خانتين الأولي خانة Left وفيها يتم تحديد
 عدد الأرقام التي ستظهر علي يسار العلامة العشرية والثانية Right وفيها يتم
 كتابة عدد الأرقام التي ستظهر علي يمين العلامة العشرية
- اضغط مفتاح الإدخال Enter فتظهر نافذة جديدة بعنوان 2 DEFINE variable
 وفيها نكرر نفس الخطوات السابقة لتعريف المتغير الثاني ونستمر في تلك العملية
 حتى يتم تعريف كل المتغير ات داخل ملف البيانات
- بعد الانتهاء من تعريف كل المتغيرات اضغط مفتاح الهروب Escape في لوحة المفاتيح للرجوع إلي النافذة التي تحتوي علي أو امر Options ولكن هذه المرة سنلاحظ تغيير في هذه النافذة حيث ظهر عمود باسم Case يحتوي علي عدد الحالات التي تم إدخالها من خلال الأمر Insert Cases وظهور أسماء المتغيرات التي تم تعريفها من خلال الأمر Define

Case 1 EC 2 pH 3 Na 1 2 3 4 5 6

ومن الشكل السابق نستنتج أن عدد الحالات التي تم إدر اجها داخل ملف البيانات ست حالات وعدد المتغير ات التي تم تعريفها ثلاثة متغير ات وهي: المتغير الأول أطلقنا عليه اسم EC والثاني pH والثالث Na. **جرب بنفسك:** قم بإنشاء ملف البيانات السابق مع العلم أن جميع المتغير ات رقمية. تعديل معلومات عن متغير ما: يتم تعديل معلومات عن متغير ما مثل اسم المتغير وتنسيق الأرقام التي ستظهر تحت هذا المتغير من خلال الأمر Newtxt بإتباع الخطوات التالية • ظلل الأمر Newtxt ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح

تظهر قائمة كما بالشكل التالي تحتوي علي المتغير ات التي تم تعريفها في ملف
 البيانات ويتم التنقل فيما بينها بو اسطة الأسهم لأعلي و أسفل

NEWTXT : Select a variable to modify (press ESC to quit) =
 NO1 (NUMERIC) EC
 002 (NUMERIC) PH
 003 (NUMERIC) Na

- عند الوصول للمتغير المراد تعديله وليكن المتغير الأول مثلاً اضغط مفتاح الإدخال Enter في لوحة المفاتيح فتظهر النافذة التالية والتي تحتوي علي ثلاث خانات
 Enter NEWTXT for variable 1 (Press ESC to Abort)
 File Title ANALYSIS
 Var. Title EC
 Display Format (left) 7 (right) 1
- في الخانة الأولي File Title يوجد فيها عنوان ملف البيانات أتركه كما هو (ملف البيانات المفتوح اسمه ANALYSIS)
- في الخانة الثانية Var. Title يوجد فيها اسم المتغير (اسم المتغير EC) وبالتالي يمكن تعديله (عدل اسم المتغير إلى TSS)
- في الخانة الثالثة Display Format وهي تحتوي بدور ها علي خانتين حدد فيهما عدد الأرقام التي تظهر على يمين ويشار العلامة العشرية، في النهاية اضغط مفتاح الإدخال Enter في لوحة المفاتيح.
- اضغط مفتاح الهروب Escape في لوحة المفاتيح للخروج من القائمة. لاحظ أن
 المتغير EC تغير إلي TSS كما بالشكل التالي

Case 1 TSS 2 pH 3 Na 1 2 3

عمل إخفاء مؤقت للمتغيرات:

يتم عمل إخفاء مؤقت لكل أو بعض المتغيرات من الشاشة من خلال الأمر Variables بإتباع الخطوات التالية

- ظلل الأمر Variables ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح
- تظهر قائمة بالمتغيرات التي تم تعريفها من قبل باستخدام الأمر Define كما بالشكل التالي ويتم التنقل بين هذه المتغيرات بو اسطة الأسهم الموجودة في لوحة المفاتيح لأعلي أو أسفل

Choose variables to edit (Press ESC to quit) = 001 (NUMERIC) TSS ►002 (NUMERIC) PH 003 (NUMERIC) NA

عند الوصول للمتغير المراد إخفائه مؤقتاً من ملف البيانات - وليكن مثلا المتغير
 الثاني pH - ظلله بالضغط علي مفتاح المسافة Spacebar في لوحة المفاتيح ثم
 اضغط مفتاح الإدخال Enter فنلاحظ اختفاء المتغير الذي تم تظليله مؤقتاً من ملف
 البيانات كما بالشكل التالي.

 لإظهار المتغير مرة ثانية نتبع نفس الخطوات السابقة ثم نزيل التظليل من علي المتغير عن طريق اختياره باستخدام الأسهم ثم الضغط علي مفتاح المسافة Spacebar ثم الضغط علي مفتاح الإدخال Enter في لوحة المفاتيح.
 الذهاب إلى حالة ما في المتغير:

يمكن الذهاب إلي حالة معينة داخل متغير معين من خلال الأمر Goto حيث عند تظليل هذا الأمر ثم الضغط علي مفتاح الإدخال Enter تظهر نافذة تحتوي علي خانتين كما في الشكل التالي، في الخانة الأولي Case نكتب رقم الحالة المراد الانتقال إليها وفي الثانية Variable نكتب رقم المتغير

GOTO (case, variable) =

الخروج من نافذة OPTIONS:

الأمر Quit يستخدم للخروج من هذه النافذة والرجوع إلي نافذة SEDIT حيث عند تظليل هذا الأمر ثم الضغط علي مفتاح الإدخال Enter في لوحة المفاتيح يتم الرجوع إلي نافذة SEDIT ويمكن تنفيذ نفس الوظيفة بالضغط علي مفتاح <Q> في لوحة المفاتيح أو مفتاح الهروب Esc

ثالثًا الأمر Edit/Enter:

تحدثنا فيما سبق عن الأمر File والأمر Options وجاء الآن الدور علي الأمر Enter/Edit ويستخدم هذا الأمر لإدخال وتحرير البيانات إلي ملف البيانات الذي تم إنشاؤه وأدخل فيه الحالات والمتغيرات

- ظلل الأمر Enter/Edit
- اضغط مفتاح الإدخال Enter في لوحة المفاتيح
- نلاحظ أن منطقة إدخال/تحرير البيانات أصبحت نشطة ومن ثم نكتب البيانات المختلفة الخاصة بكل متغير وبمجرد كتابة أي بيان داخل ملف البيانات يتم حفظه بشكل تلقائي ويتم الانتقال داخل هذه المنطقة باستخدام مفاتيح الأسهم، مفتاح الإدخال أو مفتاح النتقل Tab
- يمكن معرفة وظائف المفاتيح التي يمكن استخدامها في هذه المنطقة بالضغط علي مفتاح المساعدة F1 في لوحة المفاتيح فتظهر شاشة تحتوي علي المفاتيح التي يمكن استخدامها ووظيفة كل منها كما بالشكل التالي.

ENTER	Enter cell contents	CTRL_HOME	Move to first cell
HOME	Page LEFT variables	CTRL_END	Move to last cell
END	Page RIGHT variables	CTRL-LEFT ARROW	Previous variable
PGUP	Page UP cases	CTRL-RIGHT ARROW	Next variable
PGDN	Page DOWN cases	F1	Help screen
UP ARROW	Move UP one case	F2	Undo change
DOWN ARROW	Move DOWN one case	INS	Insert mode
LEFT ARROW	Move left	DEL	Delete character
RIGHT ARROW	Move right	CTRL-L	Erase to end
F5	Go to cell chosen	ESC	Exit screen editor

 بعد إدخال بيانات المتغيرات يكون شكل ملف البيانات كما يلي (أدخل البيانات بنفسك)

Case	1 TSS	2 рН	3 N
1	12.5	7.8	23.
2	12.6	7.9	24.
3	13.0	8.0	24.
4	14.5	8.2	26.
5	14.6	8.1	25.
6	14 7	83	26

لاحظ أن عدد الأرقام العشرية في البيانات التي تم إدر اجها داخل ملف البيانات رقم عشري واحد لأننا أثناء تنسبق الأرقام في مرحلة تعريف المتغير ات باستخدام الأمر Define جعلنا الأرقام التي تظهر علي يمين الرقم في ملف البيانات رقم عشري واحد ويمكن إعادة التنسيق وجعله رقمين أو أكثر من خلال الأمر Newtxt كما تعلمنا سابقا (جرب بنفسك) وإذا حاولنا إدخال بيانات نصية لن يقبل حيث أن نوع المتغير تم تحديده بأنه متغير رقمي أثناء تعريف المتغيرات (جرب بنفسك)

رابعا الأمر Quit:

يستخدم هذا الأمر للخروج من نافذة SEDIT والرجوع إلي النافذة الرئيسية للبرنامج حيث عند تظليل هذا الأمر ثم الضغط علي مفتاح الإدخال Enter في لوحة المفاتيح فيتم الرجوع إلي النافذة الرئيسية للبرنامج، كما يمكن إجراء نفس العمل بالضغط علي مفتاح Q في لوحة المفاتيح أو على مفتاح الهروب ESC. نقل البيانات من برنامج Excel إلى برنامج MSTAT-C

> يمكن نسسخ البيانات من برنامج EXCEL إلي MSTAT-C كما يلي: يتم تظليل البيانات المراد نقلها من ملف MSTAT-C إلي برنامج MSTAT-C ثم نضغط على مفتاح الفأرة الأيمن ومن القائمة المنسدلة نختار Copy فيتكون إطار متحرك حول البيانات كما في الشكل المقابل

والآن أذهب إلي برنامج MSTAT-C ونشط منطقة تحرير البيانات عن طريق الأمر Enter/Edit

ثم اضغط علي الإطار الخارجي للبرنامج بالمفتاح الأيمن للفأرة ومن القائمة المنسدلة اختار Edit ومن القائمة الفرعية اختار Paste كما في الشكل التالي

والنتيجة ستكون كما بالشكل التالي

ملحوظة: لكي تتم هذه الطريقة بنجاح لابد أن يكون تنسيق الأرقام في جميع المتغيرات موحد، فإذا كان هناك أرقام تحتوي على رقم عشري واحد وأخري تحتوي على رقمين عشريين يؤدي هذا إلى حدوث خطأ أثناء نقل البيانات، لذا عند تنسيق المتغيرات لابد من توحيد عدد الأرقام (المنازل) العشرية

يمكن تلخيص الكلام السابق في الشكل التالي

الفنعل الثاني إجراء عمليات رياضية، طباعة هله البيانات وعمل ماكري CALC, PRLIST and MACRO إجراء عمليات رياضية، طباعة ملف البيانات وعمل ماكرو إجراء عمليات رياضية: إجراء عمليات رياضية: يمكن إجراء عمليات رياضية علي بيانات المتغيرات لموجودة في ملف البيانات وظهور نتيجة هذه العمليات في متغير موجود بالفعل أو في متغير جديد من خلال الأمر CALC رقم ٩ في النافذة الرئيسية لبرنامج MSTAT-C.

مثالى: أوجد تربيع قيم المتغير الثالث Na الموجود في ملف البيانات ANALYSIS بحيث تظهر النتيجة في متغير جديد سنطلق عليه Na^2.

لتنفيذ ذلك نتبع الخطوات التالية:

د. قم بفتح ملف البيانات ANALYSIS بإتباع الخطوات التي تعرفنا عليها سالفاً في الفصل الأول وللتذكير هي باختصار كما يلي

- ۲. ظلل الأمر CALC في النافذة الرئيسية للبرنامج ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح
- ٣. تظهر نافذة بعنوان Get Case Range كما بالشكل التالي، تخبرك بعدد الحالات.

= Get Case Range ______ The data file contains 6 cases. Do you wish to use all cases? No

- ٤. اضبغط مفتاح Y في حالة الموافقة ثم مفتاح الإدخال Enter للاستمر ار
- في حالة عدم الموافقة اضغط مفتاح N في لوحة المفاتيح ثم اضغط مفتاح
 الإدخال Enter فتظهر نافذة كما بالشكل التالي حدد فيها المدى المطلوب.

= Case Range 1 - 6 ------First selected case 1 Last selected case 6 تظهر نافذة تحتوي علي قائمة بالمتغيرات الموجودة في ملف البيانات وفي نهايتها يوجد Define New Variable كما بالشكل التالي، اختر المتغير المراد إظهار نتيجة العملية الرياضية فيه باستخدام مفاتيح الأسهم وظلله باستخدام مفتاح المسافة Spacebar الموجود في لوحة المفاتيح

Choose one variable (Press ESC to quit) 01 (NUMERIC) TSS 02 (NUMERIC) PH	
U3 (NUMERIC) NA	
▶04 Define New Variable	ļ

وإذا أردنا عمل متغير جديد باسم Na^2 نختار Define New Variable فتظهر نافذة تعريف المتغير ات كما بالشكل التالي وسبق وتعرفنا عليها والتي من خلالها يتم تعريف متغير جديد باسم Na^2 وهو المتغير الذي سيظهر فيه ناتج العملية الرياضية ثم نضغط مفتاح الإدخال Enter في لوحة المفاتيح.

= DEFINE variable 6 [80 bytes free] =

Title Na^2 Type NUMERIC Size 4 Display Format (Left) 7 (Right) 1

٢. تظهر النافذ التالية والتي تحتوي علي منطقة خضراء اللون نشطة

= CALC: Enter Transformation Formula

Enter the mathematical formula to be used to generate new values in variable 4 from existing values in your data file. Your formula may extend over multiple lines if necessary. Press F1 for a general help message, F2 for a description of the available functions, F3 to save the current function, F4 to load a function from disk, and F10 to finish entering and start calculating.

(V3)^2

CALC: Currently Supported Functions _________ Functions _________ ABS ACOS ACOT ACSC ASEC ASIN ATAN ATAN2 AVE BESS0 _______ BESS1 COS COT CSC EXP FRACT FACT INT LAG LEAD LN LOG % + -MAX MIN RAND ROUND RNORM SEC SIN SQRT TAN > < =

اكتب في المنطقة الخضر اء النشطة العملية الرياضة كما يلي: 2^(V3) وتعني تربيع قيم المتغير الثالث

- YO -

- ٧. بعد الانتهاء من كتابة المعادلة الرياضية اضغط مفتاح F10 للإنهاء فتظهر رسالة تخبرك بإتمام العملية، اضغط مفتاح الإدخال Enter في لوحة المفاتيح للعودة إلى النافذة الرئيسية للبرنامج

1 2 3 4 5 6	1 TSS 12.5 12.6 13.0 14.5 14.6 14.7	2 PH 7.8 7.9 8.0 8.2 8.1 8.3	3 Na 23.2 24.0 24.1 26.4 25.4 26.6	4 Na ² 538.2 576.0 580.8 697.0 645.2 707.6
6	14.7	8.3	26.6	707.6

Ca

ملحوظات:

- يوجد أسفل المنطقة النشطة الخضراء أسماء الدوال التي يدعمها البرنامج وكذلك
 الإشارات الرياضية المتاح استخدامها
- لمعرفة المزيد عن كيفية كتابة المعادلات الرياضية واستخدام الأقواس والإشارات أضغط <F1> وعن كيفية استخدم الدوال المختلفة اضغط <F2>
- لحفظ دالة معينة على جهاز الكمبيوتر في ملف بامتداد FNC يتم الضغط على مفتاح <F3> فيتم فتح نافذة نكتب فيها اسماً للملف ولتحملها مرة ثانية عند الحاجة إليها يتم الضغط على مفتاح <F4> فيتم فتح نافذة نكتب فيها اسم الملف المحتوي على الدالة المراد تحميلها
 - طباعة ملف البيانات:

يمكن طباعة محتويات ملف البيانات من خلال **PRLIST** الأمر PRLIST رقم ٣٦ في النافذة الرئيسية لبرنامج MSTAT-C.

 د. قم بفتح ملف البيانات ANALYSIS إذا كان غير نشط بإتباع الخطوات التالية

 $FILES \lrcorner \to Open \lrcorner \to F1 \to C: \backslash MSTATC \backslash DATA \backslash ANALYSIS \lrcorner$

- ۲. ظلل الأمر PRLIST ثم اضبغط على مفتاح الإدخال Enter في لوحة المفاتيح.
- ٣. تظهر نافذة بعنوان Get Case Rang تخبرك بعدد الحالات الموجودة في ملف البيانات وتسألك هل ترغب في استخدام كل الحالات؟ كما بالشكل التالي

مطلوب الإجابة بنعم أو لا حيث عند الضغط علي الحرف Y في لوحة المفاتيح تظهر كلمة Yes كما بالشكل التالي بمعني انك مو افق علي استخدام كل الحالات الموجودة في ملف البيانات ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح

أما إذا كنت لا ترغب في استخدام كل الحالات وتريد استخدام عدد معين فاضغط N في لوحة المفاتيح فتظهر كلمة No كما بالشكل التالي ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح

 ٤. تظهر النافذة التالية تحتوي علي خانة بعنوان :List حدد فيها أرقام المتغيرات المراد طباعتها

Enter the variables (1 - 3) to be printed : _______ List : 1-3

- 77 -

لاحظ: عند كتابة 3-1 يتم طباعة المتغير الأول والثاني والثالث وعند كتابة 1,3 يتم طباعة المتغير الأول والثالث فقط وبفرض أن هناك متغير رابع وخامس وتم كتابة 1,3-5 يتم طباعة المتغير الأول والثالث والرابع والخامس.

- . بعد كتابة أرقام المتغيرات المراد طباعتها اضبغط مفتاح الإدخال Enter في لوحة المفاتيح فتظهر عدة نوافذ متتالية تحتوي على الأسئلة التالية
 - هل تريد محاذاة النص ناحية اليسار؟
 - هل تستخدم ورق عريض في طابعتك؟
 - هل تريد ترقيم للصفحات؟
 - هل تريد طباعة وصف المتغير ات؟

وتكون الإجابة بالقبول بالضغط علي مفتاح حرف Y أو بالرفض بالضغط على مفتاح حرف N أو بالرفض بالضغط على مفتاح حرف N في لوحة المفاتيح وفي كلتا الحالتين اضغط مفتاح الإدخال Enter للانتقال إلى النافذة التالية

في النهاية تظــهر نافذة بعنوان Output Options تحتوي علي خيارات للمخرجات وهي View/edit/print/save كما بالشكل التالي

- ۲۸ -
- الخيار View output on screen يؤدي إلى إظهار البيانات علي الشاشة دون
 إمكانية عمل تغيير فيها
- الخيار Edit output يؤدي إلى إظهار البيانات علي الشاشة مع إمكانية عمل
 تغيير وتحرير في البيانات
 - الخيار Print output يعمل علي طباعة الملف من خلال الطابعة
- الخيار Save output to disk يعمل علي تخزين البيانات علي القرص الصلب
 Hard disk وفي هذه الحالة ستظهر نافذة كما بالشكل التالي تحتوي علي خانة بعنوان :Enter a filename to save output file to فيها اسم افتراضي
 لملف المخرجات "OUTPUT" ويمكن تغيير هذا الاسم.

```
ويكون شكل البيانات عند طباعتها أو حفظها على القرص الصلب كما يلي.
```

Data fi Title: Functio Data ca List Of	le: ANALYS analysis n: PRLIST se no. 1 to Variables	IS¶ o 6	
Var Typ 1 NUM 2 NUM 3 NUM Data fi Title : CASE NO.	e Name, ERIC TSS ERIC PH ERIC Na le : ANALYS analysis 1	/ Descript SIS 2	ion 3
1 2 3 4 5 6	12.5 12.6 13.0 14.5 14.6 14.7	7.8 7.9 8.0 8.2 8.1 8.3	23.2 24.0 24.1 26.4 25.4 26.6

- 28 -

هاكرو	وعمل		<u> Ål</u> o	طباعة		ريا	<u>üktes</u>	إيجراء	الغانعي	النصل
-------	------	--	--------------	-------	--	-----	--------------	--------	---------	-------

عمل مساكرو:

من خلال الأمر ماكرو يمكن حفظ **MACRO** تلقائيا بدلاً من تكرار ها كل مرة وذلك بتخصيص رقم من (صفر إلي ٩) بحيث عند الضغط علي Alt + الرقم الذي تم تخصيصه يتم تنفذ العملية تلقائيا. و علي سبيل المثال عند فتح ملف بيانات نقوم بالخطوات التالية: خ نضغط علي Alt في النافذة الرئيسية للبرنامج ثم نظلل PILES في النافذة الرئيسية للبرنامج ثم نظلل open ونضغط <Pal> ثم نظلل open ونضغط <Pal> في تم نضغط <Pal> لكي يتم فتحه نضغط <Pal> لكي يتم فتحه نضغط عليه مع مفتاح لكل مره يتم تخصيص مفتاح من صفر : ٩ بحيث عند الضغط عليه مع مفتاح Alt يتم تنفيذ هذه الخطوات تلقائياً ويتم ذلك من خلال الأمر الضغط عليه مع مفتاح التالية: 1. افتح برنامج CTTC

۲. اضغط Alt+D فيظهر شريط بعنوان Macro Define كما بالشكل التالي يحتوي
 علي خانة نشطة ضع فيها أي رقم من صفر إلي ٩ وليكن ١ ثم اضغط <Enter>

Enter the number of the macro which you wish to define (0-9): 1

٣. قم بتنفيذ خطوات فتح ملف البيانات السابقة وبعد الانتهاء اضغط Alt+D فتظهر رسالة كما بالشكل التالي تخبرك بانتهاء التعريف ولتنفيذ هذه السلسلة من العمليات المتتالية اضغط Alt+1.

> = <Press any key to continue> _______ Terminating definition. To invoke it, press ALT-1.

- 3. -

= Macro Define =

٤. اضغط أي مفتاح لإخفاء هذه الرسالة وبذلك عند فتح ملف البيانات بدلاً من عمل كل الخطوات السابقة يُكتفى بالضغط علي 1+Alt فيتم فتح الملف تلقائياً. ويمكن تخصيص أي رقم أخر لتنفيذ عمليات أخرى فالأرقام المتاحة من صفر إلي ٩.

تنظیمی ای میں کمیں SORT, TABTRANS, ADDON, SELECT and TRANSPOS

التلاعب بالبيانات

فرز وترتيب البيانات: Sort يمكن فرز وترتيب البيانات الموجودة في ملف البيانات ترتيباً تصاعدياً أو تنازلياً في ملف بيانات جديد من خلال الأمر SORT رقم ٤٣ في النافــذة الرئيســــية لبرنــامج MSTAT-C.

 ظلل الأمر SORT ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح فتظهر النافذة التالية

	Enter the r Input file	name of the sorted Output file Cases	l output file Variables Key Sor	t Quit
6	= Input Summ	nary		
	File C:	to sort (input): \MSTATC\DATA\		
	Sort	ed file (output):	on exit	
	Case	e range to sort: .		
	Vari	iables to transfer	•••••••••••••••••••••••••••••••••••••••	
	Keys	; to sort on (1 = 1. 2. 3. 4. 5. 6.	highest priority): 7. 8. 9. 10. 11. 12.	13. 14. 15. 16. 17. 18.

- Input File: من خلاله يتم استدعاء ملف البيانات المحتوي علي البيانات المراد ترتيبها ترتيباً تصاعدياً أو تتازلياً وإذا كان الملف المحتوي علي البيانات مفتوح فعلاً نجد أن الأمر Output يكون مظلل بشكل تلقائي ولا داعي للخطوات التالية ولكن نبدأ من الأمر Output مباشرة أي من الخطوة رقم (٢).
- ظلل الأمر Input File واضغط علي مفتاح الإدخال Enter في لوحة المفاتيح
 تظهر نافذة كما بالشكل التالي

= MSTAT-C Menu Manager : Michigan State University = Open an existing MSTAT data file for Reading Path Quit

ظلل الأمر for reading ثم اضعط مفتاح الإدخال Enter فتظهر نافذة بعنوان Open تحتوي علي خانة يطلق عليها :Enter File Name

= OPEN (Press F1 for help -- ESC to quit) = Default path C:\MSTATC\DATA\ Enter File Name:

اضعط مفتاح F1 في لوحة المفاتيح فتظهر قائمة بملفات البيانات الموجودة
 فعلاً، اختر منها الملف المراد فتحه باستخدام الأسهم الموجودة في لوحة
 المفاتيح وليكن ملف البيانات ANALYSIS ثم اضغط مفتاح الإدخال Enter
 في لوحة المفاتيح مرتين متتاليتين

= OPEN (Press F1 for help -- ESC to quit) Default path C:\MS Files: C:\MSTATC\DATA*
Enter File Name: C:\MSTATC\DATA\ANOVA-2 C:\MSTATC\DATA\ANOVE-1

بعد إتمام هذه الخطوة نلاحظ أن شاشة ملخص المدخلات Input summary
 ظهر فيها مسار ملف البيانات الذي تم فتحه واسم هذا الملف وتم تظليل الأمر
 Output بشكل تلقائي كما بالشكل التالي.

= Sort			
Enter Input	the name of the sorted file Output file Cases	output file Variables Key Sor	t Quit
— Input	: Summary —————		
	File to sort (input): C:\MSTATC\DATA\ <mark>ANAL</mark>	<u>7515</u>	
	Sorted file (output):	on exit	
	Case range to sort: .		
	Variables to transfer	:	
	Keys to sort on (1 =) 1. 2. 3. 4. 5. 6.	nighest priority): 7. 8. 9. 10. 11. 12.	13. 14. 15. 16. 17. 18.

- ٢. Output file: بعد الانتهاء من الخطوة السابقة نجد أن الأمر Output file تم تظليله بشكل تلقائي ومن خلال هذا الأمر يتم فتح ملف بيانات جديد لكي يستقبل البيانات التي سيتم ترتيبها تصاعديا أو تتازلياً
- اضبغط مفتاح الإدخال Enter في لوحة المفاتيح فتظهر نافذة كما بالشكل التالي تحتوي علي الأمر for writing مظلل بشكل تلقائي

- في الخانة الأولي Enter File Name أكتب اسماً للملف الجديد (وليكن MEDO علي سبيل المثال) والذي سيحتوي علي البيانات مرتبه ترتيباً تصاعدياً أو تتازليا
 - في الخانة الثانية Title أكتب عنو اناً للملف الجديد
 - في الخانة الرابعة Size حدد حجم الملف
- في الخانة الخامسة نجد فيه كلمة Inactive بشكل افتر اضي ويمكن تحويلها إلي Active في الخانة الخامسة نجد فيه كلمة Spacebar بشكل افتر اضي ويمكن تحويلها إلى Active بالضغط علي مفتاح المسافة Inactive في لوحة المفاتيح و الفرق بين الاثنين هو: في حالة Inactive لن يكون الملف الجديد (MEDO) مفتوح ولفتحة يكون من خلال الأمر Files ثم Open كما تعلمنا سابقاً في الفصل الأول أما في حالة Active سيكون هو الملف النشط (المفتوح)
 - بعد الانتهاء من مليء الخانات نضغط <Enter>.
- بعد إتمام هذه الخطوة نلاحظ أن شاشة ملخص المدخلات Input summary
 بعد إتمام هذه الخطوة نلاحظ أن شاشة ملخص المدخلات الذي ستخزن فيه تم تحديثها و أصبحت تحتوي علي اسم ملف المخرجات الذي ستخزن فيه البيانات المراد ترتيبها تتازليا أو تصاعديا و أيضا المسار الذي سيوجد فيه هذا الملف و هل سيكون هو الملف النشط Active أم غير النشط Inactive، وتم تظليل الأمر Cases بشكل تلقائي كما بالشكل التالي.

- cort			
Enter Input	the name of the s file Output file	sorted output fi Cases Variables	le Key Sort Quit
	Summary		
	File to sort (in	10ut).	
-	Sorted file (out		on exit
	C-MSTATC DAT		on exte
	Case range to so	ort:	
	Variables to tra	insfer:	
1	Keys to sort on	(1 = highest pr)	iority):
	1.	Ť.	13.
	2.	8.	14.
	3.	9.	15.
	4.	10.	16.
	5.	11.	17.
	6.	12.	18.

- ۳. Cases: بعد الانتهاء من الخطوة السابقة نجد أن الأمر Cases تم تظليله ومن خلال هذا الأمر يتم تحديد مدى الحالات المراد ترتيبها تصاعدياً أو تنازلياً كما يلى
- اضعط مفتاح الإدخال Enter في لوحة المفاتيح فتظهر نافذة بعنوان Get
 اضعط مفتاح الإدخال Enter في لوحة المفاتيح فتظهر نافذة بعنوان Case Rang
 ترغب في استخدام كل الحالات؟ كما بالشكل التالي

Get Case Range ————————— The data file contains 18 cases. Do you wish to use all cases? Y/N

• مطلوب الإجابة بنعم أو لاحيث عند الضغط علي الحرف Y في لوحة المفاتيح تظهر كلمة Yes كما بالشكل التالي بمعني انك موافق علي استخدام كل الحالات الموجودة في ملف البيانات ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح

> Get Case Range —————————— The data file contains 18 cases. Do you wish to use all cases? Yes

أما إذا كنت لا ترغب في استخدام كل الحالات وتريد استخدام عدد معين
 فاضغط N في لوحة المفاتيح فتظهر كلمة No كما بالشكل التالي ثم اضغط
 مفتاح الإدخال Enter في لوحة المفاتيح

_ ٣٥ _

Get Case Range The data file contains 18 cases. Do you wish to use all cases? NO تظهر النافذة التالية تحتـوى علمي خانتيمين حدد فيهما المدى المراد استخدامه ثم اضغط على مفتاح الإدخال Enter في لوحة المفاتيح = Case Range 1- 18 -----First selected case 1 Last selected case 6 بعد إتمام هذه الخطوة نلاحظ أن شاشة ملخص المدخلات Input summary تم تحديثها وظهر فيها مدى البيانات الذي تم تحديده وتم تظليل الأمر Variables بشكل تلقائي كما بالشكل التالي. Sort Enter the name of the sorted output file Input file Output file Cases Variables Key Sort Quit Input Summarv File to sort (input): C:\MSTATC\DATA\ANALYSTS Sorted file (output): INACTIVE on exit C:\MSTATC\DATA\MEDO Case range to sort: 1 -Variables to transfer: Keys to sort on (1 = highest priority): 13. 7. 2. 14. 15. 3. 10. 16.

٤. Variables: بعد الانتهاء من الخطوة السابقة نجد أن الأمر Variables تم تظليله ومن خلاله يتم تحديد المتغيرات الموجودة في ملف البيانات الأصلي "Analysis" المراد ترتيب بياناته تصاعديا أو تنازلياً بإتباع الخطوات التالية

11.

17.

 Choose up to 3 variables (Press ESC to quit)
 I (NUMERIC) TSS
 O1 (NUMERIC) TSS
 O2 (NUMERIC) PH
 O3 (NUMERIC) Na
 Enter الإدخال
 Enter في لوحة المفاتيح فتظهر قائمة تحتوي علي المتغير ات الموجودة في ملف

- 31 -

البيانات الأصلي نتنقل فيما بينها لأعلي وأسفل بواسطة الأسهم الموجودة في لوحة المفاتيح، اختر المتغير المراد ترتيب قيمه ترتيباً تصاعدياً أو تنازلياً وليكن المتغير الأول TSS والمتغير الثالث Na بواسطة الأسهم الموجودة في لوحة المفاتيح ثم اضغط علي مفتاح المسافة Spacebar وفي النهاية اضغط مفتاح الإدخال Enter في لوحة المفاتيح.

بعد إتمام هذه الخطوة نلاحظ أن شاشة ملخص المدخلات Input summary
 بعد إتمام هذه الخطوة نلاحظ أن شاشة ملخص المدخلات التي سيتم ترتيب قيمها
 تم تحديثها وظهر فيها أرقام المتغير ات التي تم تحديدها والتي سيتم ترتيب قيمها
 تصاعديا أو تنازليا وتم تظليل الأمر key بشكل تلقائي كما بالشكل التالي.

Enter Input	the name of the sorte file Output file Case	d output file s Variables Key Sor	rt Quit
Inpu	t Summary File to sort (input) C:\MSTATC\DATA\ <mark>ANA</mark> Sorted file (output) C:\MSTATC\DATA\MED	: LYSIS : INACTIVE on exit D	
	Case range to sort: Variables to transfe	1 - 6 r: 1, 3	
	Keys to sort on (1 = 1. 2. 3. 4. 5. 6.	highest priority): 7. 8. 9. 10. 11. 12.	13. 14. 15. 16. 17. 18.

. Key: بعد الانتهاء من الخطوة السابقة نجد أن الأمر Key تم تظليله ومن خلاله
 يتم تحديد نوع الترتيب "تصاعدياً أم تناز لياً" بإتباع الخطوات التالية

KEYS (Press <f10></f10>	when finished) 		الضيغط مفتساح
Keys to sort on (1	= highest priority	y):	الإدخال Enter
$\begin{array}{c} 1 & 1 & - \\ 2 & 3 & + \\ 3 & + \\ 4 & + \\ 5 & + \\ 6 & + \end{array}$	7. + 8. + 9. + 10. + 11. + 12. +	13. + 14. + 15. + 16. + 17. + 18. +	في لوحة المفاتيح فتظهــر نافــذة
			بعنوان KEYS

تحتوي عمود بعنوان Key وعمود بعنوان Var. وعمود بعنوان Dir ونجد أن العمود Var. نشط بشكل تلقائي.

- اضغط F1 فتظهر قائمة بالمتغيرات نختار المتغير المراد ترتيبه تصاعديا أو تتازليا ثم اضغط مفتاح الإدخال ENTER فينتقل المؤشر إلي العمود Dir نتازليا ثم اضغط مفتاح الإدخال ومكن التنقل فيما بينهم بو اسطة مفتاح المسافة والذي يحتوي علي (+ أو –) ويمكن التنقل فيما بينهم بو اسطة مفتاح المسافة rows (+) سيؤدي إلي ترتيب البيانات ترتيبا ترتيبا تصاعديا بينما العلامة (+) سيؤدي إلي ترتيب البيانات ترتيبا ترتيبا المكل تصاعديا بينما العلامة (-) سيؤدي إلي ترتيب البيانات ترتيبا المائل ترتيبا المكل السابق نجد أن المتغير الأول TSS سيترتب تتازليا بينما المتغير الثالث سيترتب تصاعدياً. بعد اختيار المتغيرات وطريقة ترتيبها اضغط مفتاح الثالث اللانتهاء.

Sort — Sort data according to (mu Input file Output file Cas	ltiple) keys es Variables	Key Sort Quit	
Input Summary File to sort (input C:\MSTATC\DATA\AN Sorted file (output Case range to sort: Variables to transf): ALYSIS): INACTIVE 0 1 - 6 er: 1,3	on exit	
Keys to sort on (1 1. 1 - 2. 3 + 3. 4. 5. 6.	= highest pr 7. 8. 9. 10. 11. 12.	riority): 13. 14. 15. 16. 17. 18.	

7. SORT: بعد الانتهاء من الخطوة السابقة نجد أن الأمر Sort تم تظليله ومن خلال هذا الأمر يتم تنفيذ الترتيب، اضغط مفتاح الإدخال Enter في لوحة المفاتيح فنظهر رسالة كما بالشكل التالي تخبرك بنجاح ترتيب البيانات، اضغط مفتاح المسافة Spacebar في لوحة المفاتيح للاستمرار.

= Press <Spacebar> to continue ------MSTAT Data file successfully sorted. وبذلك نكون أنشأنا ملف بيانات باسم MEDO يحتوي علي قيم ملف البيانات الأصلي والذي يسمى ANALYSIS ولكنها مرتبه ترتيباً تصاعدياً أو تنازلياً وهذا الملف موجود في المسار الافتراضي للبرنامج \C:\MSTATC\DATA. عند فتح/تنشيط ملف البيانات MEDO من خلال الخطوات التالية لـ FILES \rightarrow Open \rightarrow F1 \rightarrow C:\MSTATC\DATA\MEDO \leftarrow يكون كما بالشكل التالي.

Case 1 2 3 4 5 6	1 TSS 14.7 14.6 14.5 13.0 12.6 12.5	2 Na 26.0 25.4 26.4 24.0 23.2

نقل بيانات من متغير إلى متغير:

متغير الله متغير الم متغير الله متغير الم الموجود بالفعل أو إلي متغير جديد من خلال عمل جدول التحويل Tabular موجود بالفعل أو إلي متغير جديد من خلال الأمر TABTRANS رقم ٤٧ في النافذة الرئيسية لبرنامج MSTAT-C .

- ١. قم بفتح ملف البيانات MEDO من خلال الخطوات التالية
- $FILES \lrcorner \to Open \lrcorner \to F1 \to C: \backslash MSTATC \backslash DATA \backslash MEDO \lrcorner$
- ٢. ظلل الأمر TABTRANS ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح
- ٣. تظهر نافذة كما بالشكل التالي تخبرك بعدد الحالات الموجودة في ملف البيانات وتسألك هل ترغب في استخدامها كلها؟ وقد سبق وتعلمنا كيفية التعامل مع هذه النافذة، اضغط Enter في لوحة المفاتيح في النهاية.

(TSS

choose up to 2 variables (Press ESC to quit) =
 (NUMERIC) TSS
 (NUMERIC) Na
 (NUMERIC) Na
 (NUMERIC) Define New Variables

المتغيرات المراد نقل البيانات إليه / إليها عن طريق مفاتيح الأسهم ومفتاح المسافة في لوحة المفاتيح أو يمكن عمل متغير جديد أو أكثر عن طريق Define New Variables حيث عند اختيار Define New Variables تظهر النافذة التالية والتي تحتوي علي خانة وتسألك عن عدد المتغيرات التي ترغب في إدراجها؟ كما بالشكل التالي

> TABTRANS: ______ How many new variables would you like to create? 1

أكتب فيها عدد المتغيرات الجديدة المراد إنشاؤها ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح

٦. تظهر نافذة "تعريف المتغيرات" وسبق وتعرفنا عليها عند الحديث عن الأمر DEFINE في الفصل الأول. قم بعمل متغير جديد باسم NEW وخواصه موضحة بالشكل التالي

= DEFINE variable 3 [92 bytes free] ------Title NEW Type NUMERIC Size 4 Display Format (Left) 2 (Right) 2

_ £ • _

٧. بعد تعريف المتغيرات تظهر نافذة بعنوان TABLTRANS Parameter كما بالشكل التالي تخبرك باسم ملف البيانات المستخدم ومساره وعدد الحالات المستخدمة والمتغير المصدر والمتغير المستهدف وفي نهاية هذه النافذة السؤال التالي "هل هذا صحيح؟" فإذا كانت المعلومات صحيحة اضغط مفتاح Y في لوحة المفاتيح ثم مفتاح الإدخال ENTER وإذا كانت غير صحيحة اضغط مفتاح N في لوحة المفاتيح ثم مفتاح الإدخال ENTER لمعاودة تصحيح المعلومات.

E TABTR	ANS Par	ameters ======	
Using Using	File: Cases:	C:\MSTATC\DATA\MEDO 1 - 6	
	So	urce Variable	Destination Variable
	1. TSS		3. NEW
		Is this corre	ect? Y/N

٨. في نهاية هذه العملية يظهر جدول نقل البيانات ونجده مقسوم إلي نصفين كما بالشكل التالي النصف العلوي This is the source variable value وهو يمثل قيم المتغير ات المنقول منها البيانات والسفلي Enter destination variable وهو يمثل المتغير ات المنقول إليها البيانات وسيكون التعامل مع النصف value وهو يمثل المتغير ات المنقول إليها البيانات وسيكون التعامل مع النصف السفلي حيث في الخانة النشطة نبدأ بكتابة البيان الظاهر في النصف العلوي لإجراء عملية النقل ونستمر في ذلك حتى ينتهي نقل البيانات وتظهر رسالة تخبرك بأن عملية النقل اكتملت

> TABTRANS: This is the source variable value = TSS : 14.7

= TABTRANS: Enter destination variable value = NEW : 14.7 بالتالي عند الدخول إلي ملف البيانات سوف تجد أن البيانات تم نقلها إلي المتغير المستهدف NEW كما بالشكل التالي.

SED: Sedi File	t Options Options E	Command M nter/Edit	enu Quit	
Case 1 2 3 4 5 6	1 TSS 14.7 14.6 14.5 13.0 12.6 12.5	2 Na 26.6 25.4 26.4 24.1 24.0 23.2	3 NEW 14.70 14.60 14.50 13.00 12.60 12.50	

إلحاق بيانات بملف البيانات:

يمكن إضافة بيانات من ملف بيانات غير **ADDON** نشط إلي ملف بيانات نشط أو من ملف بيانات نشط إلي نفسه من خلال الأمر ADDON رقم ۲ في النافذة الرئيسية لبرنامج MSTAT-C ومن هذا الكلام يتضح أن هناك حالتين: الأولي إضافة (إلحاق) بيانات من ملف بيانات نشط إلي نفسه والثانية إضافة (إلحاق) بيانات من ملف بيانات غير نشط إلي ملف بيانات نشط

- الحالة الأولي: إضافة (إلحاق) بيانات من ملف بيانات نشط إلي نفسه:
 - قم بفتح ملف البيانات ANALYSIS بإتباع الخطوات التالية

 $FILES \lrcorner \to Open \lrcorner \to F1 \to C: \backslash MSTATC \backslash DATA \backslash ANALYSIS \lrcorner J$

- ظلل ADDON في النافذة الرئيسية لبرنامج MSTAT-C ثم اضبغط مفتاح
 الإدخال Enter في لوحة المفاتيح
- تظهر نافذة تحتوي علي السؤال التالي "هل تريد إلحاق ملف البيانات الحالي في نفسه؟"، اضغط في لوحة المفاتيح علي مفتاح Y ثم مفتاح الإدخال Enter.

- تظهر نافذة بعنوان Get Case Range ______ Get Case Range ______ Get Case Range ______ The data file contains 6 cases. Do you wish to use all cases? Y/N _____ Case Range ______ ILC___ ILC___
- بعد التعامل مع النافذة السابقة تظهر النافذة التالية وتسألك هل تريد نقل المزيد
 من الحالات من الملف ذاته؟ وكما تعدونا ستكون الإجابة بالمو افقة أو الرفض
 من خلال المفتاح Y للمو افقة و المفتاح N للرفض ثم Enter

Do you want to transfer more cases from the same file : No

 تظهر النافذة التالية وتسألك هل تريد إضافة ملفات أخرى؟ اضغط مفتاح N في لوحة المفاتيح للرفض ثم نضغط مفتاح الإدخال Enter في لوحة المفاتيح.

Do you want to add other files : No

 بإتمام هذه الخطوات وبالدخول إلى ملف البيانات ANALYSIS نجد أن كل البيانات أو التي تم تحديدها تكررت في نهاية الملف النشط كما بالشكل التالي.

Se F	SEDIT — edit Fil ile Opti	e Command M ons Enter/1	Menu Edit Quit		 	
	Case 1 2 3 4 5 6	1 TSS 12.5 12.6 13.0 14.5 14.6 14.7	2 PH 7.8 7.9 8.0 8.2 8.1 8.3	3 Na 23.2 24.0 24.1 26.4 25.4 26.6		
	7 8 9 10 11 12	12.5 12.6 13.0 14.5 14.6 14.7	7.8 7.9 8.0 8.2 8.1 8.3	23.2 24.0 24.1 26.4 25.4 26.6		

- ٢. الحالة الثانية: إضافة (إلحاق) بيانات من ملف بيانات غير نشرط إلى
 ١ الملف بيانات نشط:
 - قم بفتح ملف البيانات ANALYSIS بإتباع الخطوات التالية

ADDON =

 $FILES \lrcorner \rightarrow Open \lrcorner \rightarrow F1 \rightarrow C: \backslash MSTATC \backslash DATA \backslash ANALYSIS \lrcorner$

- ظلل ADDON في النافذة الرئيسية للبرنامج
- اضغط علي مفتاح الإدخال Enter في لوحة المفاتيح
- تظهر نافذة كما بالشكل التالي تحتوي علي السؤال التالي "هل تريد إلحاق ملف البيانات الحالي في نفسه?"، في هذه المرة اضغط مفتاح N في لوحة المفاتيح للرفض ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح

Do you want to append the current data file to itself : No

 تظهر نافذة بعنوان Enter the name of the file to be added كما بالشكل التالي ويكون فيها الأمر for reading مظلل بشكل تلقائي، اضغط مفتاح الإدخال Enter في لوحة المفاتيح.

> = Enter the name of the file to be added = Open an existing MSTAT data file for Reading Quit

تظهر نافذة بعنوان Open تحتوي علي خانة نشطة كما بالشكل التالي، اضغط مفتاح F1 في لوحة المفاتيح فتظهر قائمة بملفات البيانات الموجودة، اختر منها ملف البيانات الغير نشط (MEDO) ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح.

 تظهر قائمة بالمتغيرات الموجودة في ملف البيانات الغير نشط (MEDO) كما بالشكل التالي، ننتقل بين المتغيرات عن طريق مفاتيح الأسهم الموجودة في لوحة المفاتيح و لاختار متغير معين من هذه القائمة اضغط مفتاح المسافة spacebar في لوحة المفاتيح فيتم تظليل المتغير ويمكن اختيار أكثر من متغير، بعد اختيار المتغيرات اضغط مفتاح الإدخال Enter في لوحة المفاتيح. اختر المتغير الأول TSS والثاني Na كما في الشكل التالي. (ما Choose up to 3 variables (Press ESC to quit) (الاسلامات المالية) المالية (المالية) المالية المالية المالية المالية المالية المالية (المالية) المالية المالية المالية المالية المالية المالية المالية (المالية) المالية المالية

- تظهر النافذة التالية حدد فيها رقم المتغير في الملف النشط المراد نقل بيانات المتغير عنه المتغير TSS إليه من ملف البيانات الغير نشط ثم اضغط Enter في لوحة المفاتيح.
- أكتب في الخانة النشطة ١ وهذا يعني أن بيانات المتغير TSS الموجود في
 الملف الغير النشط (MEDO) سوف تتقل إلي المتغير TSS الموجود في
 الملف النشط (ANALYSIS).

Press <F1> for a list of variables Enter the variable number (1 - 3) in the original file that you wish variable 1 of the new file to be appended Title of variable in new file : TSS Variable in original file : 1

تظهر نافذة حدد فيها رقم المتغير في الملف النشط المراد نقل بيانات المتغير Na إليه من ملف البيانات الغير نشط ثم اضغط Enter في لوحة المفاتيح.
 أكتب في الخانة النشطة ٢ وهذا يعني أن بيانات المتغير Na الموجود في ملف البيانات الغير نشط سوف تنقل إلي المتغير pH الموجود في ملف البيانات النشط.

- تظهر نافذة تخبرك بعدد
 الحالات الموجودة في ملف
 البيانات الغير نشط وتسألك هل
 تود في استخدام كل الحالات؟

وتكون الإجابة بالموافقة أو الرفض لتحديد عدد معين من الحالات كما تعودنا، اضبغط مفتاح الإدخال Enter في لوحة المفاتيح

 تظهر النافذة التالية تسألك هل تريد نقل المزيد من الحالات من نفس ملف البيانات؟ وكما تعدونا ستكون الإجابة بالموافقة أو الرفض ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح. اضغط مفتاح حرف N ثم Enter

> = ADDON _______ Do you want to transfer more cases from the same file : No

 تظهر نافذة وتسألك هل تريد إضافة المزيد من ملفات أخرى؟ ستكون الإجابة بالموافقة أو بالرفض ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح.
 اضغط مفتاح حرف N ثم Enter في لوحة المفاتيح

Do you want to add other files : No

بإتمام هذه الخطوات وبالدخول إلى ملف البيانات ANALYSIS نجد أن كل
 البيانات أو التي تم تحديدها أضيفت في نهاية الملف النشط كما بالشكل التالي.

Sedit (File O	SEDIT						
Case 1 2 3 4 5 6 7 7 8 9 10 11 12	1 TSS 12.5 13.0 14.5 14.6 14.7 12.5 12.6 13.0 14.6 14.6 14.7	2 PH 7.8 7.9 8.2 8.1 7.9 8.0 7.9 8.0 8.2 8.2 8.1 8.3	3 Na 23.2 24.0 24.1 26.4 25.4 26.6 23.2 24.0 24.1 26.4 25.4 26.6				
13 14 15 16 17 18	14.7 14.6 14.5 13.0 12.6 12.5	26.6 25.4 26.4 24.1 24.0 23.2					

ملف الاختيار Selection File يمكن عمل ملف يطلق عليه Selection Selection بيم تنفيذها Selection علي جمل (أو امر) يتم تنفيذها Carlow a file يحتوي علي جمل (أو امر) يتم تنفيذها Carlow a Selector a to be a selection a selec

MSTAT-C =====				
FILES - Per	forms file utili	ty functions fo	or MSTAT data f	iles.
ļ	-			
Selection: OFF Data File: NON Def. Path: C:\	E MSTATC\DATA\			
1. ACSERIES 2. ADDON 3. ANOVA-1 4. ANOVA-2 5. ANOVALAT 6. ASCII 7. ASEDIT 8. BRSERIES 9. CALC 10. CHISQR 11. CONFIG	12. CONTRAST 13. CORR 14. CROSSTAB 15. CURVES 16. DIALLEL 17. ECON 18. EXPSERIES 19. FACTOR 20. FILES 21. FREQ 22. GROUPIT	23. HIERARCH 24. HOTELLIN 25. LATINSQ 26. LP 27. MEAN 28. MISVALEST 29. MULTIDIS 30. MULTIREG 31. NEIGHBOR 32. NONORTHO 33. NONPARAM	 34. PLOT 35. PRINCOMP 36. PRLIST 37. PROBABIL 38. PROBIT 39. RANGE 40. REGR 41. SEDIT 42. SELECT 43. SORT 44. STABIL 	45. STAT 46. TABLES 47. TABTRANS 48. TRANSPOS 49. T-TEST 50. VARSERIES 51. MGRAPHICS

ولعمل ملف اختيار أتبع الخطوات التالية:

- ظلل الأمر SELECT ثم اضغط علي مفتاح الإدخال Enter في لوحة المفاتيح
 - يتم فتح نافذة بعنوان SELECT: Main Menu تحتوي الأوامر التالية
 - الأمر Activate ويستخدم لتنشيط ملف اختيار موجود بالفعل
 - الأمر Deactivate ويستخدم لغلق ملف اختيار مفتوح

الأمر Edit ويستخدم لتحرير وإنشاء ملف اختيار أو إجراء تغيير (تعديل) علي
 ملف اختيار موجود بالفعل.

SELECT: Main Menu
 Choose a selection file for use with the other subprograms
 <u>Activate</u> Deactivate Edit Test Quit
 Selection: OFF

- ۳. ظلل الأمر Edit ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح.
- 5. تظهر نافذة كما بالشكل التالي تحتوي علي خانة اكتب فيها اسمأ للـ Selection
 1. تظهر نافذة كما بالشكل التالي تحتوي علي خانة اكتب فيها اسمأ للـ File
 1. وليكن 1_SELECT علي سبيل المثال ثم اضغط مفتاح الإدخال Enter في لوحة
 1. المفاتيح (<u>ملحوظة:</u> لاستعر اض ملفات Selection File الموجودة بالفعل اضغط
 1. مفاتيح (<u>ملحوظة:</u> لاستعر اض ملفات Isle الموجودة بالفعل اضغط
 1. مفاتيح (ملحوظة: لاستعر اض ملفات Selection File الموجودة بالفعل اضغط
 1. مفاتيح (ملحوظة: لاستعر اض ملفات Selection File الموجودة بالفعل اضغط
 1. مفاتيح (ملحوظة: لاستعر المفات الموجودة بالفعل وفي حالة عدم وجود
 1. ملفات تظهر رسالة تخبرك بعدم وجود ملفات.)

د. تظهر رسالة تحذيرية كما بالشكل التالي تخبرك بأن هذا Selection File جديد،
 اضبغط مفتاح الإدخال Enter في لوحة المفاتيح للاستمر ار.

WARNING: This is a new selection file.

SELECT -----

- ٦. يتم فتح نافذة جديدة بعنوان SELECT: Edit Menu كما بالشكل التالي تحتوي
 على الأوامر التالية
- الأمر Add يستخدم لإضافة جملة (أمر) إلى ملف الاختيار لتنفيذها في ملف البيانات المفتوح
 - الأمر Change يستخدم لتغيير الجمل (الأوامر) الموجودة في ملف الاختيار
 - الأمر Delete يستخدم لحذف الجمل (الأوامر) من ملف الاختيار

- الأمر Explain يستخدم لمعرفة شرح مبسط للأوامر الموجودة داخل ملف
 الاختيار
 - الأمر Rename يستخدم لإعادة تسمية ملف الاختيار

٧. ظلل الأمر Add ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح، فنلاحظ أن ملف الاختيار Selection File قد أصبح نشط ومستعد الآن لاستقبال الجملة الأولى أو الأمر الأول كما بالشكل التالى

تساوي القيمة ٢٦ بمعني إذا تم إجراء عملية حسابية علي المتغير الثالث من خلال الأمر CALC الذي تحدثنا عنه فيما سبق (انظر الفصل الثاني) فإن كل قيم المتغير الثالث سوف يجرى عليها العملية الحسابية باستثناء القيم الأكبر من أو التي تساوي ٢٦

٨. بعد الانتهاء من كتابة الجملة اضغط مفتاح الهروب <esc> مرتين متتاليتين</esc>
فتظهر رسالة تخبرك بأنك قمت بعمل تغيير ات في الملف هل تود حفظها؟ وستكون
الإجابة كالعادة بالقبول أو الرفض باستخدام المفاتيح <y> للقبول و<n> للرفض.</n></y>
SELECT
وبقبولك لهذه التغييرات تظهر رسالة بنجاح تحديث ملف الاختيار .
The selection file has been successfully updated.
الآن أصبح لدينا Selection File نشط وللاستدلال علي ذلك اذهب إلي النافذة
الرئيسية للبرنامج وستجد أمام كلمة Selection كلمة ON كما بالشكل التالي
<pre>MSTAT-C</pre>
Selection: ON Data File: NONE Def. Path: C:\MSTATC\DATA\
1. ACSERIES12. CONTRAST23. HIERARCH34. PLOT45. STAT2. ADDON13. CORR24. HOTELLIN35. PRINCOMP46. TABLES3. ANOVA-114. CROSSTAB25. LATINSQ36. PRLIST47. TABTRANS4. ANOVA-215. CURVES26. LP37. PROBABIL48. TRANSPOS5. ANOVALAT16. DIALLEL27. MEAN38. PROBIT49. T-TEST6. ASCII17. ECON28. MISVALEST39. RANGE50. VARSERIES7. ASEDIT18. EXPSERIES29. MULTIDIS40. REGR51. MGRAPHICS8. BRSERIES19. FACTOR30. MULTIREG41. SEDIT9. CALC20. FILES11. NEIGHBOR42. SELECT10. CHISQR21. FREQ32. NONORTHO43. SORT11. CONFIG22. GROUPIT33. NONPARAM44. STABIL

الآن قم بفتح ملف البيانات ANALYSIS إذا كان مغلق (غير نشط) ثم أحسب الجذر التربيعي للمتغير الثالث الموجود في ملف البيانات ANALYSIS بحيث تظهر النتيجة في متغير جديد باسم MM وذلك بإتباع الخطوات التالية:

ا. أفتح ملف البيانات ANALYSI إذا كان غير نشط من خلال الخطوات التالية FILES \rightarrow Open \rightarrow F1 \rightarrow C:\MSTATC\DATA\ANALYSIS \rightarrow

٢. اضغط مفتاح الهروب في لوحة المفاتيح للرجوع إلى النافذة الرئيسية لبرنامج

MSTAT ولاحظ في النافذة الرئيسية للبرنامج أن كلمة Selection بجوارها

كلمة ON وهذا يدل علي أن ملف الاختيار Selection file نشط كما أن بجوار كلمة Data file مسار واسم الملف المفتوح وهو ANALYSIS

MSTAT-C - Performs file utility functions for MSTAT data files. FILES Selection: ON Data File: C:\MSTATC\DATA\ANALYSIS Def. Path: C:\MSTATC\DATA\ 34. PLOT35. PRINCOMP36. PRLIST37. PROBABIL 12. CONTRAST 45. STAT 46. TABLES 47. TABTRANS 1. ACSERIES 23. HIERARCH 13. CORR 14. CROSSTAB 24. HOTELLIN 25. LATINSQ 26. LP ADDON ANOVA ANOVA-2 15. CURVES ۳. ظلل الأمر CALC في النافذة = Get Case Range = الرئيسية للبرنامج ثم اضغط مفتاح The data file contains 18 cases. Do you wish to use all cases? Y/N الإدخال Enter في لوحة المفاتيح فتظهر نافذة بعنوان Get Case Case Range 1 - 18 Range تخبرك بعدد الحالات First selected case 1 Last selected case 12 الموجودة في ملف البيانات وتسألك هل ترغب في استخدام كل الحالات؟ وكالمعتاد اضغط مفتاح Y في حالة المو افقة أو مفتاح N في حالة عدم الموافقة لتغيير عدد الحالات إلى العدد المطلوب ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح. اضغط المفتاح N في لوحة المفاتيح وحدد الحالات من ١ إلى ١٢ ثم اضغط مفتاح الإدخال Enter كما في النافذة السابقة ٤. تظهر نافذة تحتوى على قائمة بالمتغير ات الموجودة في ملف البيانات وفي نهايتها

يوجد Define New Variable، اختر المتغير المراد إظهار نتيجة العملية الرياضية فيه باستخدام مفاتيح الأسهم ومفتاح المسافة Spacebar.

Choose one variable (Press ESC to quit) 01 (NUMERIC) TSS 02 (NUMERIC) PH 03 (NUMERIC) Na 04 (NUMERIC) Na^2 ▶06 ----- Define New Variable

- ۲. بعد الانتهاء من كتابة المعادلة الرياضية اضغط مفتاح F10 للإنهاء
- ٧. تظهر رسالة بإتمام العملية الرياضية، اضغط مفتاح الإدخال Enter في لوحة المفاتيح للعودة إلى النافذة الرئيسية للبرنامج
- ٨. عند الدخول إلي ملف البيانات سنجد متغير جديد باسم MM يحتوي علي قيم ناتجة من الجذر التربيعي لقيم المتغير الثالث مع ملاحظة أن قيم المتغير الثالث الأكبر من أو التي تساوي ٢٦ لم تدخل في العملية الحسابية نظرا لأن ملف الاختيار Selection File نشط ويحتوي علي جملة تعطيل القيم الموجودة في المتغير

الثالث والتي يشترط أن تكون أكبر من أو تساوي ٢٦ ويكون ملف البيانات كما بالشكل التالي. بالشكل التالي. $Case_1 = \frac{1}{12.5} + \frac{2}{7.8} + \frac{3}{23.2} + \frac{3}{23.2} + \frac{3}{2.8} + \frac{1}{4.8} + \frac{1}{2} + \frac{1}{2.5} + \frac$

1	12.5	7.8	23.2	538.2	4.8
2	12.6	7.9	24.0	576.0	4.9
3	13.0	8.0	24.1	580.8	4.9
4	14.5	8.2	26.4	697.0	
5	14.6	8.1	25.4	645.2	5.0
6	14.7	8.3	26.6	707.6	
ž	12.5	7.8	23.2	538.2	4.8
8	12.6	7.9	24.0	576.0	4.9
9	13.0	8.0	24.1	580.8	4.9
10	14.5	8.2	26.4	697.0	
11	14.6	8.1	25.4	645.2	5.0
12	14.7	8.3	26.6	707.6	
13	14.7	26.6			
14	14.6	25.4			
15	14.5	26.4			
16	13.0	24.1			
17	12.6	24.0			
18	12.5	23.5			

وبهذا إذا قمنا مثلاً بعملية رياضية علي المتغير الثالث <V3> فإن جميع قيم هذا المتغير تدخل في العملية الرياضية باستثناء الحالات الأكبر من أو تساوي القيمة ٢٦ مع ملاحظة أنه لن يتم تنفيذ هذه الجملة إذا كان ملف الاختيار Selection file غير نشط وبالتالي إذا تم إغلاق ملف الاختيار Selection File وأصبح غير نشط وتم إجراء نفس العملية الحسابية السابقة فإن كل قيم المتغير الثالث سوف تدخل في الحساب دون قيد أو شرط.

جرب بنفسك: قم بإغلاق ملف الاختيار النشط من خلال الخطوات التالية ثم نفذ نفس العملية الرياضية السابقة على المتغير الثالث. ماذا تلاحظ؟

SELECT \rightarrow Deactivate \rightarrow

النتيجة ستكون كما بالشكل التالي: نلاحظ في النتيجة أن كل بيانات المتغير الثالث سواء كانت أكبر من، تساوي أو أقل من ٢٦ دخلت في العملية الرياضية وذلك لأن ملف الاختيار Selection File غير نشط.

Case	1 TSS	2 PH	3 Na	4 Na^2	5 MM
1	12.5	7.8	23.2	538.2	4.8
2	12.6	7.9	24.0	576.0	4.9
3	13.0	8.0	24.1	580.8	4.9
4	14.5	8.2	26.4	697.0	5.3
5	14.6	8.1	25.4	645.2	5.0
6	14.7	8.3	26.6	707.6	5.2
7	12.5	7.8	23.2	538.2	4.8
8	12.6	7.9	24.0	576.0	4.9
9	13.0	8.0	24.1	580.8	4.9
10	14.5	8.2	26.4	697.0	5.1
11	14.6	8.1	25.4	645.2	5.0
12	14.7	8.3	26.6	707.6	
13	14.7	26.6			
14	14.6	25.4			
15	14.5	26.4			
16	13.0	24.1			
17	12.6	24.0			
18	12.5	23.5			

كما يجب معرفة أن كل جملة في ملف الاختيار Selection file لابد أن تبدأ بكلمة Deactivate أو Activate ويمكن اختصار ها إلي D أو A و علي سبيل المثال إذا أردنا تعطيل كل البيانات الموجودة في ملف البيانات المفتوح نكتب هذه الجملة داخل ملف الاختيار Deactivate ALL هي نفسها DALL وإذا أردنا تتشيط كل البيانات الموجودة في ملف البيانات المفتوح نكتب هذه الجملة داخل ملف الاختيار Activate ALL هي نفسها ALL هي نفسها ALL

لكي تكتب الجمل (الأوامر) في Selection file لابد من معرفة معنى الاختصارات التالية:

- ا. Vn هذا الاختصار يعني "رقم المتغير Variable number" وعلي سبيل المثال المتغير رقم ٣ نعبر عنه بـ V3
- - ۳. N هذا الاختصار يعني رقمي Integer (۱، ۱، ۲، ۳، ٤، ۰ ... إلخ)
- ٤. ولابد من معرفة العلامات التالية وماذا تعني حيث يمكن استخدامها في الجمل
 (الأوامر) داخل Selection File و هي:
 = يساوي، => أقل من أو يساوي، > أقل من، < أكبر من، =< أكبر من أو يساوى، <> لا يساوى
- ما يمكن استخدام الإشارات الجبرية المتعارف عليها وهي علامة الجمع "+"
 والطرح "-" والضرب "*" والقسمة "/" والأس "^"

يجب معرفة أن جميع الحالات / المشاهدات و المتغير ات تكون نشطه بشكل افتر اضي وهذا يعني أنه في حالة عدم وجود Selection File أو عدم وجود جمل / أو امر داخله أو عدم نشاطه ستكون جميع الحالات (المشاهدات) داخل ملف البيانات نشطه بشكل افتر اضي. كما يمكن جعل جميع الحالات / المشاهدات غير نشطة من خـــلال الجملة / الأمر "D ALL" ثم نضغط <Enter> فتتحول إلي Deactivate all وبعد ذلك يمكن تحديد مشاهدات معينه وتنشطها في الجمل التالية لهذه الجملة وبالتالي سيتم تتفيذ التطبيقات علي المشاهدات النشطة فقط.

بفرض أن الجملة (الأمر) رقم ٣ تجعل حاله "ما" نشطة Activate والجملة / الأمر رقم ٥ تجعل نفس الحالة غير نشطة Deactivate ماذا يحدث؟ ستكون الحالة غير نشطة حيث أن أخر جملة (أمر) هو الذي ينفذ.

هناك العديد من المعلومات الإضافية عن الأمر SELECT يمكن الوصول إليها كما يلى :

 $\mathsf{SELECT} \lrcorner \to \mathsf{Edit} \lrcorner \to \mathsf{F1}$

فيتم فتح شاشة مساعدة تحتوي علي كل ما يتعلق بالأمر SELECT. فيما يلي سوف نستعرض الأجزاء التي يمكن كتابتها بعد الأمر Deactivate أو Activate

	QUALIFIER	CASES WHICH ARE AFFECTED BY THE STATEMENT
1. 2. 3. 4. 5.	ALL x x TO y xN+y Vn (rel) Vm	Every case. (Ex: ACTIVATE ALL or DEACTIVATE ALL) Just case number x. (Ex: ACTIVATE 47 or DEACTIVATE 12) Cases from x to y. (Ex: ACTIVATE 12 TO 42) Case y, x+y, 2x+y, 3x+y, etc. (Ex: ACTIVATE 4N+1) Cases where variable n is related in a certain way to
6. 7.	Vn (rel) y Vn (rel) "s"	Cases where numeric variable n is related in a certain way to the number y. (Ex: DEACTIVATE V4<=12.0) Cases where text variable n is related in a certain way to he word (string) s. (Ex: ACTIVATE V2="Sanilac")

Relations can be any of =, <>, <, <=, >, or >=.

Effect

Statement Example

1. 2.	DEACTIVATE ALL ACTIVATE 53	Deactivates every case in the data file. Activates case number 53.
3.	ACTIVATE 72 TO 120	Activates cases from case 72 up to case 120.
4.	ACTIVATE 4N+1	Activates cases 1, 5, 9, 13, etc.
5.	ACTIVATE 5N	Activates cases 5, 10, 15, 20, etc.
6.	ACTIVATE 6N+3	Activates cases 3, 9, 15, 21, 27, etc.
7.	ACTIVATE V5=6.0	Activates cases where variable 5 is equal to 6.
8.	ACTIVATE V3 <v5< td=""><td>Activates cases where the value of variable 3</td></v5<>	Activates cases where the value of variable 3
9.	ACTIVATE V4>=V2	Activates cases where the value of variable 4 is greater than or equal to the value of variable 2
10.	DEACTIVATE V1<>V2	Deactivates all cases where the value of variable 1 is not the same as the value of variable 2.
11.	DEACTIVATE V1=	Deactivates all cases where variable 1 is a missing
	MISSING VALUE	value.
12.	ACTIVATE V4<> MISSING VALUE	Activates all cases where variable 4 is not a missing value.

تحويل المتغيرات إلى حالات والعكس:

TRANSPOS الأمــر TRANSPOS رقـم ٢٨ فــي النافــذة

الرئيسية لبرنامج MSTAT-C والغرض منه: يسمح بعمل تغييرات في ملفات البيانات من خلال نقل وتحويل للقيم. ويتم تنفيذ هذا الأمر على عدة مراحل:

- عمل ملف بيانات جديد يطلق عليه الملف المستهدف Destination File لحفظ
 التغيير ات التي ستحدث بعيداً عن ملف البيانات الأصلي MSTAT file data
- ٢. نقل المتغيرات Variables والحالات Cases إلى ملف البيانات الجديد (المستهدف) Destination File
 - تحويل المتغيرات إلى حالات أو العكس
- ٤. حفظ التغيير ات التي حدثت علي ملف البيانات الجديد كما يمكن حذف كل التغيير ات التي حدثت.
- قبل استخدام هذا الأمر (TRANSPOS) لابد من فتح ملف البيانات الأصلي بحيث يكون نشط وليكن ANALYSIS من خلال الخطوات التالية.

 $FILES \lrcorner \to Open \lrcorner \to F1 \to C: \backslash MSTATC \backslash DATA \backslash ANALYSIS \lrcorner$

- ظلل الأمر TRANSPOS في النافذة الرئيسية للبرنامج ثم اضغط علي مفتاح
 الإدخال Enter في لوحة المفاتيح
- تظهر قائمة يطلق عليها Transpose Options Menu وهذه القائمة تحتوي
 علي ٧ خيارات رئيسية بالإضافة إلي خيار الخروج Quit كما بالشكل التالي

1 Attach a destination file for saving changes
2 Transfer variables and cases intact
3 Convert a variable to a case
4 Convert a case to a variable
5 Fill cases of a variable with a value from current file
6 Save the changes to the destination file
7 Delete all changes made since the last save
Q Quit

أولاً: عمل ملف بيانات جديد Destination File لحفظ التغييرات التي ستحدث بعيداً عن ملف البيانات الأصلي:

- ظلل الخيار الأول Attach a destination file for saving changes
 - اضغط مفتاح الإدخال Enter في لوحة المفاتيح
- تظهر نافذة بعنوان Enter the name of the destination file تحتوي علي الأمر For writing مظلل بشكل تلقائي والهدف منه فتح ملف بيانات جديد أو موجود بالفعل.

— Enter the name of the destination file ——— Open a (new or old) MSTAT data file for Writing Quit

 اضغط مفتاح الإدخال Enter في لوحة المفاتيح فيتم فتح نافذة أخرى كما بالشكل التالي

🗕 Enter MSTAT fi	le name (Press F1 for help - ESC to quit) ====================================					
Default path C:	MSTATC\DATA\					
Enter File Name DESTINATION	2:					
Title destination						
Size 100	Status on Exit of Subprogram INACTIVE					

الخانة الأولي أكتب فيها اسماً للملف الجديد وليكن DESTINATION وفي الثانية أكتب عنواناً لملف البيانات الجديد وليكن destination و الثالثة حدد فيها الحجم (هذا الملف سيكون غير نشط Inactive أي بعد الانتهاء يجب فتحة من خلال الأمر OPEN الموجود تحت الأمر Files الموجود في النافذة الرئيسية كما تعلمنا فيما سبق).

بعد الانتهاء من ملئ الخانات اضغط <Enter> فيتم فتح نافذة جديدة بعنوان
 TRANSPOS كما بالشكل التالي تحتوي علي خانة أكتب فيها عدد المتغيرات
 الجديدة التي سيتم إنشاؤها في ملف البيانات الجديد ثم اضغط <Enter

You must create the variables in your destination file that you wish to use in TRANSPOS Enter the number of new variables that you wish to create : 5 تظهر نافذة تعريف المتغيرات كما بالشكل التالي وسبق التعرف عليها والتعامل
 Na – PH – TSS معها في الفصل الأول. المتغيرات المراد تعريفها هي MM – Na – Na – Na – Na – Na ^2

= DEFINE varia	ble 1 [10	0 bytes f	ree] —					
Title TSS								
Type NUMERIC	Size 4	Display	Format	(Left)	7	(Right)	1	

بعد تعريف المتغير ات نعود لنافذة TRANSPOS التي تسمي TRANSPOS
 بعد تعريف المتغير ات نعود لنافذة Options Menu
 جديد باسم DESTINATION.

ثانياً: نقل المتغيرات Variables والحالات Cases إلى ملف البيانات الجديد:

يتم ذلك من خلال الخيار الثاني Transfer variables and cases intact كما يلي

- ظلل الخيار الثاني Transfer variables and cases intact ثم اضعط علي مفتاح الإدخال Enter في لوحة المفاتيح
- تظهر نافذة بعنوان Get Case Range كما بالشكل التالي تخبرك بعدد الحالات الموجودة في الملف الأصلي ANALYSIS وتسألك هل تريد استخدام كل الحالات (المشاهدات)؟.

= Get Case Range ______ The data file contains 18 cases. Do you wish to use all cases? Y/N

بعد الإجابة بالموافقة أو الرفض كما تعلمنا فيما سبق، اضغط <Enter> فتظهر رسالة كما بالشكل التالي تخبرك بأن ملف البيانات الجديد لا يحتوي علي أي حالات لذا ستبدأ عملية النقل ابتداءً من الحالة رقم ١، اضغط <Enter> للاستمر ار

 تظهر قائمة بالمتغيرات الموجودة في ملف البيانات الأصلي كما بالشكل التالي)
اختر منها المتغيرات المراد نقلها من خلال التنقل بمفاتيح الأسهم ثم التظليل من	
خلال مفتاح المسافة <spacebar> في لوحة المفاتيح ثم اضغط <enter>.</enter></spacebar>	
 اختر كل المتغير ات وعددها خمسة متغير ات بالضغط علي مفتاح A في 	
لوحة المفاتيح ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح.	
Choose up to 5 variables (Press ESC to quit) ▶01 (NUMERIC) TSS 02 (NUMERIC) PH 03 (NUMERIC) Na 04 (NUMERIC) Na^2 05 (NUMERIC) MM	
	_

- تظهر نافذة كما بالشكل التالي تحتوي علي خانة اكتب فيها رقم المتغير في ملف البيانات الغير نشط والذي أطلقنا عليه اسم DESTINATION و الذي سيستقبل قيم المتغير الأول TSS من الملف الأصلي (النشط) ANALYSIS ثم اضغط <enter>
- تظهر نافذة أخرى تحتوي علي خانة أكتب فيها رقم المتغير في ملف البيانات الغير نشط و الذي أطلقنا عليه اسم DESTINATION و الذي سيستقبل قيم المتغير الثاني PH من الملف الأصلي النشط ANALYSIS ثم اضغط <Enter> و أستمر في هذه العملية حتى تنتهي من المتغير ات الخمسة.

= Press <F1> for a list of variables

Enter the variable number (1 - 5) in the destination file that will contain variable 2 of the active MSTAT data file Please keep in mind that the variable types must match Title of variable in active file : PH Variable in destination file : 2

🗕 Press <F1> for a list of variables =

Enter the variable number (1 - 5) in the destination file that will contain variable 3 of the active MSTAT data file Please keep in mind that the variable types must match Title of variable in active file : Na Variable in destination file : 3

Enter the variable number (1 - 5) in the destination file that will contain variable 5 of the active MSTAT data file Please keep in mind that the variable types must match Title of variable in active file : MM Variable in destination file : 5

Transpose التي تسمي TRANSPOS التي تسمي TRANSPOS
 بعد إتمام هذه الخطوة نعود لنافذة TRANSPOS التي تسمي Options Menu
 الشط Options Menu إلي ملف البيانات الجديد DESTIANTION وللتأكد قم
 بالحفظ عن طريق النزول بالأسهم إلي الخيار رقم ٦ ثم الضغط علي مفتاح
 الإدخال Enter فتظهر رسالة تخبرك بأن التغيرات قد تم حفظها، أضغط على في لوحة المفاتيح

قم الأن بفتح ملف البيانات الجديد DESTINATION من خلال الخطوات التالية ورؤية محتوياته

 $FILES \to Open \to F1 \to C: MSTATC DATA DESTINATION <math>\to F1 \to C: MSTATC$ لم Open $\to Open$ وسنلاحظ أن ملف البيانات الجديد "DESTINATION" نسخة طبق الأصل من ملف البيانات الأصلي "ANALYSIS" كما يلي.

Case	1 TSS	2 PH	3 Na	4 Na^2	5 M
1 1	12.5	1.0	25.2	220.2	4.0
2	12.6	7.9	24.0	576.0	4.9
3	13.0	8.0	24.1	580.8	4.9
4	14.5	8.2	26.4	697.0	
5	14.6	8.1	25.4	645.2	5.0
6	14.7	8.3	26.6	707.6	
7	12.5	7.8	23.2	538.2	4.8
8	12.6	7.9	24.0	576.0	4.9
ğ	13 0	8 0	24 1	580 8	4 9
10	14 5	8 2	26 4	697 0	
11	14 6	8 1	25 /	645 2	5 0
12	14.0	0.1	26.6	707 6	5.0
12	14.7	26.5	20.0	707.0	
14	14.7	20.0			
14	14.6	25.4			
15	14.5	26.4			
16	13.0	24.1			
17	12.6	24.0			
18	12.5	23.5			

- ٦٠ -

ثالثاً: تحويل المتغير Variable إلى حالة Case:

من خلال الخيار رقم Convert a variable to case ۳ يمكن تحويل متغير ما إلي حاله ويمكن تنبسيط هذه الجملة من خلال الشكل التالي، من الشكل يتضح أن الأعمدة تمثل المتغير ات و الصفوف تمثل الحالات.

- $FILES \lrcorner \to Open \lrcorner \to F1 \to C: \backslash MSTATC \backslash DATA \backslash ANALYSIS \lrcorner$
- ٢. ظلل الأمر TRANSPOS في النافذة الرئيسية لبرنامج MSTAT-C فيتم فتح القائمة التالية

٣. ظلل الخيار رقم (١) Attach a destination file for saving changes شم اضغط مفتاح الإدخال Enter في لوحة المفاتيح فيتم فتح نافذة بعنوان Enter the اضغط مفتاح الإدخال and of the destination file مطلل بشكل تلقائي.

= Enter the name of the destination file = Open a (new or old) MSTAT data file for Writing Quit اضغط مفتاح الإدخال Enter ثم مفتاح F1 ومن القائمة التي تظهر اختر ملف البيانات DESTINATION بو اسطة الأسهم ثم اضغط مفتاح الإدخال Enter أربع مرات متتالية = Enter MSTAT file name (Press F1 for help - ESC to quit) Default path C:\MSTAT Files: C:\MSTATC\DATA* C:\MSTATC\DATA\ANALYSIS Enter File Name: C:\MSTATC\DATA\ANOVA-2 C:MSTATCDATAANOVE-1C:\MSTATC\DATA\DESTINAT C:\MSTATC\DATA\MEDO Title C:\MSTATC\DATA\PLOT Size 100 Statu IVE تظهر النافذة التالية والتي تخبرك بأن هناك ملف موجود بالفعل بهذا الاسم، وتحتوي على ٣ خيارات اختر الخيار الأول ثم اضعط مفتاح الإدخال Enter في لوحة المفاتيح An MSTAT data file by that name already EXISTS Open file for Input or Append Append to existing file Write over existing file بذلك تم فتح الملف DESTINATION مرة ثانية لحفظ التغيير ات التي ستحدث على ملف البيانات الأصلي ANALYSIS. ٤. ظلل الخيار رقم ٣ Convert a variable to case ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح فتظهر نافذة تحتوى على ٣ خانات = Press <F1> for a list of variables = You may transpose cases of any variable in the active MSTAT data file to make them variables in the destination file The variable you transpose must be in the range from variable number 1 to variable number 5 Enter the variable number you wish to transpose in the active file : 1

You may transpose a range of cases which is less than or equal to the number of variables in the destination file which are the same type as the variable number you wish to transpose in the active MSTAT data file Enter the first case number and the last case number First case : 14 Last case : 18 TRANSPOS

في الخانة الأولي أكتب رقم ١ وهو رقم المتغير TSS الموجود في ملف البيانات الأصلي ANALYSIS والذي نريد تحويله إلي حالة في ملف البيانات الجديد DESTINATION في الخانة الثانية أكتب ١٤ وفي الثالثة أكتب ١٨ وهو المدى المراد تحويله إلي حالة مع ملاحظة أن يكون هذا المدى مساو لعدد المتغير ات الموجودة في ملف البيانات DESTINATION، اضغط <enter> في لوحة المفاتيح م. تظهر نافذة جديدة تحتوي علي خانة أكتب فيها رقم أول حالة في ملف البيانات الجديد DESTINATION التي ستظهر فيه نتيجة هذه العملية وفي هذا المثال

نجد أن عدد الحالات يتراوح من ١ إلي ١٩. اكتب في الخانة النشطة ١٩ ثم اضغط <Enter> في لوحة المفاتيح.

You must specify a case in the destination file to be the destination case for variable number 1 of the active MSTAT data file The destination case may be any case from case number 1 to case number 19 Enter the case number you wish to begin with in the destination file : 19

٦. تظهر نافذة بعنوان Give the variable number أكتب فيها أرقام المتغيرات في ملف البيانات الجديد DESTINATION والتي ستستقبل أرقام الحالات ١٤،
 ٥٠، ١٦، ١٧، ١٨ من ملف البيانات الأصلي ANALYSIS. أكتب 5-1 ثم اضغط <enter> في لوحة المفاتيح.

= Give the variable numbers ------List : 1-5

بذلك يكون تم تحويل البيانات من صورة متغير إلي حالة. وللتأكد قم بحفظ التغيرات بالضغط علي الخيار رقم (٦) Save the changes to the destination file ثم قم باستدعاء ملف البيانات الجديد DESTINATION وتأكد من النتيجة. وستكون النتيجة كما بالشكل التالي

Case	1 TSS	2 PH	3 Na	4 Na^2	5 MM
1	12.5	7.8	23.2	538.2	4.8
2	12.6	7.9	24.0	576.0	4.9
3	13.0	8.0	24.1	580.8	4.9
4	14.5	8.2	26.4	697.0	
5	14.6	8.1	25.4	645.2	5.0
6	14.7	8.3	26.6	707.6	
7	12.5	7.8	23.2	538.2	4.8

٤. تظهر نافذة تحتوي علي خانتين، في الخانة الأولي أكتب رقم المتغير في ملف
البيانات الجديد DESTINATION والذي سيستقبل أرقام الحالمة رقم ١١ وفي
الخانة الثانية أكتب أول حالة يبدأ عندها التحويل.
 أكتب في الخانة الأولى ١ وفي الثانية ٢٠ ثم اضغط مفتاح الإدخال Enter
في لوحة المفاتيح.
F Press <f1> for a list of variables</f1>
You must specify a variable in the destination file to be the destination

variable The destination variable may be any variable in the range from variable number 1 to variable number 5 and must be of type NUMERIC Enter the destination variable number : 1 You must specify a case in the destination file to be the first destination case The destination case may be any case in the range from case number 1 to case number 20 Enter the first destination case number : 20

بذلك يكون تم تحويل البيانات من صورة حالة إلي متغير. وللتأكد قم بحفظ التغير ات بالضغط علي الخيار رقم (٦) Save the changes to the destination file ثم قم باستدعاء ملف البيانات الجديد DESTINATION وتأكد من النتيجة. وستكون النتيجة كما بالشكل التالي

SED Sedi	IT t Options	s Command M	Menu			
FILE		Eliter/Eur				
Case 1 2 3 4 5 6 7	1 TSS 12.5 12.6 13.0 14.5 14.6 14.7 12.5	2 PH 7.8 7.9 8.0 8.2 8.1 8.3 7.8	3 Na 23.2 24.0 24.1 26.4 25.4 26.6 23.2	4 Na ² 538.2 576.0 580.8 697.0 645.2 707.6 538.2	5 MM 4.8 4.9 4.9 5.0 4.8	
8	12.6	7.9	24	576.0	4.9	
10 11 12 13 14 15 16 17	14.5 14.6 14.7 14.7 14.6 14.5 13.0 12.6	8.2 8.1 8.3 26.6 25.4 26.4 24.1 24.0	20.4 25.4 26.6	645.2 707.6	5.0	
19 20 21 22 23 24	12.5 14.6 14.6 8.1 25.4 654.2 5.0	23.5 14.5	13.0	12.6	12.5	

من خلال الخيار رقم ^م Fill cases of variable with a value from current من خلال الخيار رقم file يمكن تعبئة حالات متغير بقيمة من الملف الحالي. أتبع الخطوات التالية:

١. قم بفتح ملف البيانات ANALYSIS وملف البيانات DESTINATION

خامساً: تعبئة حالات متغير ما يقيمة معينة من ملف البيانات النشط:

Fill cases of variable with a value from current من الخيار رقم . file ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح

- أكتب في الخانة الأولي رقم المتغير في ملف البيانات الجديد DESTINATION
 و المر اد تعبئة حالات فيه
 - فى الخانة الثانية والثالثة حدد مدي الحالات المراد تعبئتها بالقيمة.
- أكتب في الخانة الأولى (٥) أي المتغير الخامس وفي الثانية و الثالثة حدد
 المدى من ١٣ إلى ١٨ أي أن هذا المدى سوف يتم تعبئته بالقيمة، اضغط
 مفتاح الإدخال Enter في لوحة المفاتيح.

Press <F1> for a list of variables
 You may fill any variable in the destination file from variable number 1 to variable number 5
 Enter the variable number you wish to fill in the destination file : 5
 You may fill any number of cases of your variable beginning with any case from case number 1 to case number 25
 Enter the first case number and the last case number Last case : 18

٤. تظهر نافذة تحتوي علي خانتان كما بالشكل التالي، أكتب في الخانة الأولى رقم المتغير الموجود في ملف البيانات النشط ANALYSIS والذي يحتوي علي القيمة التي سيتم بها تعبئة الحالات في ملف البيانات الجديد DESTINATION وفي الثانية أكتب رقم الحالة الموجود في ملف البيانات النشط ANALYSIS والذي يحتوي علي القيمة التي سيتم بها تعبئة الحالات في ملف البيانات الجديد أكتب في الخانة الأولى ١ أي المتغير الأول TSS في ملف البيانات النشط وفي الثانية أكتب ١٣ أي الحالة رقم ١٣ في ملف البيانات النشط ثم اضغط.
 Enter.

باستدعاء ملف البيانات الجديد DESTINATION وتأكد من النتيجة. وستكون النتيجة كما بالشكل التالي

_		гт <u></u>						
	Sedit File	t Options Options E	Command Me nter/Edit	nu Quit				
Ca	se 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 8 19	1 TSS 12.5 12.6 13.0 14.5 14.6 14.7 12.5 12.6 13.0 14.5 14.6 14.7 14.6 14.7 14.6 14.7 14.6 14.5 14.6 14.5 14.6 14.5 14.6 14.5 14.6	2 PH 7.8 7.9 8.2 8.1 8.3 7.8 7.9 8.0 8.2 8.1 8.3 7.9 8.0 8.2 8.1 8.3 7.9 8.0 8.2 8.1 26.4 24.0 23.5 14.5	3 Na 23.2 24.0 24.1 26.4 25.4 25.4 23.2 24.0 24.1 26.4 25.4 26.6	4 Na^2 538.2 576.0 580.8 697.0 645.2 707.6 538.2 576.0 580.8 697.0 645.2 707.6	5 MM 4.8 4.9 5.0 4.8 4.9 5.0 4.8 4.9 5.0 14.7 14.7 14.7 14.7 14.7 14.7 14.7	}-	
	20 21 22 23 24	14.6 8.1 25.4 654.2 5.0	14.5	13.0	12.0	12.5		

الفضل الرابي الفضل الرابي STAT, MEAN, FREQ, TABLES and PLOT

الإحصاء الوصفي للبيانات

الإحصاء الوصفي عبارة من مجموعة الأساليب الإحصائية التي تعنى بجمع البيانات وتنظيمها وتصنيفها وتلخيصها وعرضها بطريقة واضحة في صورة جداول أو أشكال بيانية وحساب المقاييس الإحصائية المختلفة لوصف متغير ما (أو أكثر) في مجتمع ما أو عينه منه، ويمكن عمل تحليل إحصائي وصفي للبيانات عن طريق حساب عدد المشاهدات، النكر ار، أقصي وأقل قيمة، المجموع، المتوسط، التفرطح والالتواء، الانحر اف المعياري ، الخطأ المعياري، معامل الاختلاف، حساب المتوسطات وعمل رسم بياني للمتغير ات الموجودة داخل ملف البيانات والتي يتم تحديدها.

أو لا الأمر STAT:

الأمر STAT رقم ٤٥ في النافذة الرئيسية لبرنامج MSTAT-C **STAT** والغرض منه: حساب عدد المشاهدات، أقصى وأقل قيمة، المجموع، المتوسط، التفرطح والالتواء، الانحراف المعياري، الخطأ المعياري والتباين للمتغيرات الموجودة داخل ملف البيانات والتي يتم تحديدها. عثاله: في دراسة لمعرفة تأثير خمسة أنواع من الأسمدة علي إنتاج محصول ما، تم تكر اركل معاملة ثلاث مرات وكانت النتائج كما يلي:

	رقم				
Е	D	С	В	А	المكررة
۲٥	۲۰.۰۰	10.0.	14.0.	۱۸	١
۲۳.۰۰	۲۱.۰۰	17	19	14.0.	۲
11.0.	۲۰ _. ۰۰	14	۲۰.۰۰	14	٣

المطلوب عمل تحليل إحصائي وصفي للمحصول

♦ قم بإنشاء ملف بيانات باسم EXAMPLE_1 و أدخل فيه البيانات كما تعلمنا في الفصل الأول بحيث تكون البيانات كما بالشكل التالي

Case	1 REPS	2 FERT	3 YIEL
1	1	1	18.00
2	2	1	18.50
3	3	1	18.00
4	1	2	18.50
5	2	2	19.00

6	3		2	20.00
7	1		3	15.50
8	2		3	16.00
9	3		3	17.00
10	1		4	20.00
11	2		4	21.00
12	3		4	20.50
13	1		5	25.00
14	2		5	23.00
15	3		5	22.50
	$\mathbf{\alpha}$	1 .	17 5	11 - 1:1 - 11 :

- ظلل الأمر STAT في النافذة الرئيسة لبرنامج MSTAT-C
- اضغط Enter في لوحة المفاتيح فتظهر نافذة كما بالشكل التالي تحتوي علي قائمة بالمتغيرات الموجودة في ملف البيانات ويتم التنقل فيما بينها من خلال الأسهم الموجودة في لوحة المفاتيح، اختر منها المتغير الثالث YIELD ثم اضغط علي مفتاح المسافة في لوحة المفاتيح لتظليله ثم اضغط علي مفتاح الإدخال Enter في لوحة المفاتيح

Choose up to 3 variables (Press ESC to quit) = 01 (NUMERIC) REPS 02 (NUMERIC) FERT ▶03 (NUMERIC) YIELD

تظهر نافذة بعنوان STAT كما بالشكل التالي تسألك هل ترغب أن يحتوي ناتج التحليل علي التقرطح Stewness والالتواء Skewness وتكون الإجابة بنعم أو لا فإذا كانت بنعم اضغط حرف Y في لوحة المفاتيح وإذا كانت بـ لا اضغط حرف Y في ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح

Do you want to include skewness and kurtosis : $\underline{Y/N}$

STAT

 تظهر النافذة التالية لتخبرك بعدد الحالات الموجودة في ملف البيانات وتسألك هل تريد استخدام كل الحالات وتكون الإجابة بنعم إذا كان عدد الحالات ١٥ أو لا إذا كان عدد الحالات أكبر من أو أقل من ١٥ فإذا كانت بنعم اضغط حرف Y في لوحة المفاتيح ثم اضغط مفتاح الإدخال Enter وإذا كانت بـ لا اضغط حرف N في لوحة المفاتيح فتظهر نافذة، حدد فيها مدى الحالات المطلوب تحليله ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح

تظهر نافذة بعنوان OUTPUT OPTIONS اختر منها طريقة العرض أو الحفظ

ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح

Output options
View output on screen
Edit output
Print output
Save output to disk
Quit output options

فيما يلي نتيجة التحليل السابق:

: EXAMPLE_1 xample_1					
: STAT					
no. 1 to 15	i				
No. of Cases	Minimum	Maximum	Sum		
15	15.500	25.000	292.500	-	
Mean	Variance	Standard Deviatior	Standard 1 Error	-	
19.500	6.893	2.625	0.678	-	
Skewness	T-val	Prob	Kurtosis	T-val	Prob
0.4987	0.8596	0.2022	-0.0463	-0.0413	0.4838
	2 EXAMPLE_1 xample_1 : STAT no. 1 to 15 No. of Cases 15 	<pre>Skewness T-val 0.4987 0.8596</pre>	<pre>EXAMPLE_I1 xample_1 : STAT no. 1 to 15 No. of Cases Minimum Maximum 15 15.500 25.000 Mean Variance Standard Mean Variance Deviation 19.500 6.893 2.625 Skewness T-val Prob 0.4987 0.8596 0.2022</pre>	<pre>Skewness T-val Prob Kurtosis 0.4987 0.8596 0.2022 -0.0463</pre>	EXAMPLE_11 xample_1 : STAT no. 1 to 15 No. of Cases Minimum 15 15.500 25.000 Mean Variance Standard Standard Standard 19.500 6.893 2.625 Skewness T-val Prob Kurtosis T-val 0.4987 0.8596 0.2022 -0.0463

نلاحظ في النتيجة السابقة تم حساب

No. of cases عدد الحالات

- ♦ أقل وأقصي قيمة Minimum and maximum value
 - Sum المجموع
 - المتوسط Mean
 - التباين Variance

♦ الانحـــراف المعيـــاري Standard Deviation والخطــــــأ

المعياري Standard error

التفرطح Kurtosis والالتواء Skewness

ثانيا الأمر MEAN:

الأمر MEAN رقم ٢٧ في النافذة الرئيسية MEAN رقم ٢٧ في النافذة الرئيسية MSTAT-C والغرض منه: حساب المتوسطات وتخزينها في نهاية ملف البيانات النشط.

مثال: مطلوب حساب متوسطات إنتاج المحصول YIELD بالنسبة للمكررات REPS في مثال ١.

١. قم بفتح ملف البيانات EXAMPLE_1 الذي تم إنشاؤه في المثال السابق بإتباع
 الخطو ات التالية.

- ۲. ظلل الأمر MEAN في النافذة الرئيسية لبرنامج MSTAT-C ثم اضعط علي مفتاح الإدخال Enter في لوحة المفاتيح
- ٣. تظهر نافذة تحتوي على ٣ خانـــات كما بالشكل التالي، أكتب في الخانة الأولى رقم متغير المجموعة Group variable وفي الخانة الثانية أكتب أقل قيمة في متغير المجموعة (المكررات) وفي الخانة الثالثة أكتب أعلى قيمة في متغير المجموعة (المكررات).

٤. تظهر قائمة بالمتغيرات كما بالشكل التالي اختر منها المتغير المراد حساب متوسطات قيمه بواسطة مفاتيح الأسهم في لوحة المفاتيح و هو المتغير رقم ٣ متوسطات قيمه بواسطة مفاتيح الأسهم في لوحة المفاتيح و هو المتغير رقم ٣ والذي أطلقنا عليه اسم Yield ثم اضغط علي مفتاح المسافة Spacebar في لوحة المفاتيح.
Indefine the second state of the second state of the second state of the second state of the second state.
Choose up to 3 variables (Press ESC to quit)
Choose up to 3 variables (Press ESC to quit)
Choose up to 3 variables (Press ESC to quit)
Ol (NUMERIC) REPS
Ol (NUMERIC) FERT
Ol (NUMERIC) FERT
Ol (NUMERIC) YIELD

 . تظهر نافذة كما بالشكل التالي لتخبرك بعدد الحالات الموجودة في ملف البيانات وتسألك هل تريد استخدام كل الحالات؟ وسبق أن تعاملنا معها.

-	Get	Case	Range						-
	тhe	data	file	conta	ains	15	ca	ases.	
	Do y	/ou wi	ish to	use	a11	cases	5?	Y/N	

 ٦. بعد التعامل مع النافذة السابقة تظهر النافذة التالية تحتوي علي السؤال التالي: هل تريد استخدام التحجيم؟

إذا اخترت "نعم" بالضغط علي مفتاح Y في لوحة المفاتيح ثم الضغط علي مفتاح الإدخال Enter ستظهر رسالة تطلب منك إدخال عامل التحجيم لكل متغير وتخبرك أيضا إذا كنت لا ترغب في تحجيم المتغير أدخل ١٠٠٠ في الخانة النشطة، ويتم ضرب عامل التحجيم في كل متوسط من المتوسطات الناتجة. بعد تحديد التحجيم اضغط تعلي لوحة المفاتيح فتظهر قائمة بخيارات المخرجات اختر الخيار المناسب.

Enter the scaling factor that you wish for each variable If you do not want a variable to be scaled input a 1.0 Variable : 3 YIELD Scale : 1.00

بينما إذا اخترت "لا" بالضغط علي مفتاح N في لوحة المفاتيح ثم الضغط علي مفتاح الإدخال Enter تظهر نافذة خيارات المخرجات output options مباشرة، اختار منها طريقة حفظ الملف وليكن مثلا view output in screen ثم اضغط Enter في لوحة المفاتيح فتظهر النتيجة علي الشاشة وأيضا تم تخزين المتوسطات في نهاية ملف البيانات النشط.

فيما يلي نتيجة التحليل السابق:

Data file : EXAMPLE_19 Title : example_1 Function : MEAN Data case no. 1 to 15 Case Variable NO. 19.4 19.5 19.6 3 case(s) of data have been transferred **جرب بنفسك:** أحسب متوسطات إنتاج المحصول بالنسبة للمعاملات (نوع السماد). والنتيجة ستكون كما يلي. Data file : EXAMPLE_19 Title : example_1 Function : MEAN Data case no. 1 to 15 Case Variable No. 18.2 19.2 16.2 20.5 23.5 22 23 5 5 case(s) of data have been transferred ثالثا الأمر FREQ: ر FREQ رقم ٢١ في النــافذة الرئيسية لبرنــامج MSTAT-C والغ سرض منه: إنه الجسيداول التكرارية أحادية الجهـة وثنائية الجهة One and two way frequency tables. مثالي. كون جدول تكراري لعلامات (۳۰) طالب في امتحان (ما) كانت كما يلي: قم بإنشاء ملف بيانات باسم MARK وأدرج فيه البيانات بحيث تكون كما بالشكل

التالي

Case 1 2 3	1 MARK 50 75 58
4	39
6	54
	54

Y السؤال الثاني أترغب في تكوين المجاميع تلقائياً؟، اضغط علي حرف Y في لوحة المفاتيح للموافقة أو حرف N لعدم الموافقة وفي حالة عدم الموافقة سيسألك عن عدد المتغيرات المراد تحليلها وعن رقم المتغير و أعلي و أقل قيمة و عن المسافة بين المجموعات كما في الشكلين التاليين. و في هذا المثال سوف نختار Y للموافقة ثم اضغط Enter في لوحة المفاتيح.

How many variables would you like to analyze?

٤. تظهر نافذة تحتوي علي المتغيرات الموجودة في ملف البيانات كما في الشكل التالي ومنها اختر المتغير المراد تحليله "MARK" من خلال مفاتيح الأسهم و المسافة Spacebar كما تعلمنا سابقاً مع ملاحظة أنه لابد أن يكون المتغير رقمي حيث إذا كان نصي ستظهر رسالة خطأ تخبرك بأن المتغير نصي، وبعد اختيار المتغير اضغط Enter في لوحة المفاتيح.

► Choose up to 1 variables (Press ESC to quit) = ▶01 (NUMERIC) MARK

د. تظهر نافذة تحتوي علي سؤال: هل ترغب في إظهار الرسم البياني؟ اضغط علي
 حرف Y في لوحة المفاتيح للموافقة أو حرف N لعدم الموافقة ثم اضغط علي
 في لوحة المفاتيح.

Would you like to have a histogram displayed? Y/N

٦. تظهر نافذة output options والذي تعاملنا معها من قبل، اختر منها طريقة العرض أو الحفظ المناسبة.

FREQ =

FREQ =

= Output options =

View output on screen Edit output Print output

Save output to disk

Quit output options

مثالى ٤: عينة حجمها ١٥ طالب من الإناث والذكور تم توجيه سؤال لهم عن مقاس الحذاء فكانت الإجابة كما يلي.

Sex	Shoe Size	Sex	Shoe Size
Male	10.5	Female	6.50
Female	6.00	Male	9.50
Male	9.50	Female	7.00
Female	8.50	Female	7.50
Female	7.00	Male	9.00

Male	10.5	Female	6.50
Female	7.00	Female	7.50
Male	8.50		

- المطلوب عمل جدول تكر اري ثنائي الاتجاه بين مقاس الحذاء Shoe Size والجنس Sex بحيث يكون مقاس الحذاء يمثل الأعمدة والجنس يمثل الصفوف؟
- ١. قم بإنشاء ملف بيانات باسم SIZE وأدرج فيه البيانات بحيث تكون كما بالشكل
 التالي

C260	1 Cov	2 5170
Lase 1	1 367	10 5
1 2	1 2	10.5
2	2	6.00
3	Ţ	9.50
4	2	8.50
5	2	7.00
6	1	10.5
7	2	7.00
8	1	8.50
ğ	2	6 50
10	1	9 50
11	± 2	7.00
12	2	7.00
12	2	7.50
13	1	9.00
14	2	6.50

Enter لأمر FREQ في النافذة الرئيسية للبرنامج ثم اضغط مفتاح الإدخال Enter . في لوحة المفاتيح فتظهر نافذة بعنوان Get Case Range ويتم التعامل معها كما تعلمنا قيما سبق

> Get Case Range _____ The data file contains 15 cases. Do you wish to use all cases? Y/N

T. تظهر نافذة تحتوي علي سؤالين (راجع المثال السابق)، اضغط مفتاح الحرف T.

٤. تظهر نافذة تحتوي على قائمة بالمتغيرات الموجودة في ملف البيانات، حدد منها المتغير الذي سيمثل الصفوف و هو المتغير SEX وذلك من خلال مفاتيح الأسهم ومفتاح المسافة ثم اضغط مفتاح الإدخال Enter.
Enter المسافة ثم اضغط مفتاح الإدخال choose up to 2 variables (Press ESC to quit)
Enter (NUMERIC) SEX

 تظهر نافذة تحتوى على قائمة بالمتغير ات الموجودة في ملف البيانات حدد منها المتغير الذي سيمثل الأعمدة و هو المتغير SIZE وذلك من خلال مفاتيح الأسهم ومفتاح المسافة ثم اضغط مفتاح الإدخال Enter. Choose up to 2 variables (Press ESC to quit) = 01 (NUMERIC) SEX ▶02 (NUMERIC) SIZE ٦. تظهر نافذة output options والذي تعاملنا معها من قبل، اختر منها طريقة العرض أو الحفظ. Output options View output on screen Edit output Print output Save output to disk Quit output options فيما يلى نتيجة التحليل السابق: Data file: SIZE¶ Title: size Function: FREQ Data case no. 1 to 15 TWO-WAY FREQUENCY TABLE Row Variable: 1 Column Variable: 2 6.00 9.84 0.56 1.00 Low Value: High Value: Low Value: High Value: 1.00 Divisor: Divisor: variable 2: Low Value: High Value: 6.0 8.3 8.7 8.8 9.3 6.6 7.0 7.1 9.4 Variable 1: Value Total 1 0 0 0 1 1 2 4 9 ō 2 3 2 1 0 3 2 Totals 3 3 2 1 2 13 مثال، البيانات التالية توضح أوزان ٨٠ عينة من القمح بالجرام والمطلوب عمل جدول التوزيع التكراري لهذه البيانات 10 ٦٣ 22 ۸١ 10 ٦٨ ٨٦ ۷٣ V٨ ٨. ٧٩ ٨٩ ٧١ $\Lambda\Lambda$ ٦٧ ٨٦ ٨٣ ٧٤ ٨٢ ٨٧ ٦٧ 91 ٧٢ ٩٣ ٩٣ ٩٨ $\Lambda\Lambda$ 09 ٤٣ ۸١ ٦٦ ٦. ٨. ٩٧ ٩. ٧ź ٦٥ ٥٦ 91 ۸١ ٧. ٨٢ 90 ٩٢ ٧١ ۷٣ 01 20 ٧. ٧٤ 99 ٧٦ ٩٢ $\Lambda\Lambda$ ٨٣ ٦١ ٨٣ ۹. ٤٨ 10 ٧٩ Υ٦ ٦٣ ٧. ٨. ٩٢ ٩. ٦٨ ٧. ٨. ٦٣ ٦. ٧ź 91 ٩٣ ۳0 ٧٢ ٧١ ٨ź ٨.

 . قم بإنشاء ملف بيانات باسم WHEAT وأدرج فيه البيانات بحيث تكون كما بالشكل التالي

رابعا الأمر TABLES الأمر TABLES الأمر TABLES رقم ٤٦ في النافذة TABLES والغرض منه: حساب المتوسطات، الانحراف المعياري، الخطأ المعياري ومعامل الاختلاف لعدة متغيرات في مجموعات. مثال. : أحسب المتوسطات، الانحراف المعياري، الخطأ المعياري ومعامل الاختلاف مثال. : قم بفتح ملف البيانات الالحصول) تبعا لأنواع الأسمدة المختلفة في مثال ١٩ ٢. قم بفتح ملف البيانات الحمصول) تبعا لأنواع الأسمدة المختلفة في مثال ١٩ ٢. قم بفتح ملف البيانات المحصول) تبعا لأنواع الأسمدة المختلفة في مثال ١٩ ٢. قم بفتح ملف البيانات المحصول) تبعا لأنواع الأسمدة المختلفة في مثال ١٩ ٢. قم بفتح ملف البيانات المحصول) تبعا لأنواع الأسمدة المختلفة في مثال ١٩ ٢. قم بفتح ملف البيانات المحصول) تبعا لأنواع الأسمدة المختلفة في مثال ١٩ ٢. قم بفتح ملف البيانات المحصول) تبعا لأنواع الأسمدة المختلفة في مثال ١٩ ٢. قم بفتح ملف البيانات المحصول المعانية الخطوات التالية ٢. ظلل الأمر TABLES م اضغط مفتاح الإدخال PILES في لوحة المفاتيح ٣. تظهر النافذة التالية تخبرك بعدد الحالات الموجودة في ملف البيانات وتسألك هل تريد استخدام كل الحالات؟ ويتم التعامل معها كما ذكرنا سالفاً

Get Case Range
 The data file contains 15 cases.
 Do you wish to use all cases? Y/N

٤. بعد التعامل مع النافذة السابقة تظهر قائمة بالمتغيرات الموجودة داخل ملف البيانات EXAMPLE_1 اختر منها بو اسطة مفاتيح الأسهم في لوحة المفاتيح المتغير أو المتغيرات التي تمثل المجموعات ثم اضغط مفتاح المسافة Spacebar لتظليله ثم اضغط Enter في لوحة المفاتيح. في هذا المثال اختر المتغير رقم (٢) FERT و الذي يمثل أنواع الأسمدة

Choose up to 3 variables (Press ESC to quit) = 01 (NUMERIC) REPS
 ▶02 (NUMERIC) FERT 03 (NUMERIC) YIELD

 و. تظهر مرة ثانية قائمة المتغيرات وفي هذه المرة اختر المتغير تحت الدراسة وهو المتغير الثالث YIELD ثم نضغط Enter في لوحة المفاتيح

Choose up to 3 variables (Press ESC to quit) = 01 (NUMERIC) REPS 02 (NUMERIC) FERT ▶03 (NUMERIC) YIELD تظهر نافذة كما بالشكل التالي تحتوى أربعة أسئلة ومطلوب الإجابة ب (نعم). بالضغط علي مفتاح حرف Y في لوحة المفاتيح أو ب (لا) بالضغط على مفتاح حرف N في لوحة المفاتيح وهي على الترتيب أترغب في حساب المتوسطات؟ - أترغب في حساب الانحر اف المعياري؟ أترغب في حساب الخطأ المعياري؟ - أترغب في حساب معامل الاختلاف؟ = Table Definition = Would you like to have means computed? Y/N Would you like to have standard deviations computed? Y/N Would you like to have standard errors computed? Y/N would you like to have coefficients of variation computed? Y/N ٧. تظهر النافذة التالية وتسألك "أترغب في إضافة المتوسطات في نهاية ملف البيانات؟" وتكون الإجابة أيضاً بـ (نعم) بالضغط على مفتاح Y أوب (لا) بالضغط على مفتاح N كما سبق وذكريا TABLES = Would you like to add the means to the end of your datafile? Y/N ٨. تظهر نافذة خيارات المخرجات التالية اختر منها طريقة الحفظ أو الطباعة Output options = View output on screen Edit output

Print output

Save output to disk

Quit output options

نتائج التحليل كما يلى

Function: TABLES
Data case no. 1 to 15.
Mean table for this group variable:
 Variable 2: FERT
And this data variable:
 Variable 3: YIELD
 Group Variable Data Variable
 Mean Sd Dev Sd Err Co Var
 2 | 3 3 3 |Count
 * | 19.500 2.625 0.678 0.678 | 15

وللمساعدة يمكن المضغط علمي مفتماح F1 في لوحمة المفاتيح فتنسدل قائمة بالمتغير ات الموجودة في ملف البيانات فنختار منها المتغير X و المتغير Y. = PLOT: Variable Numbers 🚃 Select variable numbers to use as the Coordinates (1-2) (Press F1 for a list of variables.) Y-Coordinate: 2 X-Coordinate: 1 تظهر النافذة التالية وتسألك هل تريد إظهار معادلة خط الانحدار على الرسم؟ إذا كنت تريد اضغط مفتاح Y ثم Enter و إذا كنت لا تريد اضغط مفتاح N ثم Enter Would you like to view the linear regression line on your graph? Y/N تظهر نافذة خيارات المخرجات Output Option كما بالشكل التالي اختر منها. طريقة العرض أو الحفظ وفيما يلى النتيجة: REGRESSION STATISTICS Regression Line: Y = a + bX Title of X Variable Title of Y Variable Number of Data Points (K Mean of X Variable (X-bar Mean of Y Variable (Y-bar) (K) 10 5.500 (x-bàr) (Y-bar) 3.000 Variance of X Variable Variance of Y Variable Coefficient of Correlation 9.1672.667 0.966 Regression Line Slope Standard Error of Slope 133 .049 t Test Value (t): 10.020 Probability (P): <0.001 (Press <SPACE> to view the graph, <ESC> for output menu) 10 6 х

لكي تري الشكل البياني السابق علي الشاشة اضغط علي مفتاح المسافة Spacebar مرتين متتاليتين في لوحة المفاتيح وللرجوع إلي قائمة المخرجات اضغط علي مفتاح الهروب ESC في لوحة المفاتيح

سادسا الأمر CURVES

الأمر CURVES رقم ١٥ في النافذة MSTAT-C رقم ١٠ في النافذة والمتحت والمتحت والمتحت والغرض منه رسم منحنى أو أكثر على نفس الشكل حيث كل منحني يمثل قيم بيانات متغير واحد بحيث بيانات المتغير تتراوح بين صفر إلى ١٠٠.

مثالم. القيم التالية توضح متوسطات ثلاثة متغيرات والمطلوب رسم منحنى لكل صفة على نفس الشكل البياني؟

Case	4 Varl	5 Var2	6 Var3
121	77.0	267.0	27.0
122	85.0	255.0	22.0
123	84.0	227.0	21.0
124	92.0	275.0	23.0
125	84.0	214.0	19.0
126	91.0	265.0	21.0
127	84.0	248.0	23.0
128	84.0	216.0	22.0
129	83.0	328.0	29.0
130	81.0	222.0	19.0
131	100.0	250.0	21.0
132	91.0	289.0	25.0
133	100.0	330.0	27.0
134	85.0	255.0	23.0
135	86.0	265 0	30.0

- ١. ظلل الأمر CURVES في النافذة الرئيسية لبرنامج MSTAT-C ثم اضعط
 ٢. ظلل الأمر ENTER في لوحة المفاتيح
- ٢. تظهر النافذة التالية لتطلب منك إدخال عدد المنحنيات المراد رسمها على الشكل.

اكتب ٣ ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح

 ٣. تظهر النافذة التالية لتطلب المعلومات التالية عن المنحني الأول: رقم المتغير المراد رسمه، الرمز المستخدم والذي سيعبر عن المتغير، نقطة الصفر ومقياس الرسم. أكتب المعلومات كما بالشكل التالي

٤. تظهر نفس النافذة السابقة لطلب نفس المعلومات السابقة ولكن عن المنحنى الثاني وهذا ستواجهنا مشكلة وهي أن قيم المتغير الثاني أكبر من ١٠٠ (تتراوح بين ٢١٤ وهذا ستواجهنا مشكلة وهي أن قيم المتغير الثاني أكبر من ١٠٠ (تتراوح بين ٢١٤ وهذا للي ١٠٠ لذلك سوف إلي ١٠٠ (كرنا لابد أن تتراوح قيم المتغير بين صفر إلي ١٠٠ لذلك سوف نقوم بقسمة قيم هذا المتغير علي ١٠ وبالتالي تكون المعلومات كما بالشكل التالي انقوم بقسمة قيم هذا المتغير علي ١٠ وبالتالي تكون المعلومات كما بالشكل التالي دقوم بقسمة قيم هذا المتغير علي ١٠ وبالتالي تكون المعلومات كما بالشكل التالي CURVE NUMBER : 2
 CURVE NUMBER : 2
 CURVE NUMBER : 2
 CORVE CURVE enter variable number, 'ZERO-POINT' (= SUBTRAHEND) (one character)

Enter the values for the following Variable number to plot : 5 SYMBOL to use : B ZERO-POINT (SUBTRAHEND) : 0 SCALE (DIVISOR): 10.00

 د. تظهر نفس النافذة السابقة لطلب نفس المعلومات السابقة ولكن عن المنحنى الثالث وهي كما بالشكل التالي

Press <F1> for a list of variables ______ CURVE NUMBER : 3 For each curve enter variable number, 'ZERO-POINT' (= SUBTRAHEND) SCALE (= DIVISOR) and SYMBOL (one character) Enter the values for the following Variable number to plot : 6 SYMBOL to use : C ZERO-POINT (SUBTRAHEND) : 0 SCALE (DIVISOR): 1.000

٦. تظهر نافذة تخبرك بعدد الحالات الموجودة في ملف البيانات وتسألك هل تريد استخدام كل الحالات؟ اضغط مفتاح N في لوحة المفاتيح لتحديد مدى البيانات و هو من ١٢١ إلي ١٣٥ كما بالشكل التالي (ارجع إلي البيانات السابقة)

ملحق ١: الإحصاء الوصفي باستخدام برنامج SAS مثال ١: صفحة (٦٨) DATA MOHAMEDKAMAL; INPUT Rep Fert \$ Yield; CARDS; 1 A 18 2 A 18.5 3 A 18 1 B 18.5 2 B 19 3 B 20 1 C 15.5 2 C 16 3 C 17 1 D 20 2 D 21 3 D 20.5 1 E 25 2 E 23 3 E 22.5 PROC UNIVARIATE DATA= MOHAMEDKAMAL; VAR Yield; TITLE 'Summary of Yield'; RUN; Summary of Yield The UNIVARIATE Procedure Variable: Yield Moments N Mean Std Skew Unco 15 Sum Weights

n 19.5 Sum Observations Deviation 2.62542514 Variance 6.89 wness 0.49869507 Kurtosis -0.6 prrected SS 5800.25 Corrected SS Ff Variation 13.4637186 Std Error Mean 0.62	9285714 0463017 96.5 7788186

Basic Statistical Measures

Location

Coet

Mean 19.50 Median 19.00 Mode 18.00	000 Std Devi 000 Variance 000 Range Interqua	ation rtile Range	2.62543 6.89286 9.50000 3.00000
--	---	----------------------	--

Variability

NOTE: The mode displayed is the smallest of 3 modes with a count of 2.

Tests for Location: Mu0=0

Test	-S	tatistic-	p Val	ue
Student's t Sign Signed Rank	t M S	28.76607 7.5 60	Pr > t Pr >= M Pr >= S	<.0001 <.0001 <.0001
(Quant	iles (Defin	ition 5)	
	A			

Quantile	Estimate
100% Max 99% 95% 90% 75% Q3 50% Median 25% Q1 10% 5% 1% 0% Min Summary o	25.0 25.0 23.0 21.0 19.0 16.0 15.5 15.5 15.5 f yield

The UNIVARIATE Procedure Variable: Yield

Extreme Observations

Lowe	st	High	est
Value	Obs	Value	Obs
15.5 16.0 17.0 18.0 18.0	7 8 9 3 1	20.5 21.0 22.5 23.0 25.0	12 11 15 14 13

۸۸ _

ملحق ۲: حساب المتوسطات باستخدام برنامج SAS مثال ۲: صفحة (۷۱)

DATA MOHAMEDKANAL; INPUT Rep Fert \$ Yield; CARDS; 1 A 18 2 A 18.5 3 A 18 1 B 18.5 2 B 19 3 B 20 1 C 15.5 2 C 16 3 C 17 1 D 20 2 D 21 3 D 20.5 1 E 25 2 E 23 3 E 22.5 ; PROC MEANS DATA= MOHAMEDKAMAL; CLASS Rep; VAR Yield; PROC MEANS DATA= MOHAMEDKAMAL; CLASS Rep Fert; VAR Yield; PROC MEANS DATA= MOHAMEDKAMAL; CLASS Rep Fert; VAR Yield; PROC MEANS DATA= MOHAMEDKAMAL; CLASS Rep Fert; VAR Yield; RUN;

The MEANS Procedure

Analysis Variable : Yield

		N					
	Rep	Obs	N	Mean	Std Dev	Minimum	Maximum
fffffff.	ffffff	fffff.	fffffff	ſſſſſſſſſſſſſſſ	ſſſſſſſſſſſſſ	fffffffffffffffff	fffffffffff
	1	5	5	19.4000000	3.5249113	15.5000000	25.0000000
	2	5	5	19.5000000	2.6457513	16.000000	23.0000000
	3	5	5	19.6000000	2.1621748	17.0000000	22.5000000
fffffff	ffffff	fffff.	fffffff	ſſſſſſſſſſſſſſſſ	ſſſſſſſſſſſſſ	fffffffffffffffff	ffffffffff

The MEANS Procedure

Analysis Variable : Yield

	N					
Fert	Obs	N	Mean	Std Dev	Minimum	Maximum
ffffffff	ffffffff	fffff	ffffffffffffffffffff	ſſſſſſſſſſſſſſ	fffffffffffffffff	ffffffffffff
A	3	3	18.1666667	0.2886751	18.0000000	18.5000000
В	3	3	19.1666667	0.7637626	18.5000000	20.000000
C	3	3	16.1666667	0.7637626	15.5000000	17.0000000
D	3	3	20.500000	0.5000000	20.000000	21.0000000
E	3	3	23.5000000	1.3228757	22.5000000	25.0000000
ffffffff	fffffff	fffff	ffffffffffffffffffff	ſſſſſſſſſſſſſ	ſſſſſſſſſſſſſſ	ffffffffffff

The MEANS Procedure

Analysis Variable : Yield

N

		14					
Rep	Fert	Obs	N	Mean	Std Dev	Minimum	Maximum
ffffffffff	ffffffff	ffffffffffff	fffff		ſſſſſſſſſſſſſſſ	fffffffffffffffff	ffffffffffffffff
1	A	1	1	18.000000		18.000000	18.000000
	в	1	1	18.5000000		18.5000000	18.5000000
	С	1	1	15.5000000		15.5000000	15.5000000
	D	1	1	20.000000		20.000000	20.000000
	E	1	1	25.000000		25.0000000	25.0000000
2	A	1	1	18.5000000		18.5000000	18.5000000
	В	1	1	19.0000000		19.000000	19.0000000
	C	1	1	16.000000		16.0000000	16.0000000
	D	1	1	21.0000000		21.0000000	21.0000000
	E	1	1	23.000000		23.0000000	23.0000000
3	A	1	1	18.0000000		18.000000	18.0000000
	В	1	1	20.000000		20.000000	20.000000
	C	1	1	17.0000000		17.0000000	17.0000000
	D	1	1	20.5000000		20.5000000	20.5000000
	Е	1	1	22.5000000		22.5000000	22.5000000
fffffffffff	ffffffff	ffffffffffff	fffff		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ſſſſſſſſſſſſſſ	, ffffffffffffffffff

الفعل الخامي الفعاد مربع قاي وهساب تيجهة الاهتمال T-TEST, CHISQR and PROBABIL

اختبار T، مربع کای وحساب قيمة الاحتمال

أولاً: اختبار T

Test للما الأمر TEST رقم ٤٩ في النافذة الرئيسية MSTAT-C والغرض منه: إجراء اختبار F لعينتين لمعرفة هل تباين العينة الأولي يساوي تباين العينة الثانية وبناءً علي هذه النتيجة يتم عمل اختبار T لاستخراج قيمة T المحسوبة ومقارنتها بقيمة T الجدولية فإذا كانت T المحسوبة تساوي أو أكبر من الجدولية هذا يدل علي أن الفرق بين متوسط العينتين معنوي وليس راجعاً للصدفة و عندئذ ترفض النظرية الفرضية وإذا كانت أقل يدل ذلك علي أن الفرق بين متوسط العينتين غير معنوي وتقبل النظرية الفرضية.

مثال، لتوضيح اختبار T في حالة المقارنة بين معاملتين في أزواج: قام باحث بمقارنة كمية محصول الصنف A بالصنف B من القمح بالإردب / فدان حيث زرع الصنفين في عشرة مناطق مختلفة ودونت النتائج بالجدول التالي: Area No. Crop A Crop B المطلوب قارن بين متوسط محصول الصنفين؟

١. قم بإنشاء ملف بيانات جديد باسم T-TEST بحيث يكون شكل البيانات داخل ملف
 البيانات كما يلى

Case	1 Crop A	2 Crop B
1	12.00	11.00
2	10.00	9.00
3	13.00	11.00
4	15.00	14.00
5	14.00	12.00
6	12.00	10.00
7	11.00	9.00
8	10.00	7.00
9	8.00	6.00
10	9.00	7.00

الفصل الفامس اغشبار T، اغشبار مربع كاي ومساب تبيمة الاحتمال

- ۲. ظلل الأمر T-TEST الموجود في النافذة الرئيسية لبرنامج MSTAT-C ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح
- ٣. تظهر نافذة بعنوان T-TEST: Sample information وفيها يتم إعطاء معلومات عن العينة الأولي والثانية وهذه المعلومات هي رقم المتغير ورقم الحالة الأولى في المتغير ورقم الحالة الأخيرة في المتغير كما بالشكل التالي.

T-TEST: Sample information = SAMPLE 1: What is the variable number? What is the first case number? What is the last case number? 1 1 10 SAMPLE 2: What is the variable number? 2 What is the first case number? What is the last case number? $1 \\ 10$

٤. تظهر نافذة بعنوان T-TEST: Significant Level وفيها يتم تحديد مستوى المعنوية ويكون ٥٠.٠ كوضع افتراضي للبرنامج ويمكن تغييره إلي ٢٠.٠ بالضغط المعنوية ويكون ٥٠.٠ كوضع افتراضي للبرنامج ويمكن تغييره إلي ٢٠.٠ بالضغط مرة ثالثة علي مفتاح المسافة في لوحة المفاتيح و عند الضغط مرة ثالثة علي مفتاح المسافة في لوحة المفاتيح و هو ٥٠.٠ وبعد تحديد مستوى المسافة نرجع إلي الوضع الافتراضي للبرنامج و هو ٥٠.٠ وبعد تحديد مستوى المعنوية نضغط مفتاح الإدخال Enter في لوحة المفاتيح المفاتيح المستوى المعنوية نضغط مفتاح الإدخال عاد المعنوية المفاتيح و منا المفاتيح و عند الضعط من المعنوية علي مفتاح المستوى المعنوية نضغط من المعنوية نصغط من المعنوية نصغط من المعنوية نصغط مفتاح الإدخال عامي البرنامج و هو ١٠.٠ وبعد تحديد مستوى المعنوية نصغط مفتاح الإدخال عاد المعنوية المفاتيح المفاتيح المفاتيح المفاتيح و المفاتيح و من المعنوية نصغط من المعنوية نصغط مفتاح المعنوية نصغط مفتاح الإدخال عاد المعنوية المفاتيح و المفاتيح و المفاتيح و المعنوية نصغط مفتاح الإدخال عاد المعنوية المفاتيح و المفاتيح و المفاتيح و المغانية المفتاح المعنوية المفاتيح و من المعنوية نصغط من المعنوية نصغط من المعنوية المفتيح و المغانيح و المفتيح و عند المعنوية المفتاح المعنوي المعنوية المفاتيح و من المفتيح و المفتيح و المفتيح و المعنوية المفتيح و المغانيح و المفتيح و المفتيح و المفتيح و المفتيح و المفتيح و المنايح و المفتيح و المعنوية نصغط من المغنوية نصغط مفتاح الإدخال عامي المونية المفتيح و المغني المنايح و المغنيح و المفتيح و المؤتراحي و المفتيح و المفتيح و المؤتراحي و المفتيح و المفتيح و المفتيح و المفتيح و المفتيح و المؤتراحي و الم

= T-TEST: Significance Level ______ Press the space bar to select an alpha value: 0.05

٩. تظهر النافذة التالية وتسألك هل المشاهدات في أزواج؟ اضغط مفتاح الحرف Y
 في لوحة المفاتيح حيث فعلا المشاهدات في أزواج ثم اضغط Enter في لوحة المفاتيح

Are these paired observations? Y/N

T-TEST

٦. تظهر نافذة خيارات المخرجات Output Options اختار منها الخيار المناسب ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح Data file:

B

T-TEST¶

فيما يلى نتيجة التحليل السابق:

T-TEST Title: Function: T-TEST SAMPLE ONE: SAMPLE TWO: Variable 2 : Crop B Variable 1 : Crop A Cases 1 through 10 Cases 1 through 10 11.400 9.600 Mean: Mean: 4.933 Variance: 6.267 Variance: Standard Deviation: 2.221 Standard Deviation: 2.503 F-TEST FOR THE HYPOTHESIS "VARIANCE 1 = VARIANCE 2" F Value: 1.2703 Numerator degrees of freedom: 9 Denominator degrees of freedom: 9 0.7274 Probability: Result: Non-Significant F - Accept the Hypothesis T-TEST FOR THE HYPOTHESIS "MEAN 1 = MEAN 2" Variance of the difference between the means: Standard Deviation of the difference: 0.0400 0.2000 9.0000 t Value: Effective degrees of freedom: 9 Probability of t: 0.0000 Result: Significant t - Reject the Hypothesis Confidence limits for the difference of the means (for alpha=0.05): 1.800 plus or minus 0.452 (1.348 through 2.252) **تفسير النتيجة:** عند استخراج قيمة T الجدولية (تستخرج من جدول T وذلك عند درجة حرية تساوى n-1 أي 1-11) نجد أنها عند مستوى معنوية ٥٪ تساوى ٢.٦ وعند ١٪ تساوى ٣.٢٥ وبما أن قيمة T المحسوبة تساوى ٩ أي أكبر من T الجدولية، إذن يوجد فرق معنوي جداً (**) بين محصول الصنفين وبالتالي الصنف A يتفوق على الصنف B. مثالي،: أجريت تجربة لمقارنة عليقتين (A, B) وتأثير هما على نمو العجول خلال شهر من التغذية وسجلت الزيادة في الأوز ان لسبعة أزواج من العجول، فكانت البيانات 30.51 29.37 28.72 31.33 31.56 29.80 A 30.50

- 36.32 37.51 35.47 38.20 36.52 37.22 38.95
 - يتم إتباع نفس خطوات المثال السابق وستكون النتيجة كما يلي

SAMPLE ONE: SAMPLE TWO: Variable 1 : A Variable 2 : B Cases 1 through 7 Cases 1 through 7 37.170 30.256 Mean: Mean: 1.055 Variance: Variance: Standard Deviation: Standard Deviation: 1.027 1.182 F-TEST FOR THE HYPOTHESIS "VARIANCE 1 = VARIANCE 2" F Value: 1.3242 Numerator degrees of freedom: Denominator degrees of freedom: 6 6 0.7418 Probability: Result: Non-Significant F - Accept the Hypothesis T-TEST FOR THE HYPOTHESIS "MEAN 1 = MEAN 2" 0.2187 Variance of the difference between the means: Standard Deviation of the difference: t Value: Effective degrees of freedom: Probability of t: -14.7860 6 0.0000 Result: Significant t - Reject the Hypothesis Confidence limits for the difference of the means (for alpha=0.05): 6.914 plus or minus 1.144 (5.770 through 8.059) تفسير النتيجة: بنم تفسير النتيجة بنفس السياق السابق مثالي التوضيح اختبار T في حالة المقارنة بين معاملتين عدد أفرادها متساوى فى مجموعات: فى در اسة عن نسبة البروتين في الذرة الشامية أخذت ٨ عينات من رسائل ذر ة بيضاء محلية Sorghum وكذلك رسائل ذرة صفراء مستورد Maize فكانت النتائج كما يلي: Sorghum 8 9 9 10 8 7 7 6 11 12 10 13 12 9 10 11 Maize المطلوب: قار ن بين متوسط نسبة البر و تين في حبوب الصنفين؟ آ. قم بإنشاء ملف بيانات جديد باسم T-TEST2 وحدد فيه عدد الحالات وعرف المتغير ات كما تعلمنا بحيث يكون شكل البيانات داخل ملف البيانات كما يلي: 1 Sorghum 8.00 9.00 Case 2 Maize 11.00 123 12.00 10.00 8.007.00 45678 13.00 12.00 9.00 7.00 6.00 9.00 10.00 11.00 ٢. اتبع نفس خطوات الأمثلة السابقة ولكن في الخطوة رقم ٥ عندما تظهر نافذة تسألك. هل المشاهدات في أزواج؟ اضبغط مفتاح الحرف N في لوحة المفاتيح حيث المشاهدات في مجموعات وليس أزواج. فيما يلى نتيجة التحليل السابق:

- 97 -

۹۳ _

Data file: T-TEST2¶ Title: T-TEST2 Function: T-TEST SAMPLE ONE: SAMPLE TWO: Variable 1 : Sorghum Cases 1 through 8 Variable 2 : maize Cases 1 through 8 Mean: 8.000 11.000 Mean: Variance: 1.714 Variance: 1.714 Standard Deviation: 1.309 Standard D F-TEST FOR THE HYPOTHESIS "VARIANCE 1 = VARIANCE 2 Standard Deviation: 1.309 F Value: 1.0000 Numerator degrees of freedom: Denominator degrees of freedom: 7 Probability: 1.0000 Result: Non-Significant F - Accept the Hypothesis T-TEST FOR THE HYPOTHESIS "MEAN 1 = MEAN 2" 1.0000 Pooled s squared: 1.7143 Variance of the difference between the means: Standard Deviation of the difference: 0.4286 t Value: 4.5826 Degrees of freedom: 14 Degrees of frequent. Probability of t: Result: Significant t - Reject the Hypothesis Confidence limits for the difference of the means (for alpha=0.05): 3.000 plus or minus 1.404 (1.596 through 4.404) تفسير النتيجة: عند استخراج قيمة T الجدولية عند درجة حرية تساوي (n-1) أي ١٤ نجد أنها عند مستوى معنوية ٥٪ تساوى ٢.١٤ وعند ١٪ تساوى ٢.٩٧ وبما أن قيمة T المحسوبة تساوي ١٤ أي أكبر من T الجدولية، إذن يوجد فرق معنو ي جداً (**) بين نسبة البروتين بحبوب الذرة الصفراء والبيضاء مثال٤ لتوضيح اختبار T في حالية المقارنية بين معاملتين عدد أفرادها غير متساوى فى مجموعات: أجريت تجربة لمقارنة نوعين من الهرمونات على فئران التجارب اختير لكل معاملة • ١ حيو إنـات عشو إئياً ونفق إحدى حيو إنـات المعاملـة الثانيـة قبـل تمـام التجربـة وكـان معدل الزيادة في وزن الحيوان كما يلي: Treatment 1 31 29 26 32 35 38 34 30 32 34 30 29 26 31 29 Treatment 2 26 24 28 29 قم بإنشاء ملف بيانات جديد باسم T-TEST3 وحدد فيه عدد الحالات وعرف المتغير ات كما تعلمنا بحيث بكون شكل البيانات داخل ملف البيانات كما بلي:

31.00	26.00
34.00	24.00
29.00	28.00
26.00	29.00
32.00	30.00
35.00	29.00
38.00	26.00
34.00	31.00
30.00	29.00
32.00	
	31.00 34.00 29.00 26.00 35.00 35.00 38.00 34.00 30.00 32.00

٢. اتبع نفس خطو ات الأمثلة السابقة ولكن عند إعطاء معلومات العينية الثانبية سبكون رقم الحالة الأخيرة ٩ وليس ١٠ كما أن المشاهدات موجودة في صورة مجموعات وليس أزواج. فيما يلى نتيجة التحليل السابق: Data file: T-TEST39 Title: T-TEST3 Function: T-TEST SAMPLE ONE: SAMPLE TWO: Variable 1 : Treat. 1 Cases 1 through 10 Variable 2 : Treat. 2 Cases 1 through 9 32.100 28.000 Mean: Mean: 11.433 5.000 Variance: Variance: 2.236 Standard Deviation: 3.381 Standard Deviation: F-TEST FOR THE HYPOTHESIS "VARIANCE 1 = VARIANCE 2" F Value: 2.2867 Numerator degrees of freedom: g Denominator degrees of freedom: 8 Probability: 0.2582 Result: Non-Significant F - Accept the Hypothesis T-TEST FOR THE HYPOTHESIS "MEAN 1 = MEAN 2" 8.4059 Pooled s squared: Variance of the difference between the means: 1.7746 Standard Deviation of the difference: 1.3321 3.0778 17 t Value: t value: Degrees of freedom: Probability of t: Result: Significant t - Reject the Hypothesis Confidence limits for the difference of the means (for alpha=0.05): Confidence limits for the difference of the means (for alpha=0.05): 4.100 plus or minus 2.811 (1.289 through 6.911) **تفسير النتيجة:** بمقارنة قيمة T المحسوبة (=٣٠٠٧٨) بقيمتي T الجدولية عند درجة حرية (n₁+n₂-2) وذلك عند مستوى معنوية ٥٪، ١٪ (تساوى على الترتيب ٢.١١ ، ٢.٨٩) نجد أن قيمة T المحسوبة أكبر وبالتالي يكون هناك فرق معنوي جداً بين نوعي الهر مونات و أن المعاملة الأولى تعطى معدل زيادة أفضل من المعاملة الثانية. ٥: في در اسة لمقارنة العناصر المعدنية لنوعين من العصائر (عصير البرتقال مثال و عصير التفاح) أخذت عينتان عشو ائيتان من العلب المعر وضة في الأسو إق لكل منهما ومن بين القياسات نذكر قياسات كمية الصوديوم وكانت البيانات على النحو التالي 5.32 4.86 5.23 5.20 4.95 5.11 5.19 5.61 4.98 Apple 5.22 5.52 5.35 4.72 4.81 5.67 4.96 5.34 Orange ونريد اختبار فرض العدم ضد الفرض البديل؟ نتبع نفس خطوات المثال السابق وستكون النتيجة كما يلى S

AMPLE ONE:		SAMPLE TWO:	
Variable 1 : Appel Cases 1 through 9		Variable 2 : Orange Cases 1 through 8	
Mean:	5.161	Mean:	5.199

- 9 £ -

90 -

Variance: Standard Deviation: 0.051 0.225 Variance: Standard Deviation: 0.115 0.339 F-TEST FOR THE HYPOTHESIS "VARIANCE 1 = VARIANCE 2" F Value: 2.2770 Numerator degrees of freedom: Denominator degrees of freedom: 7 8 0.2717 Probability: Result: Non-Significant F - Accept the Hypothesis T-TEST FOR THE HYPOTHESIS "MEAN 1 = MEAN 2" Pooled s squared: Variance of the difference between the means: Standard Deviation of the difference: 0.0807 0.0191 0.1380 -0.2727 t Value: Degrees of freedom: Probability of t: 15 0.7888 Result: Non-Significant t - Accept the Hypothesis Confidence limits for the difference of the means (for alpha=0.05): 0.038 plus or minus 0.294 (-0.257 through 0.332) في الأمثلة السابقة تم حساب قيمة T للمقارنة بين معاملتين في أزواج أو في مجموعات متساوية في عدد أفر إدها أو غير متساوية، أما عند مقارنة متوسط عينة بمتوسط مجتمع فلا يوجد أمر مباشر في برنامج MSTAT-C لحساب قيمة T ولكن يمكن الحصول عليها بمعلومية متوسط العينة والخطأ المعياري للعينة بشرط أن يكون متوسط المجتمع معلوم أما بالنسبة لمتوسط العينة والخطأ المعياري للعينة فيمكن الحصول عليهم من خلال الأمر STAT الذي تحدثنا عنه في الفصل الرابع والمثال التالي يوضح ذلك. مثال- لتوضيح اختبار T في حالة المقارنة بين متوسط عينة بمتوسط مجتمع: صممت إحدى ماكينات خلط الأسمدة لتضيف ٢٠ كجم من النيتر وجين لكل جوال وبعد فترة تشغيل طويلة أخذت عينة عشو ائية مكونة من ١٣ جو ال وقدر كمية النيتر وجين فیها فکانت کما یلی: ۱۷، ۲۱، ۲۱، ۲۱، ۲۸، ۲۰، ۱۹، ۲۲، ۱۲، ۱۷، ۲۱، ۱۹، ۲۲، ۱۹، ۲۱، ١٥ فهل تعمل الماكبنة بصورة جبدة أم لا؟

. قم بإنشاء ملف بيانات بعنوان ONE_GROUP وأدخل فيه البيانات بحيث تكون
 كما بالشكل التالي

Case	1 Nitrogen
1	17.00
2	21.00
3	23.00
4	18.00
5	20.00
é	19 00
7	22.00
6	22.00
ð	16.00
9	17.00
10	21.00
11	19.00
12	22.00
13	15.00

٢. ظلل الأمر STAT في النافذة الرئيسية ثم اتبع نفس الخطوات الموضحة في مثال
 ٩. في الفصل الرابع وستكون النتيجة كما بالشكل التالي

	Dat Tit Fund Data	a file le : O ction a case	e : ONE_O NE_GROUP : STAT : no. 1 t	GROUP¶				
	Var [.] Nur	iable mber	No. of Cases	F S Miı	nimum	Maximum	Sum	
	Nit	trogen 1	13	1	5.000	23.000	250.000	
	Var Nur	iable mber	Mean	Va	riance	Standard Deviation	Standard Error	
		1	19.231		6.359	2.522	0.699	
Varia Numb	ble er	Ske	wness	T-val	Prob	Kurtos	is T-va	Prob
1	·	-0	.1596	-0.2590	0.4000	-1.12	93 -0.9483	8 0.1808

٢. من النتيجة السابقة يتم حساب قيمة T بمعلومية متوسط العينة والخطأ المعياري للعينة ومتوسط المجتمع من خلا القانون التالي

قيمة T = متوسط العينة – متوسط المجتمع = ٢٩.٢٣ - ٢٠ - ١٩.١٠ الخطأ المعياري للعينة تفسير النتيجة: باستخراج قيمة T الجدولية عند درجة حرية n-1 أي ١٢ عند مستوى معنوية ٥٪ (تساوى ٢.٢٠) ومقارنتها بقيمة T المحسوبة (تساوي ١١) نجدها أكبر من المحسوبة وبالتالي نستنتج أنه لا يوجد فرق معنوي بين العينة ومتوسط المجتمع ونرمز له بالرمز NS

ثانيا اختبار مربع كاي:

الأمر CHISQR رقم ١٠ في النافذة الرئيسية CHISQR والغرض منه: حساب مربع MSTAT-C والغرض منه: حساب مربع كاي للبيانات الموجودة داخل ملف البيانات.

نوع العليق		نو	لاحلاق المربحة فالأبقار
С	В	Α	العالة الصعية للربعار
17	١٦	١٩	صحية جدا Very Healthy
۲	۲۱	Λ	صحية Healthy
))	۲	٧	متوسطة Medium
٩	0	0	مريضة Sick

مثالى ب: يوضح الجدول التالي نتائج تجربة تغذية ثلاثة مجاميع من الأبقار يتكون كل منها من ٣٩ بقرة علي ثلاثة أنواع من العلائق. وفي نهاية

- 97 -

التجربة قسمت الأبقار حسب حالتها الصحية والتي قيست علي أساس عدد مرات العلاج إلي ٤ أقسام هي: أبقار حالتها الصحية جيدة جدا - صحية - متوسطة - مريضة. دونت النتائج في الجدول الموضح والمطلوب: هل هناك علاقة بين الحالة الصحية للأبقار ونوع العليق؟

د. قم بإنشاء ملف بيانات باسم CHISQR و أدخل فيه البيانات كما يلي

ase 1 2 3 4 5 6 7 8 9	1 Var 19.00 16.00 17.00 8.00 12.00 2.00 7.00 6.00 11.00
8	6.00
9 10	$11.00 \\ 5.00$
11	5.00
12	5.00

- ۲. ظلل الأمر CHISQR في النافذة الرئيسية لبرنامج MSTAT-C ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح
- ٣. يتم فتح نافذة بعنوان CHISQR كما بالشكل التالي تحتوي علي الأمر.
 ٣. يتم فتح نافذة بعنوان CHISQR مظلل بشكل تلقائي، اضغط Enter في لوحة المفاتيح فينتقل المؤشر إلي الخانة الأولي Source of Values ونجد فيها Disk بشكل افتراضي ويمكن اختيار Keyboard عن طريق الضغط علي مفتاح المسافة Spacebar في لوحة المفاتيح.

CHISQR ————————————————————————————————————	
INPUT (Press F1 for help, F10 when done, ESC to abort)	
C:\MSTATC\DATA\CHISQR	
First Case (if disk): Number of Columns:	
Variable No for Values:	
Rows of Table to use: *	
Cols of Table to use: *	
السؤال الذي يطرح نفسه متى نستخدم Disk ومتى نستخدم Keyboard؟

- نستخدم Disk إذا كان مصدر البيانات ملف البيانات، وبالتالي عند اختيار Disk لن يسألك عن القيم حيث أنك ستحدد مكان أول حالة في الخانة التالية حيث يسألك (if disk) First case
- نستخدم Keyboard إذا تم إدخال البيانات يدوياً من خلال لوحة المفاتيح وبالتالي سيسألك عن قيم الأعمدة والصفوف

♦ اختر Keyboard ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح

- ٤. ينتقل المؤشر إلي الخانة التالية (First case (if disk ولأننا اخترنا Keyboard سوف نترك هذه الخانة فارغة، اضغط Enter في لوحة المفاتيح
- م. ينتقل المؤشر إلي الخانة التالية Variable No for Value وفيها يتم تحديد رقم المتغير، أكتب في هذه الخانة (۱) حيث أنه المتغير الأول ثم اضغط Enter في لوحة المفاتيح. (ملحوظة يمكن استعراض كافة المتغيرات الموجودة في ملف البيانات بحيث نختار فيما بينها عن طريق الضغط علي مفتاح F1 في لوحة المفاتيح)

Enter input parameters Parameters Chisqr Quit	
INPUT (Press F1 for help, F10 when done, ESC to abort)	
File to compute Chi-Square Analysis on: C:\MSTATC\DATA\CHISQR	
Source of Values: Keyboard Number of Rows:	
First Case (if disk): 0 Number of Columns:	
Variable No for Values: 1	
Rows of Table to use: *	
Cols of Table to use: *	

٦. ينتقل المؤشر إلي الخانة التالية Number of Rows وفيها أكتب عدد الصفوف الموجودة فيها البيانات، اكتب ٤ حيث عدد الصفوف في الجدول أربعة صفوف ثم اضغط Enter في لوحة المفاتيح ٧. ينتقل المؤشر إلي الخانة التالية Number of Columns وفيها أكتب عدد الأعمدة الموجودة فيها البيانات، اكتب ٣ حيث عدد الأعمدة في الجدول ثلاثة أعمدة ثم اضغط Enter ثلاثة مرات متتالية في لوحة المفاتيح

CHISQR — Enter input parameters Parameters Chisqr Quit	
_ INPUT (Press F1 for help, F10 when done, ESC to abort)	
File to compute Chi-Square Analysis on: C:\MSTATC\DATA\CHISQR	
Source of Values: Keyboard Number of Rows: 4	
First Case (if disk): 0 Number of Columns: 3	
Variable No for Values: 1	
Rows of Table to use: *	
Cols of Table to use: *	

- ٨. يتم تظليل الأمر Chisqr اضغط Enter في لوحة المفاتيح.
- ٩. فيتم فتح نافذة كما بالشكل التالي أدخل فيها قيم جدول البيانات علي النحو
 التالي: ١٩ لم ١٦ لم ١٧ لم ٨ لم ١٢ لم ٢ لم ٢ لم ١١ لم ٥ لم ٥ لم ٩ لم

Enter your observed value (1 - 1000) for Row(1) Column(1) :

 . تظهر نافذة Output Options اختر منها طريقة العرض أو الحفظ كما تعلمنا فيما سبق.

فيما يلي نتيجة التحليل السابق:

Data file: Keyboard Entry¶ Function: CHI-SQUARE

(1) (1) (1)	,	1)	Observation:	19
	,	2)	Observation:	16
	,	3)	Observation:	17
(2	,	1)	Observation:	8
(2	,	2)	Observation:	12
(2	,	3)	Observation:	2
(3	,	1)	Observation:	7
(3	,	2)	Observation:	6
(3	,	3)	Observation:	11
(4	,	1)	Observation:	5
(4	,	2)	Observation:	5
(4	,	3)	Observation:	9

Expected Contribution to (Row,Col) value Chi-square 1) 2) 3) 17.33 (1 0.16 , 17.33 17.33 Ì1 0.10 *(*1 0.01 Chi-square for rows: 0.2692308 Contribution to Expected (Row,Col) Value Chi-square (2 (2 (2 1) 2) 7.33 0.06 , 2.97 7.33 7.33 , 3) 3.88 Chi-square for rows: 6.9090909 Expected Contribution to (Row,Col) Value Chi-square 8.00 , 1) (3 0.13 (3 (3 2) 8.00 0.50 , 8.00 1.7500000 3Ś 1.13 Chi-square for rows: Contribution to Expected (Row,Col) value Chi-square 1) 2) 6.33 6.33 0.28 (4 , <u>(</u>4 , (4 3) 6.33 1.12 Chi-square for rows: Chi-square for columns: 1.6842105 1 Column 0.6265642 2 3 3.8529628 6.1330052 Column Column Total Chi-square = Degrees of Freedom = = 10.61253Probability = 0.1011000

تفسير النتيجة:

باستخراج قيمة مربع كاي الجدولية لدرجة حرية (I-1)(C-1) (حيث R عدد الصفوف، C عدد الأعمدة وبالتالي درجات الحرية تساوي T) نجدها عند مستوى معنوية ٥٪ تساوي ١٢.٥٩ أي أكبر من قيمة مربع كاي المحسوبة (تساوي ١٠.٦١) ونستتج من هذا أن العاملين أو الصفتين تحت الدراسة مستقلين عن بعضهما ولا يوجد بينهما علاقة وهذا يؤيد استقلال نوع العليقة عن الحالة الصحية للأبقار.

الفصل الفامس اغتبار T، اغتبار مربع كاي ومساب قيمة الاحتمال

مثالي.: في هذا المثال سوف نستخدم Disk بدلاً من Keyboard: الجدول التالي يوضح العلاقة بين متغيرين هما النوع وتأييد برنامج تليفزيوني معين. والمطلوب حساب قيمة مربع كاي

أر فض جداً	أرفض نوعاً ما	لا أدر ي	مو افق نو عاً ما	مو افق جدا	النوع
0	7 ٨	۱۳	37	٥	ذكور
0	۲.	٨	1 V	٣	إناث

قم بإنشاء ملف بيانات باسم CHISQR2 و أدخل فيه البيانات بالشكل التالي

•
$\begin{bmatrix} Case & 1 & Var \\ 1 & 5.00 \\ 2 & 37.00 \\ 3 & 13.00 \\ 4 & 28.00 \\ 5 & 5.00 \\ 6 & 3.00 \\ 7 & 17.00 \\ 8 & 8.00 \\ 9 & 20.00 \\ 10 & 5.00 \\ 10 & 5.00 \\ 10 & 5.00 \\ \end{bmatrix}$
HISQR
☐ INPUT (Press F1 for help, F10 when done, ESC to abort) ====================================
File to compute Chi-Square Analysis on: C:\MSTATC\DATA\CHISQR
Source of Values: Disk Number of Rows: 2
First Case (if disk): 1 Number of Columns: 5
Variable No for Values: 1
Rows of Table to use: *
Cols of Table to use: *
يستعمل المستعمل السابق: فيما يلي نتيجة التحليل السابق:
Data file : C:\MSTATC\DATA\CHI2¶ Title : CHI2 Function : CHI-SQUARE Starting at Data case no. 1 (1, 1) Observation: 5 (1, 2) Observation: 37 (1, 3) Observation: 13 (1, 4) Observation: 28 (1, 5) Observation: 5 (2, 1) Observation: 3 (2, 3) Observation: 17 (2, 3) Observation: 8
(2, 4) Observation: 20 (2, 5) Observation: 5
Expected Contribution to (Row, Col) Value Chi-square (1, 1) 4.99 0.00 (1, 2) 33.70 0.32 (1, 3) 13.11 0.00 (1, 4) 29.96 0.13 (1, 5) 6.24 0.25 Chi-square for rows: 0.6983000 Expected Contribution to
(Row,Col) Value Chi-square (2, 1) 3.01 0.00 (2, 2) 20.30 0.54 (2, 3) 7.89 0.00 (2, 4) 18.04 0.21 (2, 5) 3.76 0.41 Chi-square for rows: 1.1594414
Chi-square for columns: Column 1 0.000268 Column 2 0.8585263 Column 3 0.0022972 Column 4 0.3402659 Column 5 0.6566252
Total Chi-square = 1.857741 Degrees of Freedom = 4 Probability = 0.7619000

تفسير النتيجة:

يتم تفسير النتيجة بنفس الأسلوب السابق حيث يتم استخراج قيمة مربع كاي الجدولية لدرجات حرية (C-1)(C-1) عند مستوى معنوية ٥٪ (تساوي ٣.٣٦) ومقارنتها بقيمة مربع كاي المحسوبة (تساوي ١.٨٦)، ولما كانت قيمة مربع كاي المحسوبة أقل من الجدولية إذن لا يوجد علاقة بين المتغيرين النوع وتأييد البرنامج التليفزيوني. ثالثاً حساب قيمة الاحتمال

يمكن حساب قيمة الاحتمال P-Value P-Value وإظهار هما علي P-Value وإظهار هما علي المشاشة من خلال الأمر PROBABIL رقم ٣٧ في النافذة الرئيسية لبرنمج MSTAT-C معنا على مفتاح الإدخال Enter في لوحة المفاتيح تظهر نافذة بعنوان PROBABIL كما بالشكل التالي

PROBABIL Chi-Square Probability Chi-Square Fisher's Normal IInverse Student's 2Inverse Quit Quit Chi Square Fisher's Normal IInverse Student's 2Inverse Quit Chi Square P Value بلي أمثلة لتوضيح ذلك. Square نقيمة Tisher ، قيمة Z أو قيمة T وفيما يلي أمثلة لتوضيح ذلك. **مثاله:** : نتيجة المثال الثاني في اختبار مربع كاي (انظر مثال ٨) كانت قيمة Total **مثاله:** : منتجة المثال الثاني في اختبار مربع كاي (انظر مثال ٨) كانت قيمة Total (من خلل) Chi Square في اختبار مربع كاي (انظر مثال ٨) كانت قيمة P Chi Square في اختبار مربع كاي (انظر مثال ٨) كانت قيمة P

١. ظلل Chi-Square ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح فتظهر
 النافذة التالية

 ٢. أكتب في الخانة الأولي قيمة درجات الحرية وفي الخانة الثانية قيمة مربع كاي ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح فتظهر قيمة P بشكل تلقائي في الخانة رقم ٣

- 1 • 7 -

مثال ١٠: إذا كانت قيمة F تساوي ٨.٤٠ ودرجات الحرية للبسط ٢ وللمقام ١٢ فما هي قيمة P؟

 . ظلل Fisher's ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح فتظهر النافذة التالية

FISHER'S F PROBABILITY = Enter the number of degrees of freedom for numerator (1 - 1000) : 2 Enter the number of degrees of freedom for denominator (1 - 1000) : 12 Enter the F value : 8.4000 Probability :

٢. أكتب في الخانة الأولي درجات الحرية للمقام وفي الخانة الثانية درجات الحرية
 للبسط وفي الثالثة قيمة F ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح
 فنظهر قيمة P بشكل نلقائي في الخانة الرابعة كما في الشكل التالي

Enter the number of degrees of freedom for numerator (1 - 1000) : 2 Enter the number of degrees of freedom for denominator (1 - 1000) : 12 Enter the F value : 8.4000 Probability : 0.0052328

= FISHER'S F PROBABILITY

مثال، : نتيجة المثال الأول في اختبار T (انظر مثال ۱) كانت قيمة T تساوي ۹ ودرجات الحرية ۹ فما هي قيمة P؟

 ١. ظلل Student's ثم اضبغط مفتاح الإدخال Enter في لوحة المفاتيح فتظهر النافذة التالية

٢. أكتب في الخانة الأولي درجات الحرية وفي الثانية قيمة T ثم اضغط مفتاح
 ١ الإدخال Enter في لوحة المفاتيح فتظهر قيمة P بشكل تلقائي في الخانة الثالثة كما
 في الشكل التالي

1.2 -

كما يمكن الحصول علي قيمة T بمعلومية درجات الحرية وقيمة P بتظليل
 كما يمكن الحصول علي قيمة T بمعلومية درجات الحرية وقيمة P بتظليل
 Enter ثم الضغط على مفتاح الإدخال Enter فتظهر النافذة التالية فنكتب في
 الخانة الأولي قيمة P وفي الثانية درجات الحرية ثم نضغط مفتاح الإدخال Enter
 فتظهر قيمة T في الخانة الثالثة

= INVERSE OF STUDENT'S T DISTRIBUTION ______ Enter the probability at which to evaluate the function (0 - 1) : 0.0000085 Enter the number of degrees of freedom (1 - 1000) : 9 Student's T value : 9.0049169

مثالم ٢٠: إذا كانت القيمة Z تساوي ٣ فما هي درجة الاحتمال المقابلة؟

 ظلل Normal ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح فتظهر النافذة التالية

٢. أكتب في الخانة الأولى قيمة Z ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح
 ه فتظهر قيم P بشكل تلقائي في الخانة الثانية

كما يمكن الحصول علي قيمة Z بمعلومية قيمة P بتظليل IInverse ثم الضغط على مفتاح الإدخال Enter فتظهر النافذة التالية فنكتب في الخانة الأولي قيمة P ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح فتظهر قيمة Z بشكل تلقائي في الخانة الثالثة كما في الشكل التالي

<u>-</u> الشعال فمية

ملحق ۱: إجراء اختبار T باستخدام برنامج SAS منالد: صفحة (۸۹) DATA MOHAMEDKAMAL; INPUT A B; CARDS; 12 11 10 9 13 11 15 14 14 12 12 10 11 9 10 7 8 6 9 7 PROC PRINT; RUN; PROC TTEST DATA= MOHAMEDKAMAL; PAIRED A*B; RUN; 0bs А В 1 2 3 4 5 6 7 8 9 10 11 9 11 14 12 10 9 7 6 7 12 10 13 15 14 12 11 10 89 \ The TTEST Procedure Statistics Lower CL Upper CL Lower CL Upper CL Std Dev Difference Mean Mean Mean Std Dev Std Dev Std Err Minimum Maximum Ν A – B 10 1.3476 1.8 2.2524 0.435 0.6325 1.1546 0.2 1 3 T-Tests Difference DF t Value Pr > |t|9.00 <.0001 A – B 9 مثالي ۲: صفحة (۹۲) PROC FORMAT; VALUE \$gentext 'S'='Sorghum' 'M'='Maize'; RIIN : DATA MOHAMEDKAMAL; INPUT A\$ B; FORMAT A \$gentext.; CARDS; S 8 M 11 S 9 M 12 S 10 M 10 S 8 M 13 s 7 M 12 <mark>S 9</mark> М 9 7 s M 10 S 6 M 11 PROC PRINT DATA= MOHAMEDKAMAL; RUN; PROC TTEST DATA= MOHAMEDKAMAL; CLASS A;

. 1.0 -

VAR B; RUN;

0bs	А	В
1 2 3 4 5 6 7 8 9 10 11 12 13	Sorghum Sorghum Sorghum Sorghum Sorghum Sorghum Maize Maize Maize Maize Maize Maize	8 9 10 8 7 6 11 12 10 13 12 9
15 16	Maize Maize	10 11

The TTEST Procedure

Statistics

Variable	A	N	Lower CL Mean	Mean	Upper CL Mean	Lower CL Std Dev	Std Dev	Upper CL Std Dev	Std Err
B B B	Maize Sorghum Diff (1-2)	8 8	9.9054 6.9054 1.5959	11 8 3	12.095 9.0946 4.4041	0.8657 0.8657 0.9586	1.3093 1.3093 1.3093	2.6648 2.6648 2.0649	0.4629 0.4629 0.6547

		T-Tests			
Variable	Method	Variances	DF	t Value	Pr > t
B B	Pooled Satterthwaite	Equal Unequal	14 14	4.58 4.58	$0.0004 \\ 0.0004$

Equality of Variances

Variable	Method	Num DF	Den DF	F Value	Pr > F
В	Folded F	7	7	1.00	مثال٤: صفحة (٩٣)

1	Treatment	NO	1	31
2	Treatment	NO	2	26
3	Treatment	NO	1	34
4	Treatment	NO	2	24
5	Treatment	NO	1	29
6	Treatment	NO	2	28

в

А

			7 8 9 10 11 12 13 14 15 16 17 18 19	Treatment Treatment Treatment Treatment Treatment Treatment Treatment Treatment Treatment Treatment	t NO 1 t NO 2 t NO 2 t NO 2 t NO 2 t NO 1 t NO 2 t NO 1	26 29 32 35 29 38 26 34 31 30 29 32			
			тh	e TTEST PI	rocedure				
				Statist	ics				
Variable	A	N L	ower CL Mean	ا Mean	Jpper CL Mean	Lower CL Std Dev	Std Dev	Upper CL Std Dev	Std Err
B B B	Treatment No 1 Treatment No 2 Diff (1-2)	10 9	29.681 26.281 1.2894	32.1 28 4.1	34.519 29.719 6.9106	2.3258 1.5104 2.1756	3.3813 2.2361 2.8993	6.173 4.2838 4.3465	1.0693 0.7454 1.3321
				T-Test	ts				
	Variable	Method		Variance	es D	F t Val	ue Pr	> t	
	B B	Pooled Sattert	hwaite	Equal Unequal	1 15.	7 3. 7 3.	08 0 15 0	.0068 .0064	
			Equ	ality of N	/ariances				
	Variabl	e Met	hod	Num DF	Den DF	F Value	Pr >	F	

В	Folded F	9	8	2.29	0.2582

ملحق ۲: إجراء اختبار مربع كاي باستخدام برنامج SAS مثال ۷: صفحة (۹٦)

DATA MOHAMEDKAMAL; INPUT Healthy \$ Food \$ Count @0; CARDS; VeryHealthy A 19 VeryHealthy B 16 VeryHealthy C 17 Healthy A 8 Healthy B 12 Healthy C 2 Medium A 7 Medium B 6 Medium C 11 Sick A 5 Sick B 5 Sick C 9

Healthy

PROC PRINT DATA= MOHAMEDKAMAL; RUN; PROC FREQ DATA= MOHAMEDKAMAL ORDER=data; WEIGHT count; TABLES Healthy*Food/CHISQ; RUN;

0bs	Healthy	Food	Count
1	VeryHealthy	А	19
2	VeryHealthy	В	16
3	VeryHealthy	С	17
4	Healthy	А	8
5	Healthy	В	12
6	Healthy	С	2
7	Medium	А	7
8	Medium	В	6
9	Medium	С	11
10	Sick	А	5
11	Sick	В	5
12	Sick	С	9

The FREQ Procedure

Table of HealthY by Food

Food

Frequency Percent Row Pct Col Pct	у, , ,А			,В			,c			,	TO	tal	
VeryHeal	, , ,	16 36 48	19 24 54 72	, , ,	13 30 41	16 .68 .77 .03	, , ,	14 32 43	17 .53 .69 .59	, , ,	44	52 .44	
Healthy	, , ,	6 36 20	8 84 36 51	, , ,	10 54 30	12 .26 .55 .77	, , ,	1 9 5	2 .71 .09 .13	, , ,	18	22 .80	
Medium	, , ,	5 29 17	7 .98 .17 .95	, , ,	5 25 15	6 .13 .00 .38	, , ,	9 45 28	11 .40 .83 .21	, , ,	20	24 .51	
Sick	, , , ,	4 26 12	5 . 27 . 32 . 82	, , ,	4 26 12	5 . 27 . 32 . 82	, , ,	7 47 23	9 . 69 . 37 . 08	, , ,	16	19 .24	
Total Statis	tic	33 s fo	39 33 or	гаb	33 le	39 .33 of I	Hea	33 th	39 .33 Y b	 у F	100 ood	117 .00	
Statistic						D	F		v	alu	e		Prob
Chi-Square Likelihood Ra Mantel-Haensz Phi Coefficiel Contingency Co Cramer's V	tio el (nt pefi	Ch [.] Chi fic	i – Sq - Sqı i ent	qua Jare	re		6 6 1		10. 11. 1. 0. 0.	612 563 928 301 288 213	5 3 5 2 4 0	0 0 0	. 1011 . 0725 . 1649

Sample Size = 117

معتمر معتمر معتمر معتمر الفقودة الفضل المعادين وهنما به القيمة الفقودة

ANOVA-1, ANOVA-2, ANOVALAT, LATINSQ, HIRARCH, MISVALEST

تحليل التبايب وحساب القيمة المفقودة

التقسيم أحادي الجهة One way classification:

يقصد بالتقسيم أحادي الجهة أن أي محمد التقسيم أحادي الجهة أن أي من التجربة **ANOOVA-1** قيمة يتحصل عليها من التجربة تمثل تأثير واحد معروف وهو تأثير المعاملات وعلية يكون مصدر الاختلاف المعروف هو المعاملات بالإضافة إلي المصادر الغير معروفة والتي ترجع إلى مجموع العوامل التي لا يمكن التحكم فيها ويطلق عليها الأخطاء التجريبية، وهذا النوع من التحليل يطبق في تحليل التجارب ذات التصميم العشوائي التام CRD والذي يتطلب أن تكون الوحدات التجريبية متجانسة تماماً ويتم توزيع المعاملات علي الوحدات التجريبية متجانسة تماماً ويتم توزيع المعاملات علي الوحدات التجريبية متجانسة تماماً ويتم توزيع المعاملات عليها التجريبية توزيعا عشوائياً كاملاً التجريبية توزيعا عشوائياً كاملاً التجريبية توزيعا عشوائياً كاملاً التجريبية متجانسة تماماً ويتم توزيع المعاملات علي الوحدات التجريبية متجانسة تماماً ويتم توزيع المعاملات علي الوحدات التجريبية توزيعا عشوائياً كاملاً التجريبية متجانسة تماماً ويتم توزيع المعاملات علي الوحدات التجريبية توزيعا عشوائياً كاملاً التجريبية متجانسة تماماً ويتم توزيع المعاملات علي الوحدات التجريبية توزيعا عشوائياً كاملاً التجريبية متجانسة تماماً ويتم توزيع المعاملات علي الوحدات التحريبية توزيعا عشوائياً كاملاً التجريبية متجانسة تماماً ويتم توزيع المعاملات علي الوحدات التجريبية توزيعا عشوائياً كاملاً التجريبية متجانسة تماماً ويتم توزيع المعاملات علي الوحدات التحريبية توزيعا عشوائياً كاملاً التجريبية متجانسة تماماً ويتم توزيع المعاملات علي الوحدات التحريبية توزيعا عشوائياً كاملاً التجريبية توزيعا عشوائياً كاملاً التحالية تولية توزيعاً متوائياً كاملاً إلى التحالية معاملة تولية توزيعاً متوائياً كاملاً إلى التحالية للتحالية تولية توزيعاً تحمالية تولية توزيعاً متوائياً كاملاً إلى التحالية تولية توزيع المعاملات علي التحالية كان التحالية كان كان كان كان كان كان التحالية للنا التحالية للنوائية تولية توزية توزية توزية تولية توزية توزية تولية للذي يولية توزية توزية توزية الحالية التحالية التحالية التحالية إلى التحالية إ

يمكن إجراء تحليل التباين للتقسيم أحادي الجهة من خلال الأمر ANOVA-1 . رقم ٣ في النافذة الرئيسية لبرنامج MSTAT-C.

مثالم : في تجربة حقلية لمقارنة ثلاثة أصناف من القطن زرع كل صنف خمس قطع موزعة توزيعا عشو ائياً كاملاً ودون محصول القطعة من القطن الزهر بالكيلوجر ام في الجدول التالي

ام	لکيلو جر	الصنف			
٥	٤	٥	٧	٤	А
۲	11	٩	۱.	А	В
٧	١٤	٩	٨	۲۱	С

المطلوب: تحليل نتائج التجربة تحليلا إحصائيا كاملا

قم بإنشاء ملف بيانات باسم ANOVA-1 وأدخل فيه البيانات بحيث تكون كما يلى

Case	1 Туре	2 Yield
1	1	4.00
2	1	7.00
3	1	5.00
4	1	4.00
5	1	5.00
6	2	8.00
7	2	10.00
8	2	9.00
9	2	11.00
10	2	7.00

12 3 8.0 13 3 9.0 14 3 14.0 15 3 7.0
--

- المتغير الأول: صنف القطن وسنطلق عليه اسم Type وتحت هذا المتغير يوجد
 الصنف A وسنرمز له برقم (۱) والصنف B وسنرمز له برقم (۲) والصنف C
 وسنرمز له برقم (۳).
- المتغير الثاني: محصول القطعة بالكيلوجرام وسنطلق عليه اسم Yield ونضع تحت هذا المتغير محصول كل قطعة من قطع التجربة.
- ٢. ظلل الأمر ANOVA-1 في النافذة الرئيسية لبرنامج MSTAT-C ثم اضغط على مفتاح الإدخال Enter في لوحة المفاتيح فتظهر النافذة التالية والتي تحتوي على ثلاث خانات

- في الخانة الأولى يتم إدخال رقم متغير المجموعة التي يتم در استها و هو صنف القطن ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح فينتقل المؤشر إلي الخانة الثانية
- في الخانة الثانية والثالثة يتم تحديد أقل وأعلى قيمة في متغير المجموعة التي يتم درستها ثم نضغط Enter في لوحة المفاتيح
- ٣. تظهر نافذة كما بالشكل التالي تخبرك بعدد الحالات الموجود في ملف البيانات وتسألك هل ترغب في استخدام كل الحالات؟ وتكون الإجابة بـ (نعم) إذا كان عدد الحالات ١٥ أو بـ (لا) إذا كان عدد الحالات أكبر من أو أقل من ١٥ فإذا كانت بـ (نعم) اضغط حرف Y في لوحة المفاتيح ثم اضغط مفتاح الإدخال Enter وإذا كانت بـ (لا) اضغط حرف N في لوحة المفاتيح فتظهر نافذة حدد فيها مدى الحالات المطلوب تحليله ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح

Get Case Range _____ The data file contains 15 cases. Do you wish to use all cases? Y/N

٤. تظهر نافذة كما بالشكل التالي تحتوي علي قائمة بالمتغيرات الموجودة في ملف البيانات اختر منها المتغير المراد تحليله بواسطة أسهم لوحة المفاتيح وهو المتغير الثاني Yield وظلله بالضغط علي مفتاح المسافة Spacebar في لوحة المفاتيح ثم اضغط Enter في لوحة المفاتيح

Choose up to 1 variables (Press ESC to quit) =
 01 (NUMERIC) TYPE
 ▶02 (NUMERIC) Yield

٥. تظهر نافذة كما بالشكل التالي تحتوي علي سؤال: هل ترغب في تخزين المتوسطات في نهاية ملف البيانات؟ فإذا كنت ترغب اضغط علي Y في لوحة المفاتيح ثم المفاتيح ثم Enter

٦. تظهر النافذة التالية اضغط علي N في لوحة المفاتيح ثم اضغط مفتاح الإدخال Enter (لمعرفة معنى المقارنات المتعامدة Orthogonal comparisons انظر الفصل السابع)

٧. تظهر نافذة بعنوان Output options تحتوي علي خيارات للمخرجات وهي View/edit/print/save اختر الخيار المناسب ثم اضغط مفتاح الإدخال Enter.

> = Output options ------View output on screen Edit output Print output Save output to disk Quit output options

فيما يلي نتيجة التحليل السابق:

تفسير النتيجة:

Data fi Title: a Function Data ca One way With va Variable	le: ANOV anova1 n: ANOVA se no. 1 ANOVA g lues fro e 2 (Yie	A1¶ -1 to 15 rouped (m 1 to 1 ld)	over variable 3.	1 (Туре)		
A	NALY	SIS	OF VAR	ΙΑΝΟΕ	TABLE	
	Degree Freed	s of om	Sum of Squares	Mean Square	F-value	Prob.
Between Within	2 12		70.000 50.000	35.000 4.167	8.400	0.0052
Total	14		120.000			
Coeffic	ient of Var. 1	Variati V A R I Number	on = 25.52% I A B L E No Sum	. 2 Average	SD	SE
	1 2 3	5.00 5.00 5.00	25.000 45.000 50.000	5.000 9.000 10.000	1.22 1.58 2.92	0.91 0.91 0.91 0.91
To [.] Wi [.] Ba	tal thin rtlett's	15.00 test	120.000	8.000	2.93 2.04	0.76
Ch Nui Apj	i-square mber of proximat	= 2.950 Degrees e signi	0 of Freedom = ficance = 0.22	2 9		

باستخراج قيمة F الجدولية عند درجة حرية ٢ للبسط، ١٢ للمقام عند مستوى معنوية ٥٪، ١٪ نجدها تساوي علي الترتيب ٨٨، ٣، ٣٩، ٦ وبمقارنة هذه القيم بقيمة F المحسوبة نجد أن الأخيرة أكبر (= ٨.٤) لذا يمكن القول أنه يوجد فرق معنوي جداً (**) بين الأصناف الثلاثة من حيث المحصول.

مثالى ٢: أراد أحد الباحثين معرفة تأثير ثلاثة أنواع من الأنظمة الغذائية A, B, C على زيادة أوزان نوع معين من الأبقار. اختار لذلك ١٨ بقرة تعيش في نفس الحظيرة وتحت نفس الظروف وأعطى كل ست منها اختيرت عشوائياً أحد أنظمة التغذية وبعد فترة زمنية تم قياس الزيادة في أوزان الأبقار (بالكيلو جرام) كما هي في الجدول التالي

А	16	17	11	15	18	19
В	9	13	12	11	15	12
С	14	19	13	11	13	14

هل تدل هذه البيانات على وجود فروق معنوية بين أنظمة التغذية الثلاثة في التأثير على متوسط زيادة الوزن؟

- 117 -

خمسة أصناف من العدس تحت الظروف الطبيعية واستخدم التصميم التام العشوائية بخمسة مكرر ات، ولكن أثناء إجراء التجربة تلفت بعض الوحدات التجريبية وتم رصد النتائج في الجدول السابق

قم بإنشاء ملف بيانات وأدخل فيه البيانات بحيث تكون بالشكل التالي

التقسيم ثنائى الجهة Two way classification:

يقصد بالتقسيم ثنائي الجهة أن أي محمد بالتقسيم ثنائي الجهة أن أي في **ANOOVA-2** قيمة يتحصل عليها من التجربة تمثل تأثير المعاملات والمكررات وعليه يكون مصدر الاختلاف المعروف هو المعاملات والمكررات بالإضافة إلي المصادر الغير معروفة والتي ترجع إلي مجموع العوامل التي لا يمكن التحكم فيها ويطلق عليها الأخطاء التجريبية، وهذا النوع من التحليل يطبق في تحليل التجارب ذات تصميم القطاعات العشوائية الكاملة ANOVA رقم ٤ يمكن إجراء تحليل التباين للتقسيم ثنائي الجهة من خلال الأمر ANOVA رقم ٤ في النافذة الرئيسية لبرنامج - MSTAT-C رقم .

مثالى ٤: في تجربة لمقارنة وزن بذور نبات فول الصويا بالجرام لستة أصناف حيث صممت التجربة بنظام القطاعات الكاملة العشوائية حيث كررت كل معاملة ٤ مرات و أمكن الحصول على النتائج التالية

	ر ات	المكر	المعاملة	
٤	٣	٢	١	(رقم الصنف)
0	٣	۲	٦	١
Α	٦	11	11	۲
۱.	٨	۱۳	۱۳	٣
١٦	۱۳	١٤	٩	٤
١٤	11	۱۳	۱.	٥
٨	٥	۱.	٩	٦

المطلوب تحليل التجربة تحليلا إحصائياً كاملاً؟

١. قم بإنشاء ملف بيانات جديد باسم ANOVA-2 وأدخل البيانات كما في الشكل التالي
 وفي هذا المثال: المتغير الأول المكررات REPS والمتغير الثاني TRT والمتغير
 الثالث Weight وبالتالي سيكون شكل البيانات في ملف البيانات كما يلي

Case 1 2	1 REPS 1 2	2 TRT 1 1	3 Weigh 6 6
3	3	1	3
4	4	1	5
5	1	2	11
6	2	2	11
7	3	2	6
8	4	2	8
9	1	3	13

MST ثرم اضغط مفتاح	10 2 11 3 12 4 13 1 14 2 15 3 16 4 17 1 18 2 19 3 20 4 21 1 22 2 23 3 24 4 CAT-C 2	3 3 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 6	13 8 10 9 14 13 16 10 13 11 14 9 10 5 8	ΔΝΟΥΔ-2	د الله ۲
(۱۷۱۵ کم المسلم المسلم المسلم		چىپ بر تى	ية المفاتيح حة المفاتيح	Enter في لو	، <u>مصل</u> الإدخ
جودة في ملف البيانات	الات المو.	رك بعدد الم	لمكل التالي تخب	ِ نافذة كما بالم	۳. تظهر
یة بـــ (نعم) إذا كـان عدد	كون الإجاب	، الحالات؟ وتك	ي استخدام كل	ك هل تر غب ف	وتسأل
ل من ۲٤ فإذا كانت بـ	ِ من أو أق	. الحالات أكبر) إذا كان عدد	بن ۲٤ أو بـــ (لا	الحالا
دخال Enter و إذا كانت	ـ مفتّاح الإ	فاتيح ثم اضبغط	Y في لوحة الم	اضغط حرف	(نعم)
دد فيها المدى المطلوب	ر نافذة ح	المفاتيح فتظهر	، N في لوحة) اضمغط حرف	بــ (لا
	مفاتيح	Er في لوحة الم	ح الإدخال nter	، ثم اضغط مفتا.	تحليل

= Get Case Range ≕ The data file contains 24 cases. Do you wish to use all cases? Y/N

٤. تظهر نافذة بعنوان Group variables تحتوى على خانتين

في الخانة الأولى أكتب رقم متغير المجموعة الأولى والتي تمثل المكررات وهو المتغير رقم ١ ثم اضغط Enter وأكتب أقل مستوى في هذه المجموعة وهو ١ ثم أضغط Enter وأكتب أعلى مستوى في المجموعة وهو ٤ ثم اضغط Enter فينتقل المؤشر إلى الخانة الثانية كرر في الخانة الثانية نفس الخطوات لمتغير المجموعة الثانية تظهر نافذة تحتوي علي قائمة بالمتغيرات الموجودة في ملف البيانات كما بالشكل التالي اختر منها المتغير المراد تحليله و هو Weight باستخدام الأسهم الموجودة في لوحة المفاتيح ثم اضغط مفتاح المسافة Spacebar في لوحة المفاتيح لتظليل المتغير ثم اضغط Enter في لوحة المفاتيح

> Choose up to 1 variables (Press ESC to quit) 01 (NUMERIC) Replicates 02 (NUMERIC) Treatments ▶03 (NUMERIC) Weight

- ٦. تظهر نافذة كما بالشكل التالي تحتوي علي ٣ أسئلة وتكون الإجابة بنعم عن طريق الضغط علي مفتاح N في الضغط علي مفتاح N في لوحة المفاتيح أو بـ لا عن طريق الضغط علي مفتاح N في لوحة المفاتيح و هذه الأسئلة هي
 ♦ هل تود رؤية المتوسطات أعلي مجموعة المتغير الأول؟
 - هل تود رؤية المتوسطات أعلي مجموعة المتغير الثاني؟
 - هل تود حفظ المتوسطات أعلي متغير المجموعة الثانية في نهاية ملف البيانات؟

Output options
 Do you want to see means over the first group variable? Y/N
 Do you want to see means over the second group variable? Y/N
 Do you want to save the means over the second group variable at the end of your MSTAT data file? Y/N

٧. بعد الإجابة علي الأسئلة السابقة تظهر نافذة اضغط علي N في لوحة المفاتيح ثم
 ٥ اضغط مفتاح الإدخال Enter (لمعرفة معنى المقارنات المتعامدة comparisons

Variable 3: Weight ______ Do you want to perform single DF orthogonal comparisons (contrasts)? No

٨. تظهر نافذة بعنوان Output options تحتوي علي خيارات للمخرجات اختر منها
 طريقة العرض أو الحفظ.

الفعىل السادس تغليل الغياين وحساب القيمة المنقودة

= Output options —

View output on screen Edit output

Print output

Save output to disk

Quit output options

فيما يلى نتيجة التحليل السابق:

Function: ANOVA-2 Data case 1 to 24 variable 1 (REPS) with values from 1 to 4 and over variable 1 (REPS) with values from 1 to 4 and over variable 2 (TRT) with values from 1 to 6. Variable 3: WEIGHT Sum of A N A L Y S I S Degrees of Sum Freedom Squa VARIANCE TABLE F-value Source Squares Mean Square Proh 39.00 13.000 0.0363 Replicates 3 3.68 5 173.33 34.667 9.81 0.0003 Treatments Error 15 53.00 3.533 0.746 Non-additivity 1 0.75 0.20 Residual 14 52.25 3.732 23 Total 265.33 Grand Mean= 9.667 Grand Sum= 232.000 Total Count= 24 Coefficient of Variation= 19.45% Means for variable 3 (WEIGHT) for each level of variable 1 (Replicates): Var. 1 Var. 3 Value Mean 9.667 11.167 1 2 7.667 3 4 Means for variable 3 (WEIGHT) for each level of variable 2 (Treatments): Var. 2 Value Var. 3 Mean 5.000 123 9.000 11.000 45 13.000 12.000 6 8.000 lsd at 0.05 alpha level = 2.833 ملحوظة: إذا كمان هناك قيمة مفقودة في البيانيات فإن الأمر ANOVA-2 بحسبها بشكل تلقائي. تفسير النتيجة: باستخراج قيمة F عند مستوى معنوية ٥٪، ١٪ كما ذكرنا فيما سبق (تساوى ٢.٩،

باستكراج فيمه F عد مستوى معتوية ٢٠،٠٠ المحدد فيما شبق (لساوي ٢٠،٠٠) نجد أن المحسوبة ٤.٥٦ علي الترتيب) ومقارنتها بقيمة F المحسوبة (تساوي ٩.٨١) نجد أن المحسوبة أكبر لهذا يمكن القول أنه يوجد فرق معنوي جداً بين المعاملات أي الأصناف. لكن السؤال الذي يطرح نفسه أي من المعاملات الست هي التي يوجد بينها فرق معنوي؟ وسوف نتناول إجابة هذا السؤال تفصيلياً في الفصل السابع.

مثاره: أقيمت تجربة لمقارنة أربعة أنواع من الأسمدة A, B, C, D على إنتاجية القمح وتم قياس مقدار الزيادة في إنتاج القمح في نهاية التجربة فكانت النتائج كما يلي

Г			ىماد	نوع ال		
	المكررة	А	В	C	D	
F	1	9.3	9.4	9.2	9.7	
-	2	9.4	9.3	9.4	9.6	
	3	9.6	9.8	9.5	10	
-	4	10	99	97	10.2	
13	از از س رالش کار ا		د مددش دتم	ال السادة.	ماريات المذ	اتد منفس خ
- ي	Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1 REPS 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 4 1 2 3 4 4	2 Fe 1 1 2 2 2 2 2 3 3 3 4 4 4 4 4	rt. 3 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	Yield 30 40 40 40 40 50 80 90 20 40 50 70 70 60 0.00 0.20	
Data file: Title:	WHEAT¶ WHEAT			تالي	ل بالشكل ال	والنتيجة ستكوز
Function: A Data case 1	NOVA-2 to 16					
Two-way variable variable	Analysis of Vari 1 (Replicates) 2 (Fert.) with	ance over with value values fro	es from 1 t om 1 to 4.	o 4 and ov	er	
A N A L	Y S I S O F	VARI	ANCE	TABL	E	
Source	Freedom Sq	m of uares	Mean Squar	e F-val	ue Prob	
Replicates Fert. Error Non-additivi Residual	3 3 9 ty 1 8	0.82 0.39 0.08 0.00 0.08	0.27 0.12 0.00 0.00 0.00	75 30.9 8 14.4 99 94 0.4	4 0.0000 4 0.0009 3	-
Total	 15	1.29				-
Grand Mean=	9.625 Gra	nd Sum=	154.000 т	otal Count	= 16	-
Coefficient	of Variation=	0.98%				
lsd at 0.05	alpha level =	0.151				

التصميم الشبكي المربع أو المستطيل

يمكن تحليل التباين عمل المتحميم المسبكي من منال الأمر ANOVALAT رقم ٥ في النافذة الرئيسية لبرنامج MSTAT-C. مثال: بعد إجراء تجربة (ما) تم تدوين النتائج في الجدول التالي والمطلوب حلل التجربة تحليلاً إحصائياً كاملاً؟

Block	Re	eplicate	e 1	Block	Re	e 2	
B1	(۲) ۳0	(٣) ٤ ٨	(1) 7 A	B 1	(^V) ۳.	(٤) ۲۸	(1) 79
B2	(٩) 0.	(^V) 0	(^) VV	B2	(^) २.	(°) 70	(7) 77
B3	(٤) 0 \	(۲) ۳۹	(°) 79	B3	(१) १.	(ア) イ・	(7) 70

١. قم بإنشاء ملف بيانات جديد باسم ANOVALAT وأدخل فيه البيانات بالشكل

	Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1 REPS 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2	2 BLOCK 1 2 2 3 3 3 1 1 2 2 2 3 3 3 3 3 3 3 3 3	3 TRT 2 3 9 7 8 4 6 5 7 4 1 8 5 2 9 6 3	4 DATA 35 48 28 50 58 77 51 39 29 30 28 29 60 25 32 40 20 52 52	
تغير الأول يكون	معنى الم	ب السابق ب	بيانات بالترتيد	ين إدخال ال	ة: لابد أن يكو	ملحوظ
	التجربة.	ن ثم نتائج	ثالث المعاملات	لطاعات والذ	ات والثاني الق	المكرر
	~					

- ٢. ظلل الأمر ANOVALAT في النافذة الرئيسية لبرنامج MSTAT-C ثم اضغط مفتاح الإدخال ENTER في لوحة المفاتيح
- ٣. تظهر نافذة تحتوي علي بعض التعليمات (انظر الملحوظة السابقة)، اضغط ENTER في لوحة المفاتيح للمتابعة

The Replication, Block, and Treatment variables must be present in the
following order:
 Variables: 1=Replication, 2=Block, 3=Treatment.
If the variables in your file are in a different order, use ASCII to
rearrange the variables to correspond to this order. Press <ESC> at
this time if variables need to be rearranged.
Note: if the data file was created by VARPLAN, the variables are in the
 correct order.
Press <ESC> to abort or any other key to continue

تظهر نافذة تحتوي علي خانة نشطة كما بالشكل التالي أكتب فيها رقم التصميم
 الشبكي المستخدم في التجربة حيث يوجد تصميم شبكي مربع Square lattice
 وتصميم شبكي مستطيل Rectangular lattice، أكتب في الخانة النشطة ١
 لاختيار التصميم الشبكي المربع ثم اضغط Enter في لوحة المفاتيح

Enter the lattice design used in experiment : 1 1) Square lattice 2) Rectangular lattice

 تظهر نافذة تحتوي علي ٣ خانات كما بالشكل التالي في الخانة الأولي أكتب عدد الترتيبات المستخدم في التصميم (جداول المعاملة) ثم أضغط Enter في لوحة المفاتيح وفي الثانية أكتب عدد المكررات (٢ مكررة) ثم اضغط Enter في لوحة المفاتيح وفي الثالثة أكتب عدد البلوكات (٣ بلوك) ثم اضغط Enter في لوحة المفاتيح

> Enter the number of arrangements used in design (1 - 10) : 2 Enter the number of replications used in design (1 - 50) : 2 Enter the block size used in design (1 - 40) : 3

Enter . تظهر رسالة تخبرك بوجوب استخدام كل الحالات، اضبغط مفتاح الإدخال Enter.

Press <ENTER> to continue _______ Must use all 18 cases because of number of observations V. تظهر مجموعة من الأسئلة المتتالية أجب عنها بالمو افقة بالضغط علي مفتاح Y أو بالرفض بالضغط على مفتاح N ثم اضغط Enter في لوحة المفاتيح حتى تصل

ANOVALAT :

= ANOVALAT =

إلي نافذة تحتوي علي قائمة بالمتغيرات الموجودة في ملف البيانات كما بالشكل التالي، اختر من هذه القائمة المتغير الذي يحتوي علي البيانات المراد تحليلها باستخدام مفاتيح الأسهم و المسافة Spacebar ثم اضغط Enter في لوحة المفاتيح م المسقد (Press ESC to quit) ومار (NUMERIC) Replicates

Choose up to 1 variables (Press ESC to quit) 01 (NUMERIC) Replicates 02 (NUMERIC) Block 03 (NUMERIC) Treatment ▶04 (NUMERIC) Data

 ٨. تظهر نافذة خيارات المخرجات اختر منها طريقة العرض أو الحفظ فيما يلى نتيجة التحليل السابق:

Function : ANOVALAT Data case no. 1 to 18 Variable number 4 DATA ANALYSIS OF VARIANCE For Square Lattice Design TABLE Source of Degrees of Sum of Variance Freedom Squares Mean Square F-value Prob Replications 1 544.500 544.500 Treatments 2807.778 2511.483 -Unadjusted 8 350.972 5.53 0.058 -Adjusted 8 313.935 0.033 Blocks within Reps (adj.) 4 385.333 96.333 Error 164.475 508.000 122.667 -Effective $41.119 \\ 63.500$ 4 8 -RCB Design 30.667 -Intrablock 4 Total 17 3860.278 Efficiency of Lattice: Compared with Randomized Complete Blocks 154.43 Grand Sum = 731.00Grand Mean = 40.6111 Total Count = 18 Coefficient of variation: 15.7898 percent. Least Significant Differences P = 0.05P = 0.01lsd = lsd = 17.8037 29.5233 Variable number 4 DATA UNADJUSTED MEANS TABLE 0 F Treatment Treatment Number Mean _ _ _ _ _ _ 28.500 33.500 1 ž 3 50.000 39.500 27.000 4 5 6 29.500 44.000 68.500 7 8 ğ 45.000 TABLE OF ADJUSTED MEANS Treatment Treatment Number Mean ____ 34.408 1

36.454

53.067

23

الجدول التالي و المطلوب: حلل النتائج تحليلاً إحصائياً كاملاً

الفصل السادس تشليل القباين وحساب القيمة المفودة

Darry	Columns						
KOW	1	2	3	4	5	6	
1	Е	А	F	С	В	D	
1	17.77	24.19	18.98	17.48	28.60	22.38	
2	F	С	D	В	А	Е	
Ζ	19.20	18.77	24.89	32.94	28.80	12.77	
2	С	В	Е	D	F	А	
5	20.06	29.18	18.40	30.54	23.45	23.60	
4	D	F	С	А	Е	В	
4	27.85	18.89	14.61	24.99	14.50	23.60	
5	А	Е	В	F	D	С	
5	21.75	16.57	24.74	16.06	20.50	16.28	
6	В	D	А	Е	С	F	
0	26.17	25.32	21.09	12.99	16.32	14.99	

قم بإنشاء ملف بيانات جديد باسم LATINSQ بحيث يكون ملف البيانات كما يلي

٣. تظهر نافذة كما بالشكل التالي تحتوي علي أربع خانات في الخانة الأولي أكتب رقم المتغير التابع (Yield) وفي الثانية أكتب رقم المتغير Row وفي الثالثة أكتب رقم المتغير Column وفي الرابعة أكتب رقم المتغير Treatment

= Press <F1> for a list of variables = Enter the DEPENDENT (Yield) variable number (1 - 4) : 4 Enter the variable numbers for the following (1 - 4) Row : 1 Column : 2 Treatment : 3

٤. تظهر النافذة التالية تحتوي علي خانة نشطة كما بالشكل التالي أكتب فيها عدد المعاملات بحيث تتراوح بين ٤ : ١١ وعدد المعاملات في هذا المثال ٦ ثم اضغط Enter في لوحة المفاتيح

و. تظهر الرسالة التالية والتي تخبرك بوجوب استخدام كل الحالات، اضغط مفتاح
 الإدخال Enter للاستمر ار

٦. تظهر نافذة خيارات المخرجات Output Options وسبق أن تعاملنا معها في نهاية كل تحليل، اختر الخيار المناسب ثم اضغط Enter في لوحة المفاتيح.

فيما يلى نتيجة التحليل السابق:

Data file : LATINSQ¶ Title : latinsq Function : LATINSQ Data case no. 1 to 36 Variable 4 : YEILD

LATIN SQUARE ANALYSIS OF VARIANCE

т	reatmen	t		Row			-Column
Me	ean -	Total		Mean	Total	Меа	an Total
24.2	217 14	45.30	21	.617	129.70	22.1	33 132.80
27.5	538 10 10	65.23	22	.895	137.37	22.20	133.22
1/.2	255 LU 247 1	U3.52	24	.302	145.81	20.4:	122.71
15 5	500 U	93 00	19	317	115 90	22.30	28 132 17
18.5	595 1	11.57	19	.480	116.88	19.03	114.20
	Crand T		770	10	Crond M		21 202
	Granu I			.10	Granu M	ean =	21.392
	Coettic	ient of v	arıat	10n =	9.51%		
	S_ =	0.831		S_ =	1.175		
	х			a			
	ANAL	YSIS	0	F V	ARIAN	СЕ Т	ABLE
		Dearees	of	Sum o	f Mean	F	
	Source	Freed	om	Square	s Squar	e Value	Prob
-	Rows		5	114.9	8 22.99	6 5.55	0.002
	Columns		5	55.7	3 11.14	6 2.69	0.051
	Treatmen	nts	5	/21.6	9 144.33	8 34.86	0.000
_			20	02.0.	1 4.14 	T	
	Total		35	975.22	2		

تفسير النتيجة:

باستخراج قيمة F الجدولية عند ٥٪ (تساوي ٢.٧١) وعند ١٪ (تساوي ٤.١) ومقارنتها بقيمة F المحسوبة للصفوف (تساوي ٥٠٥٥) وللأعمدة (تساوي ٢.٦٩) وللمعاملات (تساوي ٣٤.٨٦) نجد أن المحسوبة أكبر وبالتالي يكون هناك فرق معنوي جداً. ولمقارنة كل هجين من الهجن بالصنف المفتوح أمريكاني بدري يتم حساب قيمة LSD ثم طرح متوسط الهجين من متوسط الأمريكاني ومقارنته بقيمة LSD فإذا كان ناتج الطرح أكبر من أو يساوي قيمة LSD يكون الفرق معنوي أما إذا كان أصغر يكون الفرق غير معنوي ولحساب قيمة LSD انظر الفصل السابع.

-							مثال ٨٠ احريت تحرية
Powe			Colu	ımns			
Rows	1	2	3	4	5	6	مقلانة فمكور فجالم حصرول
1	F	D	А	В	Е	С	معارت كميت المحتصون
1	61.6	63.8	70.4	72.6	68.2	70.4	
2	Е	В	С	F	D	А	من اللقب السكري تحت 2
2	68.2	63.8	66	55	72.5	67.3	· · · · · · · · · · · · · · · · · · ·
3	D	Е	F	С	А	В	ظـــروف مختلفـــه مـــن
5	67.2	63.4	47.7	67.8	70.2	66.2	
4	С	А	В	D	F	Е	التـــسميد النيتر وجينـــي
4	72.8	66.9	63.4	69	58.7	70.2	
5	В	F	Е	А	С	D	، معاملية الكنتير ول
5	65.8	56.8	66.7	66.7	73.7	71.1	
6	Α	С	D	Е	В	F	واستخده لمرذه التحديبة
0	67.8	65.3	60.3	64	67.5	47.1	ر،سیدم بهده (بیبریت
) کما	، للهكتار	ِي (طن	فت السكر	صول الل	إنتاج محم	٦ وكان	تصميم المربع اللاتيني ٦ ×
							في الجدول المقابل.

يتم إدخال البيانات بنفس طريقة المثال السابق بحيث تكون بالشكل التالي

Case	1 ROW	2 COLUMN	3 TRT	4 Yi
1	1	1 2	6 4	61.6
3	1 1	3 4	1 2	70.4 72.6
5	1	5	5	68.2
7	2	1	5	68.2
8	2	23	23	66.0
10 11	2	4	6 4	55.0 72.5
12	2	6	1	67.3
14	3	2	5	63.4
15 16	3	3 4	6 3	47.7
17	3	5	1	70.2
19	4	1	3	72.8
20 21	4 4	23	1 2	66.9 63.4
22	4	4	4	69.0 58.7
25		5	0	50.7

	24 25 26 27 28 29 30 31 32 33 34 35 36	4 5 5 5 5 5 5 6 6 6 6 6 6 6	6 1 2 3 4 5 6 1 2 3 4 5 6		5 6 5 1 3 4 4 1 3 3 4 5 5 2 6	70.20 65.80 56.80 66.70 66.70 71.10 67.80 60.30 60.30 64.00 67.50 47.10		
	يلي	جة كما	كون النتي	سابق وست	المثال ال	ں خطو ات	م إتباع نفسر	• يت
LATIN	SQUA	RE A	NALY	SIS O	F VAR	IANCE		
Tre Mean 68.217 66.550 69.333 67.317 66.783 54.483	atment Total 409.30 399.30 416.00 403.90 400.70 326.90	 6 6 6 6 6 6	Mean 7.833 5.467 3.750 6.833 6.800 2.000	Total 407.00 392.80 382.50 401.00 400.80 372.00	C Mean 67.233 63.333 62.417 65.850 68.467 65.383	Total 403.40 380.00 374.50 395.10 410.80 392.30		
Gr	and Total	= 235	6.10	Grand Mea	n =	65.447		
Co	efficient	of varia	tion =	4.11%				
s_ x	= 1.	097	s_ =	1.552				
А	NALYS	IS O	F V A	RIANC	Е ТА	BLE		
So	Degr urce F	ees of reedom	Sum of Squares	Mean Square	F Value	Prob		
 Ro Co Tr Er	 ws lumns eatments ror	5 5 5 20	145.25 156.76 896.85 144.47	29.051 31.352 179.370 7.223	4.02 4.34 24.83	0.011 0.008 0.000		
 To	tal	35	1343.33					

140

الفعىل السادس تشليل القباين وحساب القيمة المقودة

تحليل التباين الهرمي

يمكن عمل تحليل التباين الهرمي HIRARCH و إنشاء جدول يحتوي علي أرقام ومتوسطات متغير كل مجموعة وتحت مجموعة من خلال الأمر HIRARCH رقم ٢٣ في النافذة الرئيسية لبرنامج MSTAT-C.

مثال، انظر المثال رقم ١ صفحة ١٨٦ في الفصل التاسع واتبع الخطوات التالية:

١. قم بفتح ملف البيانات FACTOR1 ثم ظلل الأمر HIRARCH ثم اضعط مفتاح
 الإدخال Enter في لوحة المفاتيح

HIERARCH =

٢. تظهر نافذة تسألك عن عدد المتغيرات التي تمثل المجموعات؟ وفي هذا المثال عدد المجموعات ٤، بعد تحديد عدد المتغيرات اضغط مفتاح الإدخال Enter في لوحة المفاتيح

Number of Hierarchical Grouping Variables : 4

٣. فتظهر نافذة بعنوان 1 Group وفيها يتم تحديد رقم المتغير الأول والذي يمثل المجموعة الأولي وكذلك أعلى وأقل مستوى لهذا المتغير وبعد الانتهاء تظهر نافذة بعنوان 2 Group وفيها يتم تحديد رقم المتغير الثاني والذي يمثل المجموعة الثانية وكذلك أعلى وأقل قيمة لهذا المتغير ونستمر هكذا حتى ننتهى من 4 Group لا

- Crown 1
For each grouping give the variable number, and lowest and highest values.
Be sure to start with the innermost grouping.
Variable: 1 Lowest: 1 Highest: 3
— Group 2
For each grouping give the variable number, and lowest and highest values.
Be sure to start with the innermost grouping.
Variable: 2 Lowest: 1 Highest: 2
= Group 3
Group 3 For each grouping give the variable number, and lowest and highest values.
Group 3 For each grouping give the variable number, and lowest and highest values. Be sure to start with the innermost grouping.
Group 3 For each grouping give the variable number, and lowest and highest values. Be sure to start with the innermost grouping. Variable: 3 Lowest: 1 Highest: 2
 Group 3 For each grouping give the variable number, and lowest and highest values. Be sure to start with the innermost grouping. Variable: 3 Lowest: 1 Highest: 2 Group 4
 Group 3 For each grouping give the variable number, and lowest and highest values. Be sure to start with the innermost grouping. Variable: 3 Lowest: 1 Highest: 2 Group 4 For each grouping give the variable number, and lowest and highest values.
 Group 3 For each grouping give the variable number, and lowest and highest values. Be sure to start with the innermost grouping. Variable: 3 Lowest: 1 Highest: 2 Group 4 For each grouping give the variable number, and lowest and highest values. Be sure to start with the innermost grouping.

٤. تظهر نافذة كما بالشكل التالي تحتوي علي قائمة بالمتغيرات الموجودة في ملف البيانات اختر منها المتغير المراد تحليله وهو المتغير رقم ٥ (EC) وذلك من خلال مفاتيح الأسهم الموجودة في لوحة المفاتيح ويتم التظليل بالضغط على مفتاح المسافة Spacebar في لوحة المفاتيح ثم نضغط مفتاح الإدخال Enter

= Ch 01 02 03 04	oose up to (NUMERIC) (NUMERIC) (NUMERIC) (NUMERIC)) 5 Va Repli Leach Soil Soil	ariables icate ning type amendmer depth	(Press e it	ESC	to	quit)	_
04	(NUMERIC)	3011	ueptii					
▶05	(NUMERIC)	EC						

و. تظهر نافذة تحتوي علي الملحوظة التالية: ربما تخزن المتوسطات في نهاية ملف
 البيانات، اضغط Enter في لوحة المفاتيح

(NOTE: MEANS MAY BE STORED ON END OF YOUR DATA FILE!)

HIERARCH =

٦. تظهر نافذة تخبرك بعدد الحالات الموجودة في ملف البيانات فإذا كانت صحيحة اضغط مفتاح الإدخال للمتابعة وإذا أردت تحديد مدى من البيانات اضغط مفتاح N في لوحة المفاتيح وحدد المدى المراد تحليله وفي النهاية اضغط مفتاح الإدخال Enter في لوحة المفاتيح

Get Case Range = The data file contains 24 cases. Do you wish to use all cases? Y/N

 ٢. تظهر نافذة خيارات المخرجات اختر منها طريقة العرض أو الحفظ ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح

> > فيما يلي نتيجة التحليل السابق:

Variable 5

Hierarchical table with number of observations and mean in each group from the innermost: Var 1 From 1 To 3 Replicates Var 2 From 1 To 2 Leaching type Var 3 From 1 To 2 Soil amendment Var 4 From 1 To 2 Soil depth

1 Varia Value Nu	ole umber	1 Mean	Variabl Value Nu	e mbe	2 r Mean	Variab Value	le 3 Number	Mean	Variab Value	le 4 Number	Mean
1 2 3 1	1 1 1 1	3.5 3.6 3.5 2.2	1	3	3.52						
2 3 1	1 1 1	2.3 2.2 4.1	2	3	2.24	1	6	2.88			
2 3 1	1 1 1	4.2 4.2 3.1	1	3	4.16						
2 3 1	1 1 1	3.5 3.3 3.6	2	3	3.30	2	6	3.73	1	12	3.30
2 3 1	1 1 1	3.7 3.7 2.3	1	3	3.64						
2 3 1	1 1 1	2.4 2.5 4.5	2	3	2.40	1	6	3.02			
2 3	1 1 1	4.6 4.8 3.2	1	3	4.63						
23	1 1	3.5	2	3	3.40	2	6	4.01	2	12	3.52
Between Between Between Between	Sour var. var. var. var.	rce of v 4 3 with 2 with 1 with with	variation nin var. nin var. nin var. nin var.	4 3 2 1	DF 1 2 4 16 0	SS	0 5 8 0 0	MS 0.28 2.50 2.03 0.01 0.00	8 (5 1 8 18 1 8 (F 0.11 0. L.26 0. 3.32 0. 0.00 0.	P% 000000 377030 000000 000000

The P%-values are correct only if you have the same number in each grouping.

حساب القيمة المفقودة (الغائبة) فد يحدث فقد في في في الميانات نتيجة فقد العينة، تحطيم الأدوات، فقد الحشرة أو الحيوان التي تجرى علية التجربة ويمكن تقدير القيمة المفقودة أو الغائبة في تصميم القطع المنشقة أو التصميم العشوائي التام من خلال الأمر MISVALEST رقم ٢٨ في النافذة الرئيسية لبرنامج MSTAT-C

مثال ١٠ الموجود في الفصل البيانات FACTOR1 (أنظر مثال ١ الموجود في الفصل التاسع) يحتوي على قيم غائبة في المتغير الخامس كما يلي والمطلوب حساب هذه القيم الغائبة باستخدام الأمر MISVALEST؟

Case 1	1 Replica 1	2 Leachin 1	3 Soil Am 1	4 Soil De 1	5 EC 3.50
2	2	1	1	1	
3	3	1	1	1 -	3.48
4	1	1	1	2	3.56
5	2	1	1	2	3.66
6	3	1	1	2	3.70
7	1	1	2	1	4.11
8	2	1	2	1	4.21
9	3	1	2	1	4.15
10	1	1	2	2	
11	2	1	2	2	4.60
12	3	1	2	2	4.77

٦. تظهر نافذة تسألك هل تريد وضع القيم المحسوبة في مكانها داخل ملف البيانات؟ ستكون الإجابة بالقبول بالضغط على مفتاح حرف Y أو بالرفض بالضغط على مفتاح حرف N

Do you want the calculated values placed in your data file : $\ensuremath{Y/N}$

٧. تظهر قائمة بالمتغيرات الموجودة في ملف البيانات اختر منها متغير له علاقة بالمتغير الذي يحتوي على القيم المفقودة من خلال مفاتيح الأسهم والمسافة ثم اضغط Enter في لوحة المفاتيح إن كان لا يوجد اختر المتغير المحتوي على القيم المفقودة مرة ثانية

Choose up to 5 variables (Press ESC to quit) 01 (NUMERIC) Replicate 02 (NUMERIC) Leaching type 03 (NUMERIC) Soil amendment 04 (NUMERIC) Soil depth ▶05 (NUMERIC) EC

٨. تظهر النافذة التالية، أدخل في الخانة الأولى عدد مرات تكرار النغمات الناعمة
 ١ التي يصدر ها البرنامج قبل حساب القيمة المفقودة والمدى المسموح به من ١: ٢٠
 وفي الثانية أدخل الدقة المطلوبة عند حساب الأرقام العشرية والمدى المسموح به
 من ٦: -٦

Enter the maximum number of passes before iteration terminated: 20 Enter the accuracy desired for estimate : -2

٨. تظهر نافذة خيارات المخرجات Output Options اختر منها الخيار المناسب وفيما يلي نتيجة التحليل

Function: MISVALEST Data case no. 1 to Variable number 5 Factor variables	24 EC
Variable number 1	Replicates
Variable number 2	Leaching Type
Variable number 3	Soil Amendment
Variable number 4	Soil Depth

With variable number 1 as block variable

MISVALEST =

Convergence obtained during pass 3

Using an accuracy level of -2

Case No.	Fac Var 1	tor No. 2	Lev 3	vel 4	Estimated value
2	2	1	1	1	1.127045
10	1	1	2	2	4.887575
17	2	2	1	2	2.848101

MISVALEST =
ملحق ١: إجراء تحليل التباين لتصميم القطاعات كاملة العشوائية RCBD والتصميم العشوائى التام CRD باستخدام برنامج SAS مثال، صفحة (۱۰۹) DATA MOHAMEDKAMAL; INPUT Type Yield; CARDS; 1 4.00 1 7.00 1 7.00 1 5.00 1 4.00 1 5.00 2 8.00 2 10.00 2 9.00 2 11.00 2 7.00 3 12.00 3 8.00 3 9.00 3 14.00 3 7.00 PROC ANOVA DATA=MOHAMEDKAMAL; CLASS Type; MODEL Yield=Type; MEANS Type/LSD; RUN; The ANOVA Procedure Class Level Information Class Levels Values туре 3 123 Number of observations 15 The ANOVA Procedure Dependent Variable: Yield Sum of Source DF Mean Square F Value Pr > F Squares Mode1 2 70.0000000 35.0000000 8.40 0.0052 12 50.0000000 4.1666667 Error Corrected Total 14 120.0000000 Coeff Var Root MSE vield Mean R-Square 0.583333 25.51552 2.041241 8.000000 Source DF Anova SS Mean Square F Value Pr > F туре 2 70.0000000 35.00000000 8.40 0.0052 The ANOVA Procedure t Tests (LSD) for Yield

NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha	0.05
Error Degrees of Freedom	12
Error Mean Square	4.166667
Critical Value of t	2.17881
Least Significant Difference	2.8128

Means with the same letter are not significantly different.

t Grouping	Mean	Ν	туре
A	10.000	5	3
A	9.000	5	2
В	5.000	5	1

- 172 -

مثالي : صفحة (١١٣)

DATA MOHAMEDKAMAL; INPUT Reps Type \$ DATA; CARDS; CARDS; 4 A 670 5 A 790 1 B 540 2 B 390 3 B 440 4 B 475 1 C 320 2 C 310 3 C 355 1 D 730 2 D 890 3 D 750 4 D 725 1 E 550 2 E 660 3 E 510 4 E 460

PROC ANOVA DATA=MOHAMEDKAMAL; CLASS Reps Type; MODEL DATA = Type; MEANS Type; RUN;

The ANOVA Procedure

Class Level Information

Class	Levels	Values
Reps	5	12345
Туре	5	АВСDЕ

Number of observations 20

The ANOVA Procedure

Dependent Variable: DATA

Source		DF	Sum (Squar	of es №	Mean S	quare	F	Value	Pr > F
Model		4	501629.58	33 1	125407	.3958		26.13	<.0001
Error		15	71984.16	67	4798	.9444			
Corrected Total		19	573613.75	00					
	R-Square 0.874508	Coef 11.	f Var 82662	Root MS 69.2744	SE 41	DATA 585	Mean .7500		
Source		DF	Anova	SS M	Mean S	quare	F	Value	Pr > F
Туре		4	501629.58	33 1	125407	.3958		26.13	<.0001
		т	he ANOVA P	rocedure	e				
	Level of Type	N		Mean	ATA	Std	Dev		
	A B C D E	5 4 3 4 4	722.0 461.2 328.3 773.7 545.0	100000 250000 133333 250000 000000		68.702 63.031 23.629 78.249 85.049	2561 0770 0781 0682 0055		

مثال٤: صفحة (١١٥)

DATA MOHAMEDKAMAL; INPUT Reps TRT Weight; CARDS; $\begin{array}{ccc} 1 & 1 & 6 \\ 2 & 1 & 6 \end{array}$ 313 4 1 5 1 2 11 2 2 11 3 2 6 4 2 8 3 3 8 4 3 10 149 2414 3 4 13 4 4 16 1 5 10 4 5 14 1 6 9 2 6 10 36 5 468 PROC ANOVA DATA=MOHAMEDKAMAL; CLASS Reps TRT; MODEL Weight = Reps TRT; MEANS Reps TRT; RUN; The ANOVA Procedure Class Level Information Class Levels Values Reps 4 1 2 3 4 TRT 6 1 2 3 4 5 6 Number of observations 24 The ANOVA Procedure Dependent Variable: Weight Sum of Source DF Mean Square F Value Pr > F Squares Mode1 8 212.3333333 26.5416667 7.51 0.0004 Error 15 53.0000000 3.5333333 Corrected Total 23 265.3333333 Coeff Var R-Square Root MSE Weight Mean 0.800251 19.44534 1.879716 9.666667 Mean Square F Value DF Anova SS Pr > F Source 39.000000 173.3333333 13.0000000 34.6666667 3.68 9.81 0.0363 Reps TRT 3 5 The ANOVA Procedure Level of -----weight-----Std Dev 2.33809039 2.92688686 3.77712413 4.11906138 Mean 9.6666667 11.1666667 7.6666667 10.1666667 Reps N 6 6 6 1 2 3 4 Level of -----Weight-----Mean 5.0000000 Std Dev 1.41421356 TRT N44444 123456 2.44948974 2.44948974 2.94392029 1.82574186 9.0000000 13.0000000 12.0000000 8.0000000 2.16024690

ملحق ٢: إجراء تحليل التباين للتصميم الشبكي باستخدام برنامج SAS

مثال: صفحة (١٢٠)

2 3 3 52

PROC PRINT DATA=MOHAMEDKAMAL; ID Treatmnt; RUN;

PROC LATTICE DATA=MOHAMEDKAMAL; RUN;

TREATMNT 2 1 9 7 8 4 6 5 7 4 1 8 5 2 2	GROUP 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2	BLOCK 1 1 2 2 3 3 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	DATA 35 48 28 50 58 77 51 39 29 30 28 29 30 28 29 60 25 32
5	2	2	25
2	2	2	32
9	2	3	40
6	2	3	20
3	2	3	52

The Lattice Procedure

Analysis of Variance	e for	DATA	
.,		Sum of	Mean
Source	DF	Squares	Square
Replications	1	544.50	544.50
Blocks within Replications (Adj.)	4	385.33	96.3333
Component B	4	385.33	96.3333
Treatments (Unadj.)	8	2807.78	350.97
Intra Block Error	4	122.67	30.6667
Randomized Complete Block Error	8	508.00	63.5000
Total	17	3860.28	227.08

Additional Statistics for DATA

Variance of Means in Same Block	37.6348
Variance of Means in Different Bloc	44.6028
Average of Variance	41.1188
LSD at .01 Level	29.5233
LSD at .05 Level	17.8037
Efficiency Relative to RCBD	154.43

Adjusted Treatment Means for DATA

Treatment Mean

1	34.4077
2	36.4539
3	53.0675
4	39.9544
5	24.5006
6	27.1142
7	43.4319
8	64.9781
9	41.5917

ملحق ٣: إجراء تحليل التباين لتصميم المربع اللاتيني ببرنامج SAS مثال ٧: صفحة (١٢٣)

DATA MOHAMEDI	KAMAL;																							
INPUT Row Co. CARDS;	lumn I	rea	tme	ent	Y	iel	d;																	
1 1 5 17.77																								
1 2 1 24.49 1 3 6 18.98																								
1 4 3 17.48 1 5 2 28.60																								
1 6 4 22.38																								
2 1 6 19.20 2 2 3 18.77																								
2 3 4 24.89 2 4 2 32 94																								
2 5 1 28.80																								
2 6 5 12.77 3 1 3 20.06																								
3 2 2 29.18 3 3 5 18 40																								
3 4 4 30.54																								
3 5 6 23.45 3 6 1 24.18																								
4 1 4 27.85																								
4 3 3 14.61																								
4 4 1 24.99 4 5 5 14.50																								
4 6 2 23.60																								
5 2 5 16.57																								
5 3 2 24.74 5 4 6 16.06																								
5 5 4 20.50																								
6 1 2 26.17																								
6 2 4 25.32 6 3 1 21.09																								
6 4 5 12.99																								
6 6 6 14.99																								
; PROC ANOVA DA	ATA=MC	HAM	EDł		AL	;																		
CLASS Column	Row I	rea	tme	ent	Yi	iel	.d;	*	0.1		Tro	atmont	viold	1 17 -	_1d*1	Jour V	i o 1 d	1* 77~~						
TEST H=Row Co	olumn	Tre	atr	.rea aent	au t (e=R	low	*Col	Lumn'	*Tre	atme	ent;	rieid	I II	eran	KOW 1.	rera	(* 1 F	eatme	ent,				
TEST H=Yield MEANS Column	e=Yie Row I	ld* rea	Rov tme	;; ent	;																			
										Τŀ	ne Al	NOVA P	rocedu	ıre										
									C	lass	5 Le	vel In	format	tion	1									
Class	Level	s	Va	lue	s																			
Column		6	1 2	2 3	4	5	6																	
Row		6	1 2	2 3	4	5	6																	
Treatment		6	1 2	2 3	4	5	6																	
Yield	3	6	12 18 25	. 77 . 98 . 32	12 19 20	2.9 9.2 6.1	9 2 2 17	14.5 0.06 27.8	5 14 5 20 85 23	.61 .5 2 8.6	14. 1.0 28.	99 16. 9 21.7 8 29.1	06 16. 5 22.3 8 30.5	.28 38 2 54 3	16.3 3.45 2.94	2 16. 23.6	57 1 24.	17.4 .18	8 17 24.4	.77 9 24	18. 4.74	4 18 24.	.77 89 2	18.89 4.99
									Numl	ber	of	observ	ations	5	36									
										The	a AN	OVA Pr	ocedur	°e										
Dependent Va	riable	: Y	ie	ld																				
Sou	rce								DF			Sum Squar	of es	Me	an s	quare		Fν	'alue		Pr	> F		
Mode	el								60		975	.21550	00	1	.6.25	35917								
Erre	or								-25		0	.00000	00											

35

Coeff Var

R-Square 1.000000 975.2155000

Root MSE Yield Mean . 21.39167

Corrected Total

Source	DF	Anova SS	Mean Square	F Value	Pr > F
Row Column Treatment Column*Row*Treatment Yield Row*vield Treatment*vield	5 5 20 35 -5 -5	114.9810000 55.7277333 721.6922667 82.8145000 975.2155000 0.0000000 0.0000000	22.9962000 11.1455467 144.3384533 4.1407250 27.8633000 0.0000000 0.0000000		
Tests of Hypotheses Using	the A	nova MS for Colum	n*Row*Treatment	as an Erro	r Term
Source	DF	Anova SS	Mean Square	F Value	Pr > F
Row Column Treatment	5 5 5	114.9810000 55.7277333 721.6922667	22.9962000 11.1455467 144.3384533	5.55 2.69 34.86	0.0023 0.0512 <.0001
Tests of Hypotheses	Using	the Anova MS for	Row*Yield as a	n Error Terr	n
Source	DF	Anova SS	Mean Square	F Value	Pr > F
rield	35	975.2155000	27.8633000		

The ANOVA Procedure

Level of		Yield	
Column	Ν	Mean	Std Dev
1	6	22.1333333	4.02650552
3	6	20.4516667	3.97482788
4	6	22.5000000	8.20913394
6	ő	19.0333333	4.93358963
Level of		Yield	
Row	Ν	Mean	Std Dev
1	6	21.6166667	4.39241467
2	6	22.8950000	7.38830630
4	6	20.7400000	5.59877129
5	6	19.3166667	3.58065171
6	6	19.4800000	5.54472001
Level of Treatment	N	Mean	Std Dev
1	6	24.2166667	2.74012895
3	6	17.2533333	1.95113984
4	6	25.2466667	3.62430499
5 6	о 6	18.5950000	2.95278005
4 5 6	6 6 6	25.2466667 15.5000000 18.5950000	3.62430499 2.42737719 2.95278005

الفضل السابي القارنات بين متؤسطات العاملات RANGE and CONTRAST

المقارنات بين متوسطات المعاملات

المقارنات العديدة بين متوسطات المعاملات

الأمر RANGE رقم ٣٩ في النافذة RANGE الرئيسية لبرنامج MSTAT-C والغرض منه: حساب قيمة أقل فرق معنوي LSD، قيمة أقصر مدي معنوي NUNCAN، قيمة أصدق فرق معنوي TUKEY أو قيمة Newman-Keul وذلك للمقارنات المتعددة بين متوسطات المعاملات.

مثال: بالرجوع إلى مثال ٤ في الفصل السادس نجد أن اختبار F أظهر فروق معنوية بين متوسطات الأصناف المستخدمة وهي طبقا لنتيجة التحليل كما يلي:

Var.2 Value	Var.3 Mean
1	F 000
$\frac{1}{2}$	9 000
3	11.000
4	13.000
5	12.000
6	8.000

حيث Var. 2 تمثل رقم الصنف و Var. 3 تمثل متوسط كل صنف و المطلوب المقارنة بين المتوسطات السابقة من خلال حساب قيمة أقل فرق معنوي وقيمة أقصر مدي معنوي؟

- ١. ظلل الأمر RANGE في النافذة الرئيسية لبرنامج MSTAT-C ثم اضغط مفتاح
 الإدخال Enter في لوحة المفاتيح
- ٢. تظهر نافذة بعنوان RANGE يكون فيها الأمر Parameter مظلل بشكل تلقائي، اضغط مفتاح الإدخال Enter في لوحة المفاتيح فينتقل المؤشر إلي الخانة الأولي في النافذة Mean Separation Test وفيها كلمة LSD بشكل افتراضي ويمكن الانتقال إلي الطرق الأخرى مثل DUNCAN وغيرها من الطرق عن طريق الضغط علي مفتاح المسافة Spacebar في لوحة المفاتيح وبعد تحديد الطريقة المقارنة اضغط مفتاح الإدخال Enter في لوحة المفاتيح

RANGE Enter input parameters Parameters Range Quit			
= INPUT (Press F1 for help, F	10 when done,	ESC to abort)	
File to perform Range Te C:\MSTATC\DATA\ANOVA2	sts on:		
Mean Separation Test:	lsd		
Source of Means:	Disk	Number of means :	
First Case (if disk):		Alpha Level to use:	0.05
Variable No for Means:		Error Mean Square:	
Observations per Mean:		Degrees of Freedom:	

٣. ينتقل المؤشر إلي خانة Source of Means ونجد فيها Disk بشكل افتراضي
ويمكن اختيار Keyboard عن طريق الضغط علي مفتاح المسافة Spacebar في لوحة المفاتيح. والسؤال الذي يطرح نفسه متى نستخدم Disk ومتى نستخدم Keyboard

- نستخدم Disk إذا تم تخزين المتوسطات في نهاية ملف البيانات حيث أثناء التحليل باستخدام 2-ANOVA كان يظهر سؤال: هل تود تخزين المتوسطات في نهاية ملف البيانات؟ وكانت الإجابة بـ (نعم) عن طريق الضغط علي مفتاح حرف Y في لوحة المفاتيح أو بـ (لا) عن طريق الضغط علي مفتاح حرف N في لوحة المفاتيح، وبالتالي عند اختيار Disk الضغط علي مفتاح حرف N في لوحة المفاتيح، وبالتالي عند اختيار Disk First case ينا الخانت في الخانة التالية (if disk) (if disk)
- نستخدم Keyboard إذا لم يتم تخزين المتوسطات في نهاية ملف البيانات أثناء التحليل وبالتالي سيتم إدخال المتوسطات بشكل يدوي من خلال لوحة المفاتيح
- ♦ في هذا المثال اختر Keyboard ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح

- ٤. ينتقل المؤشر إلي الخانة التالية (if disk) و لأننا اخترنا Keyboard و لأننا اخترنا
 ٤. ينتقل المؤشر إلي الخانة الخانة المناتية (if disk) في لوحة المفاتيح
- ينتقل المؤشر إلى الخانة التالية Variable No for Means وفيها يتم تحديد رقم المتغير المراد استخراج قيمة LSD أو DUNCAN له و هو المتغير الثالث ثم اضغط Enter في لوحة المفاتيح
- ملحوظة: يمكن الضغط علي مفتاح F1 فتنسدل قائمة تحتوي علي المتغيرات الموجودة في ملف البيانات نختار منها المتغير المطلوب ثم نضغط مفتاح الإدخال Enter في لوحة المفاتيح
- ٦. ينتقل المؤشر إلي الخانة التالية observation per Mean وفيها أكتب عدد المشاهدات لكل متوسط وعدد المشاهدات لكل متوسط في هذا المثال تساوي ٤ ثم نضغط Enter في لوحة المفاتيح
- ملحوظة: المشاهدات لكل متوسط = إجمالي المشاهدات ÷ عدد المعاملات
 = 3 ÷ 7 ٤ = ٤
- ٧. ينتقل المؤشر إلي الخانة التالية Number of Means وفيها اكتب عدد المتوسطات وعدد المتوسطات في هذا المثال يساوي ٦ ثم اضغط Enter في لوحة المفاتيح

٩. ينتقل المؤشر إلي الخانة التالية Error Mean Square ونحصل علي قيمتها من جدول تحليل التباين (انظر نتيجة تحليل المثال في الفصل السادس) وفي هذا المثال قيمة Error Mean Square تساوي ٣.٥٣٣

ا. ينتقل المؤشر إلي الخانة التالية Degree of Freedom ونحصل علي قيمتها أيضاً من جدول تحليل التباين وفي هذا المثال قيمة Degree of Freedom تساوى ١٥

= INPUT (Press F1 for help, F	10 when done,	ESC to abort) ———			
File to perform Range Tests on: C:\MSTATC\DATA\ANOVA2					
Mean Separation Test:	lsd				
Source of Means:	Keyboard	Number of means :	6		
First Case (if disk):	0	Alpha Level to use:	0.05		
Variable No for Means:	3	Error Mean Square:	3.533		
Observations per Mean:	4	Degrees of Freedom:	15		

١١. يتم تظليل الأمر Range بشكل تلقائى، اضبغط Enter في لوحة المفاتيح

١٢. تظهر نافذة بعنوان Keyboard in Input of Means وفيها يتم إدخال قيم المتوسطات مع ملاحظة أن هذه النافذة كانت لن تظهر في حالة اختيار Disk. قم بإدخال المتوسطات في الخانة النشطة وبعد إدخال كل متوسط اضغط Enter في لوحة المفاتيح حتى الانتهاء من كل المتوسطات.
 ١٢. بعد المنتهاء من إدخال المتوسطات تظهر نافذة خيارات المخرجات Output
 ١٣. بعد الانتهاء من إدخال المتوسطات تظهر نافذة خيارات المخرجات Output

فيما يلي نتيجة التحليل السابق في حالة طريقة LSD:

Data File: Keyboard¶ Function : RANGE¶ Error Mean Square = 3.533 Error Degrees of Freedom = 15 No. of observations to calculate a mean = 4 Least Significant Difference Test LSD value = 2.833 at alpha = 0.050 Original Order Ranked Order

Mean	1 =	5.000	D	Mean	4 =	13.00	А
Mean	2 =	9.000	BC	Mean	5 =	12.00	А
Mean	3 =	11.00	AB	Mean	3 =	11.00	AB
Mean	4 =	13.00	A	Mean	2 =	9.000	BC
Mean	5 =	12.00	A	Mean	6 =	8.000	С
Mean	6 =	8.000	С	Mean	1 =	5.000	D

فيما يلي نتيجة التحليل السابق في حالة طريقة DUNCAN:

```
Data File: Keyboard¶
Function : RANGE®
Error Mean Square = 3.533
Error Degrees of Freedom = 15
No. of observations to calculate a mean = 4
Duncan's Multiple Range Test
LSD value = 2.833
s_{x} = 0.9398
                 at alpha = 0.050
      Original Order
                                      Ranked Order
                 5.000
9.000
                                          4 =
5 =
3 =
                                                 13.00 \\ 12.00
 Mean
         1 =
2 =
                           D
                                 Mean
                                                         А
                         BC
 Mean
                                 Mean
                                                         А
         3 =
 Меап
                 11.00
                        AB
                                                 11.00
                                                         AB
                                 Mean
                                          ž
                                                 9.000
         4 =
                 13.00
 Mean
                                 Mean
                                            =
                                                          BC
                        Α
         5
           =
                 12.00
                                          6
                                            =
                                                 8.000
 Mean
                        А
                                 Mean
                                                           С
          6
                 8.000
                          С
                                          1
                                                 5.000
                                                            п
 Mean
           =
                                 Mean
                                           =
مثال ٢: بالرجوع إلى نتيجة تحليل مثال ٧ في الفصل السادس نجد أن متوسط
                                         المعاملات كما يلي والمطلوب حساب قيمة LSD
                                     ----Treatment---
                                             Mean
                                            24.217
                                            27.538 17.253
                                            25.247
                                            18.595
                         بإتباع نفس الخطو ات السابقة نجد أن النتبجة ستكون كما بلي
Function : DRANGE¶
Error Mean Square = 4.141
Error Degrees of Freedom = 20
No. of observations to calculate a mean = 6
Least Significant Difference Test
LSD value = 2.451 at alpha = 0.050
      Original Order
1 = 24.2
                                       Ranked Order
                 24.22
                                                 27.54
25.25
24.22
 Mean
                         В
                                 Mean
                                          2
                                           =
                                                         A
         2 =
                                          4 =
 Mean
                                 Mean
                                                         AB
                        А
                 17.25 \\ 25.25
 Mean
          3 =
                           CD
                                 Mean
                                          1 =
                                                          в
         4 =
                                                 18.60
17.25
15.50
 Mean
                        AB
                                 Mean
                                          6 =
                                                           C
                 15.50
                           D
                                          3 =
5 =
 Mean
         5 =
                                 Mean
                                                           CD
                 18.60
         6 =
                           c
                                 Mean
 Mean
                                                            D
                                                                              تفسير النتيجة:
بالنظر إلى نتيجة التحليل السابق نجد أنه تم حساب قيمة LSD عند مستوى معنوية ٥٪
(تساوى ٢.٤٥١) وأيضا تم وضع المتوسطات بترتيبها الطبيعي Original Order
وتم وضعها بترتيب نتازلي مره أخرى Ranked Order وبجوار كل متوسط يوجد
حرف أبجدي وبالتالي المتوسطات التي تأخذ نفس الحرف الأبجدي لا يكون بينها فرق
معنوي (NS) بينما المتوسطات التي تأخذ حروف مختلفة يكون بينها فرق معنوي عند
مستوى معنوية ٥٪ (*) بينما إذا كان عند مستوى معنوية ١٪ يكون الفرق معنوى جداً
```

157

ونضع (**). كما يمكن معرفة وجود فرق معنوي بين أي متوسطين بإيجاد الفرق بينهم فإذا كان ناتج الفرق أكبر من أو يساوي قيمة LSD دل على وجود فرق معنوي والعكس.

المقارنات المصممة المتعامدة:

فيما سبق تم عرض **CONTRAST** لمقارنات الثنائية و هناك طرق كثيرة لإجراء مثل هذه المقارنات وتم عرض طريقتين هما طريقة LSD وطريقة DUNCAN و هذه المقارنات تتم بعد إجراء التجربة أما النوع الثاني من المقارنات فهو الذي يخطط له قبل إجراء التجربة ويسمى بالمقارنات المصممة المقارنات فهو الذي يخطط له قبل إجراء التجربة ويسمى بالمقارنات المصممة Orthogonal Contrasts ومنها المقارنات المتعامدة CONTRAST و التي تتميز بأنه يمكن إجراء عدد من المقارنات بين المتوسطات (أثنين أو أكثر) تساوي درجة حرية المعاملات و الأمر CONTRAST رقم ١٢ في النافذة الرئيسية لبرنامج MSTAT-C يمكن من خلاله عمل المقارنات المصممة المتعامدة .

تطبيق:

التطبيق التالي يوضح بعض الأمور الهامة قبل البدء في معرفة كيفية استخدام الأمر. CONTRAST:

Gypsum Treatments	Rate of gypsum	عند تصميم تجربة تتكون
T0	Without Gypsum	
T1	Low rate of gypsum	من ٢ معاملات من الجبس
T2	Medium rate of gypsum	
T3	Higher rate of gypsum	الرراعيني المتصاف إلسي
اضافة الحبس بمعدلات	الصبوديوم المتبادل، حيث تم	الأر اضبى القلوبة لخفض نسبة

مختلفة ومن ثم يوجد معدل ملائم من بين المستويات التالية وفي ذهن الباحث عدة تساؤ لات هي:

^{*} المقارنات المصممة هي علاقة خطية في متوسطات المعاملات أو في مجاميع مشاهدات المعاملات بحيث تكون هذه العلاقة متعامدة (مستقلة) ولكي

تكون المقارنات متعامدة يجب تحقق شرطين الأول مجموع المعاملات يساوي صفرأ والثاني مجموع حصل ضرب معاملات مقارنتين يساوي صفرأ

- هل إضافة الجبس مفيد أم لا؟
- هل استخدام المعدل المتوسط هو المستوى الأمثل أم لا؟
 - هل نجح الباحث في تحديد معدلات الجبس؟

الإجابة:

صياغة الفروض واشتقاق المعاملات:

عدد المعاملات ٤ (t = 4) إذن درجة الحرية للمعاملات ٣ (t = 4 = 1 = 4) وهذا يعني أن عدد المقارنات المصممة يجب أن تكون ٣ مقارنات وهي المناظرة للتساؤلات الثلاثة السابقة.

التساؤل الأول: هل إضافة الجبس مفيد أم لا؟ بمعنى هل استخدام الجبس بأي تركيز يكون مفيداً من عدمه، أي هل تتساوى متوسطات المعاملات T1, T2, T3 مع متوسط المعاملة الضابطة (الكنترول) ومن ثم لا يؤثر إضافة الجبس بأي تركيز على نسبة الصوديوم المتبادل

$$\begin{split} H_{0}: \ \mu_{0} = \frac{\mu_{1} + \mu_{2} + \mu_{3}}{3} \\ e \ V \text{ (mitting the set of the set$$

التساؤل الثاني: هل استخدام المعدل المتوسط هو المعدل الأمثل أم لا؟ ويقصد بذلك أن المعدل الثاني من الجبس يؤدي إلي خفض نسبة الصوديوم المتبادل بشكل أكبر من المعدل المنخفض والمرتفع.

الأمر كذلك لنجح الباحث في توصيته، وإذا كان هناك فرق معنوي فإن التوصية الباحث (التساؤل الثاني) غير صحيحة لأنه يمكن أن يكون أحد المتوسطين (الأول والثالث) أعلى من المتوسط الثاني ومن ثم يجب مراجعة نفسه في هذه التجربة

H₀: $\mu_1 = \mu_3$

و لاشتقاق المعاملات يتم تحويل الفرض أعلاه إلي صورة صفرية كما يلي $-\mu_1 + \mu_3 = 0$ ومن ثم تكون معاملات المتوسطات هي على التوالي <u> μ_0 μ_1 μ_2 μ_3 <u>0 -1 0 1</u> وتكون العلاقة الخطية في مجاميع المعاملات هي: $Q_3 = (0)Y_0 + (-1)Y_1 + (0)Y_2 + (1)Y_3$ $Q_1 = -Y_1 + Y_3$ </u>

وفيما يلي ملخص لهذه المعاملات

0	μ_0	μ_1	μ_2	μ_3	SUM
Q	Y_0	Y_1	Y_2	Y_3	SOM
Q_1	-3	1	1	1	0
Q_2	0	1	-2	1	0
Q_3	0	-1	0	1	0
$Q_1 * Q_2$	0	1	-2	1	0
$Q_1 * Q_3$	0	-1	0	1	0
$Q_2 * Q_3$	0	-1	0	1	0

انتبه:

 ١. المقارنات متعامدة يجب أن يتحقق فيها شرطين الأول مجموع المعاملات يساوي صفراً والثاني مجموع حصل ضرب معاملات مقارنتين يساوي صفراً
 (انظر الحاشية السفلية في صفحة ١٤٤)

S.O.V	df	SS	MS	F
Treatments	t-1	SS _{tr}	MS _{tr}	SS _{tr} / MSE
Q_1	1	SS _{Q1}	MS _{Q1}	SS_{Q1} / MSE
Q_2	1	SS _{Q2}	MS _{Q2}	SS_{Q2} / MSE
Q_3	1	SS _{Q3}	MS _{Q3}	SS _{Q3} / MSE
•			•	•
Q_{t-1}	1	SS _{Qt-1}	MS _{Qt-1}	
Error	r - t	SSE	MSE	
Total	r - 1			

مثالى»: انظر مثال ٨ الفصل السادس، في تجربة المربع اللاتيني يريد الباحث عمل

Contracts	А	В	С	D	Е	F
Contrasts	(NH4)2SO4	NH ₄ NO ₃	$CO(NH_2)_2$	Ca(NO ₃) ₂	NaNO3	NON
No N vs. N	-1	-1	-1	-1	-1	5
Organic vs. Inorganic	-1	-1	+4	-1	-1	0
NH4-N vs. NO3-N	+1	+1	0	-1	-1	0
(NH4)2SO4 vs. NH4NO3	+1	-1	0	0	0	0
Ca(NO ₃) ₂ vs. NaNO ₃	0	0	0	+1	-1	0

خمس مقارنات بين المعاملات الست، ولقد لخصت هذه المقارنات في الجدول التالي

 ظلل الأمر CONTARST في النافذة الرئيسية لبرنامج MSTAT-C ثم اضعط مفتاح الإدخال Enter في لوحة المفاتيح فيتم فتح نافذة كما بالشكل التالي أدخل فيها مستويات المعاملة المستخدمة في التصميم ثم اضغط مفتاح الإدخال

Enter the number of treatment levels used in design (4 - 100) : 6

• تظهر النافذة التالية، أدخل فيها مستويات المعاملة ثم اضغط مفتاح الإدخال Enter

 تظهر النافذة التالية، أدخل فيها متوسط مربعات الخطأ، درجة حرية الخطأ و عدد المشاهدات ثم اضغط مفتاح الإدخال Enter (يتم الحصول على هذه المعلومات من نتيجة تحليل مثال ٨ في الفصل السادس)

Enter the error mean square associated with your means : 7.223 Enter the degrees of freedom associated with your error mean square : 20 Enter the number of observations used to calculate a mean value : 6

تظهر الرسالة التالية وتخبرك بعدد المتوسطات اضغط مفتاح الإدخال Enter
 للاستمر ار

= Press <ENTER> to continue ______ Your number of means has been set to 6, (the number of treatments)

تظهر النافذة التالية وتسألك هل تريد قراءة المتوسطات من ملف البيانات؟

= CONTRAST =

CONTRAST =

Do you want to read your means from your MSTAT data file : $\underline{Y}/\underline{N}$

CONTRAST

في حالة الموافقة:

إذا كنت تريد اضغط مفتاح حرف Y ثم Enter فتظهر نافذة تخبرك بعدد الحالات الموجودة في ملف البيانات وتسألك هل تود استخدام كل الحالات؟، اضغط مفتاح N لتحديد المدى الذي يحتوي على المتوسطات

في حالة الرفض:

بينما إذا كنت تريد إدخال المتوسطات يدوياً من خلال لوحة المفاتيح اضغط مفتاح N في لوحة المفاتيح ثم Enter فتظهر نافذة تطلب المتوسطات أدخلها كما بالشكل التالي ثم اضغط مفتاح الإدخال Enter (يتم الحصول على المتوسطات من نتيجة تحليل مثال ٨ في الفصل السادس)

- CONTRAST		
Enter the	treatment	means :
Treatment 1 3 4 5 6	Number	Mean 68.2170 66.5500 69.3330 67.3170 66.7830 54.4830
1		

 تظهر النافذة التالية والتي تحتوي على سؤال مضمونة "هل تريد استخدام المعاملات المتعامدة الخاصة بك؟"

 اضعط مفتاح حرف Y للموافقة ثم مفتاح الإدخال Enter فتظهر النافذة التالية أدخل فيها المعاملات المتعامدة طبقا لجدول المقارنات كما بالشكل التالي ثم اضعط مفتاح الإدخال Enter في لوحة المفاتيح


```
From Keyboard Input
Function : CONTRAST
```

TREATMENT	Enforma	tion		
Treatment Treatment Treatment Treatment Treatment Treatment	level (level (level (level (level (level (1) 2) 3) 4) 5) 6)	= = = = =	$ \begin{array}{r} 1.00\\ 2.00\\ 3.00\\ 4.00\\ 5.00\\ 6.00 \end{array} $
Treatment r Treatment r Treatment r Treatment r Treatment r Treatment r	nean (nean (nean (nean (nean (nean (1) 2) 3) 4) 5) 6)	= = =	68.22 66.55 69.33 67.32 66.78 54.48
Error mean	square		=	7.22
Degrees of	freedo	n	=	20
USER Coeff	icients			
Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient	t (1) t (2) t (3) t (4) t (5) t (6)	= = = = =		-1.0000 -1.0000 -1.0000 -1.0000 -1.0000 5.0000
Sum Of Squa	ares	=		865.533
Effect		=		-2.193
Error		=		0.200
F value		=		119.830
Prob		=		0.000

يتم تنفيذ نفس الخطوات السابقة مع جميع المقارنات المدرجة في جدول المقارنات

وبتجميع البيانات الخاصبة بجدول تحليل التباين من النتائج سيكون الجدول كما يلي

S.O.V	df	SS	MS	F	Prob
Rows	5	145.25	29.051	4.02	0.011
Columns	5	156.76	31.352	4.34	0.008
Treatments	5	896.85	179.370	24.83	0.000
Q1	1	865.53	865.53	119.83	0.000
Q2	1	21.497	21.497	2.976	0.100
Q3	1	0.667	0.667	0.092	0.765
Q4	1	8.337	8.337	1.154	0.295
Q5	1	0.855	0.855	0.118	
Error	20	144.47	7.223		
Total	35	1343.33			

ونلاحظ من الجدول أن متوسط اختبار ات F الخمسة يساوي اختبار F للمعاملات ونلاحظ من الجدول أيضا أن F الخاصة بالمقارنة الأولى هي التي كانت معنوية فقط بمعنى أن استخدام التسميد النيتر وجيني أدى إلي اختلافات معنوية في محصول اللفت من عدمه بينما باقي اختبار ات F ليست معنوية وتدل على أن المحصول متساوي عند استخدام أي من الأسمدة الخمسة.

ملحوظة: إذا تم الضغط على حرف N في لوحة المفاتيح في حالة السؤال التالي

CONTRAST =

Do you want to supply your own orthogonal coefficients : Y/N

ستظهر نافذة خيارات المخرجات مباشرة اختر منها طريقة العرض أو الحفظ وستكون النتيجة كما يلي

> From Keyboard Input Function : CONTRAST

TREATMENT	Inform	nat	ion		
Treatment Treatment Treatment Treatment Treatment Treatment	level level level level level level		1) 2) 3) 4) 5) 6)	= = = = =	$ \begin{array}{r} 1.00\\ 2.00\\ 3.00\\ 4.00\\ 5.00\\ 6.00 \end{array} $
Treatment Treatment Treatment Treatment	mean mean mean mean	((((1) 2) 3) 4)	= = =	68.22 66.55 69.33 67.32

Treatment mean (5) =	66.78
Treatment mean (6) =	54.48
Error mean square =	7.22
Degrees of freedom =	20
LINEAR Coefficients	
Coefficient (1) =	-15.0000
Coefficient (2) =	-9.0000
Coefficient (3) =	-3.0000
Coefficient (4) =	3.0000
Coefficient (5) =	9.0000
Coefficient (6) =	15.0000
Sum Of Squares =	419.844
Effect =	-0.333
Error =	0.044
F value =	58.126
Prob =	0.000
QUADRATIC Coefficients	
Coefficient (1) =	0.3571
Coefficient (2) =	-0.0714
Coefficient (3) =	-0.2857
Coefficient (4) =	-0.2857
Coefficient (5) =	-0.0714
Coefficient (6) =	0.3571
Sum Of Squares =	315.239
Effect =	-11.072
Error =	1.676
F value =	43.644
Prob =	0.000
CUBIC Coefficients	
Coefficient (1) =	-0.1190
Coefficient (2) =	0.1667
Coefficient (3) =	0.0952
Coefficient (4) =	-0.0952
Coefficient (5) =	-0.1667
Coefficient (6) =	0.1190
Sum Of Squares =	129.115
Effect =	-14.522
Error =	3.435
F value =	17.876
Prob =	0.000

ويلاحظ من النتيجة أنه تم تجزئة مجموع مربعات المعاملات إلي ٣ أجزاء جزء خاص بالدرجة الأولى أو الخطية LINEAR Coefficients، جزء خاص بالدرجة التربيعية QUADRATIC Coefficients وجزء خاص بالدرجة التكعيبية CUBIC Coefficients.

```
ملحق ١: إجراء المقارنات العديدة بين متوسطات المعاملات باستخدام برنامج SAS
                                                                                مثال، صفحة (۱۳۹)
DATA MOHAMEDKAMAL;
INPUT Replicates Treatments Weight;
CARDS;
1 1 6.00
2 1 6.00
3 1 3.00
4 1 5.00
1 2 11.00
2 2 11.00
3 2 6.00
4 2 8.00
1 3 13.00
2 3 13.00
3 3 8.00
4 3 10.00
1 4 9.00
2 4 14.00
3 4 13.00
4 4 16.00
1 5 10.00
2 5 13.00
3 5 11.00
4 5 14.00
1 6 9.00
2 6 10.00
3 6 5.00
4 6 8.00
PROC ANOVA DATA=MOHAMEDKAMAL;
CLASS Replicates Treatments;
MODEL Weight =Replicates Treatments;
MEANS Treatments/LSD; *
RUN;
                                                                 ويمكن ادخال البيانات بالشكل التالي
DATA MOHAMEDKAMAL;
DO Treatments = 1 TO 6;
DO Replicates = 1 TO 4;
INPUT Weight @@; OUTPUT;
END;
END;
CARDS;
6.00 6.00 3.00 5.00
11.00 11.00 6.00 8.00
13.00 13.00 8.00 10.00
9.00 14.00 13.00 16.00
10.00 13.00 11.00 14.00
9.00 10.00 5.00 8.00
PROC ANOVA DATA=MOHAMEDKAMAL;
CLASS Replicates Treatments;
MODEL Weight = Replicates Treatments;
MEANS Treatments/LSD;
RUN;
                                            The ANOVA Procedure
                                          Class Level Information
                                   Class
                                                    Levels
                                                               Values
                                   Replicates
                                                          4
                                                               1234
                                   Treatments
                                                          6
                                                               1 2 3 4 5 6
                                        Number of observations
                                                                    24
                                            The ANOVA Procedure
Dependent Variable: Weight
                                                     Sum of
         Source
                                        DF
                                                                 Mean Square
                                                                                  F Value
                                                                                              Pr > F
                                                    Squares
         Mode1
                                         8
                                                212.3333333
                                                                  26.5416667
                                                                                     7.51
                                                                                              0.0004
          Error
                                        15
                                                 53.0000000
                                                                    3.5333333
         Corrected Total
                                        23
                                                265.3333333
```

	R-Square	Coef	f Var	Root MS	E Weight M	ean	
	0.800251	19.	44534	1.879710	9.666	667	
Source		DF	Anova	SS M	Mean Square	F Value	Pr > F
Replicates Treatments		3 5	39.00000 173.33333	000 333	13.0000000 34.6666667	3.68 9.81	0.0363 0.0003
		Т	he ANOVA Pr	rocedure			

t Tests (LSD) for Weight

NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha	0.05
Error Degrees of Freedom	15
Error Mean Square	3.533333
Critical Value of t	2.13145
Least Significant Difference	2.833

Means with the same letter are not significantly different.

t Group	oing	Mean	Ν	Treatments	
	A	13.000	4	4	
	A	12.000	4	5	
В	A	11.000	4	3	
B	c	9.000	4	2	
	c	8.000	4	6	
	D	5.000	4	1	
· S · S · S · · ·	JTT &	IVEV Å	DU	MCANIÄ	al - L CD

يمكن إز الة LSD وإضافة DUMCAN أو TUKEY فيصبح الكود كما يلي

```
PROC ANOVA DATA=MOHAMEDKAMAL;
CLASS Replicates Treatments;
MODEL Weight =Replicates Treatments;
MEANS Treatments/DUNCAN;
RUN;
```

DATA MOHAMEDKAMAL; INPUT ROW COLUMIN TRT \$ Yield; CARDS; 1 1 F 61.60 1 2 D 63.80 1 3 A 70.40 1 4 B 72.60 1 5 E 68.20 1 6 C 70.40 2 1 E 68.20 2 2 B 63.80 2 3 C 66.00 2 4 F 55.00 2 5 D 72.50 2 6 A 67.30 3 1 D 67.20 3 2 E 63.40 3 3 F 47.70 3 4 C 67.80 3 5 A 70.20 3 6 B 66.20 4 1 C 72.80 4 2 A 66.90 4 3 B 63.40 4 4 D 69.00 4 5 F 58.70 4 6 E 70.20 5 1 B 65.80 5 2 F 56.80 5 2 F 56.80 5 2 F 56.80 5 3 E 66.70 5 4 A 66.70 5 4 A 66.70 5 4 A 66.70 5 6 D 71.10 6 1 A 67.80 6 2 C 65.30 6 6 F 47.10 ; PROC GLM DATA=MOHAMEDKAMAL; CLASS ROW COLUMN TRT; MODEL Yield = ROW COLUMN TRT; CONTRAST 'ND N VS N' TRT -1 -1 -1 -1 -1 5; CONTRAST 'ORGANIC VS IN ORGANIC' TRT -1 -1 -1 -1 0; CONTRAST 'NH4-N VS N03-N' TRT 1 1 0 -1 -1 0;	
CONTRAST '(NH4)2SO4 VS NH4NO3' TRT 1 -1 0 0 0 0; CONTRAST 'Ca(NO3)2 VS NANO3' TRT 0 0 0 1 -1 0; MEANS TRT/LSD; RUN;	و يمكن إدخال البيانات بالشكل التالي
DATA MOHAMEDKAMAL; DO ROW = 1 TO 6; DO COLUMN = 1 TO 6; INPUT TRT \$ Yield @@; OUTPUT; END; END; CARDS; F 61.60 D 63.80 A 70.40 B 72.60 E 68.20 C 70.40 E 68.20 B 63.80 C 66.00 F 55.00 D 72.50 A 67.30 D 67.20 E 63.40 F 47.70 C 67.80 A 70.20 B 66.20 C 72.80 A 66.90 B 63.40 D 69.00 F 58.70 E 70.20 B 65.80 F 56.80 E 66.70 A 66.70 C 73.70 D 71.10 A 67.80 C 65.30 D 60.30 E 64.00 B 67.50 F 47.10 ; PROC GLM DATA=MOHAMEDKAMAL; CLASS ROW COLUMN TRT; MODEL Yield = ROW COLUMN TRT; CONTRAST 'ORGANIC VS IN ORGANIC' TRT -1 -1 4 -1 -1 0;	ري ـــ ن بـــــ بـــــ بـــــ

ملحق ۲: إجراء المقارنات المصممة باستخدام برنامج SAS مناك ۳: صفحة (۱٤۷)

100

CONTRAST 'NH4-N VS N03-N' TRT 1 1 0 -1 -1 0; CONTRAST '(NH4)2SO4 VS NH4N03' TRT 1 -1 0 0 0 0; CONTRAST 'Ca (N03)2 VS NaNO3' TRT 0 0 0 1 -1 0; MEANS TRT/LSD; RUN;

The GLM Procedure

С	lass	Level	In	torma	tıor

Class	Levels	Vā	ιlι	les	5			
ROW	6	1	2	3	4	5	6	
COLUMN	6	1	2	3	4	5	6	
TRT Number of	6 observatio	A ons	B	c	D 36	E	F	
The GLM Procedure								

Dependent Variable: Yield

Source		DF	Sum Squa	of res	Mean	Square	F	Value	Pr > F
Model		15	1198.860	833	79.	924056		11.06	<.0001
Error		20	144.468	889	7.	223444			
Corrected Total	R-Square	35 Coe	1343.329 ff Var	722 Root	MSE	Yield	Mean		
	0.892455	4.3	106586	2.68	7647	65.4	4722		
Source		DF	Туре І	SS	Mean	Square	F	Value	Pr > F
ROW COLUMN TRT		5 5 5	145.2547 156.7580 896.8480	222 556 556	29.0 31.3 179.3	509444 516111 696111		4.02 4.34 24.83	0.0109 0.0078 <.0001
Source		DF	Type III	SS	Mean	Square	F	Value	Pr > F
ROW COLUMN TRT		5 5 5	145.2547 156.7580 896.8480	222 556 556	29.0 31.3 179.3	509444 516111 696111		4.02 4.34 24.83	0.0109 0.0078 <.0001
Contrast		DF	Contras	t SS	Mear	Square	e F	Value	Pr > F
NO N VS N ORGANIC VS IN ORG NH4-N VS NO3-N (NH4)2SO4 VS NH4M Ca(NO3)2 VS NANO3	GANIC NO3 3	1 1 1 1	865.489 21.505 0.666 8.333 0.853	3889 3333 6667 3333 3333	865. 21. 0. 8. 0.	4893889 5053333 66666667 3333333 8533333) 3 7 8	119.82 2.98 0.09 1.15 0.12	<.0001 0.0999 0.7644 0.2956 0.7347

The GLM Procedure

t Tests (LSD) for Yield

NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha	0.05
Error Degrees of Freedom	20
Error Mean Square	7.223444
Critical Value of t	2.08596
Least Significant Difference	3.2368

Means with the same letter are not significantly different.

t Grouping	Mean	Ν	TRT
A	69.333	6	с
A	68.217	6	А
A	67.317	6	D
A	66.783	6	Е
A A	66.550	6	в
В	54.483	6	F

107

ملحق ٣: إجراء المقارنات المتعامدة كثيرة الحدود باستخدام برنامج SAS مثال ٧: صفحة (٢١٠) الفصل التاسع، نريد تجزئة مجموع مربعات المعاملات إلي أربعة أجزاء، الأول جزء خاص بالدرجة الأولي أو الخطية Linear، والثاني للدرجة التربيعية Quadratic، والثالث للتكعيبية Cubic والرابع للرباعية Quardic وما يتبقى يبقى بدون تجزئة.

DATA MOHAMEDKAMAL: INPUT REPS TRT YIELD; CARDS; 1 1 4.8 2 1 4.63 3 1 3.98 4 1 4.05 5 1 4.51 6 1 4.32 3 2 4.03 4 2 4.13 5 2 4.83 6 2 4.85 1 3 5.12 2 3 5.23 3 3 4.28 4 3 4.6 5 3 5.63 635.28 1 4 5.28 2 4 5.68 3 4 5.01 4 4 4.83 5 4 6.31 4 5.85 6 1 5 5.29 2 5 5.53 3 5 5.36 4 5 5.18 5 5 6.21 6 5 6.2 1 6 5.28 $\begin{array}{c}
 2 & 6 & 5.63 \\
 3 & 6 & 5.4
 \end{array}$ 4 6 5.13 5 6 5.23 6 6 5.48 1 7 5.13 2 7 5.48 7 5.33 3 7 5.11 4 5 7 5.43 6 7 5.43 1 8 5.18 2 8 5.5 385.32 4 8 5.18 5 8 5.18 6 8 5.26 1 9 5.13 2 9 5.33 3 9 5.26 4 9 5.01 5 9 5.08 6 9 5.1 PROC GLM DATA=MOHAMEDKAMAL; CLASS REPS TRT; MODEL Yield = REPS TRT; CONTRAST 'Linear TRT -4 -3 -2 -1 0 1 2 3 4; CONTRAST 'Quadr' TRT 28 7 -8 -17 -20 -17 -8 7 28; CONTRAST 'CUBIC' TRT -14 7 13 9 0 -9 -13 -7 14; CONTRAST 'QUART' TRT 14 -21 -11 9 18 9 -11 -21 14; MEANS TRT/LSD; RUN;

ويمكن إدخال البيانات بالشكل التالى

DATA MOHAMEDKAMAL; DO REPS = 1 TO 6;DO TRT = 1 TO 9;INPUT YIELD @@;OUTPUT; END; END; CARDS; 4.80 4.63 3.98 4.05 4.51 4.32 5.03 5.20 4.03 4.13 4.83 4.85 5.12 5.23 4.28 4.60 5.63 5.28 5.28 5.68 5.01 4.83 6.31 5.85 5.29 5.53 5.36 5.18 6.21 6.20 5.28 5.63 5.40 5.13 5.23 5.48 5.13 5.48 5.33 5.11 5.43 5.43 5.18 5.50 5.32 5.18 5.18 5.26 5.12 5.2 5.2 5.0 5.0 5.0 5.0 5.0 CARDS; 5.13 5.33 5.26 5.01 5.08 5.10 PROC GLM DATA=MOHAMEDKAMAL; CLASS REPS TRT; MODEL Yield = REPS TRT; CONTRAST 'Linear' TRT -4 -3 -2 -1 0 1 2 3 4; CONTRAST 'Quadr' TRT 28 7 -8 -17 -20 -17 -8 7 28; CONTRAST 'CUBIC' TRT -14 7 13 9 0 -9 -13 -7 14; CONTRAST 'QUART' TRT 14 -21 -11 9 18 9 -11 -21 14; MEANS TRT/LSD; RUN;

The GLM Procedure										
	Class Level Information									
Class	Levels	Values								
REPS	6	12345	6							
TRT	9	12345	6	7	8	9				

Number of observations 54 The GLM Procedure

Dependent Variable: YIELD

Source		DF	Sum Squar	of es	Mean	Square	F	Value	Pr > F
Model		13	10.366351	.85	0.79	741168		10.05	<.0001
Error		40	3.174796	530	0.07	936991			
Corrected Total		53	13.541148	815					
	R-Square	Co	eff Var	Root M	ISE	YIELD	Mean		
	0.705545	2	.475954	0.2817	27	5.14	4015		
Source		DF	Туре І	SS	Mean	Square	F	Value	Pr > F
REPS TRT		5 8	2.797770 7.568581)37 48	0.55 0.94	955407 607269		7.05 11.92	<.0001 <.0001
Source		DF	Type III	SS	Mean	Square	F	Value	Pr > F
REPS TRT		5 8	2.797770 7.568581)37 48	0.55 0.94	955407 607269		7.05 11.92	<.0001 <.0001
Contrast		DF	Contrast	SS	Mean	Square	F	Value	Pr > F
Linear Quadr CUBIC QUART		1 1 1 1	2.819610 4.040727 0.097860 0.285975	000 737 062 603	2.81 4.04 0.09 0.28	.961000 072737 786062 597503		35.52 50.91 1.23 3.60	<.0001 <.0001 0.2735 0.0649
			The GLM Pro	cedure					

t Tests (LSD) for YIELD

NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

101

	A E C L	lpha rror rror ritic east	Degre Mean al Va Signi	reedom Difference	0.05 40 0.07937 2.02108 0.3287	5) 7 3 7	
Means	with	the s	ame 1	etter an	re not signi	ficant	y different.
	t	Grou	ping		Mean	Ν	TRT
			A		5.6283	6	5
	В	A A A A	A		5.4933	6	4
	B		A	С	5.3583	6	6
	B A B D A	A	C C	5.3183	6	7	
	B D R D				5.2700	6	8
		11		(

D C 5.1517 6 9 D 5.0233 6 3 E 4.6783 6 2 E 4.3817 6 1

ستاہیں اشاری انڈیز انڈیز CORR, NONPARAM, REGR and MULTIREG

مقاييس التلازم

CORR =

يمكن حساب الارتباط البسيط (معامل ارتباط المعامل ارتباط المعامل ارتباط ومعامل ارتباط ومعامل ارتباط ومعامل التباط (معامل التباط ومعامل المستقل والأخر يمثل العامل التابع من خلال الأمر CORR رقم ١٣ في النافذة الرئيسية لبرنامج MSTAT-C.

الارتباط والانحدار البسيط:

مثال: في تجربة لدر اسة العلاقة بين عدد كيزان الذرة الشامية بالمتر المربع (المتغير X) مع محصول الفدان من الحبوب بالإردب (المتغير Y) تم الحصول علي النتائج التالية و المطلوب حساب معامل الارتباط القياسي و اختبار معنويته؟

Х	4	6	5	7	8	6	7	4	7
Y	13	16	14	20	24	17	21	14	23

قم بإنشاء ملف بيانات باسم CORR وأدخل فيه البيانات بحيث تكون بالشكل التالي.

ase	1 X	2 '
1	4	13
2	6	16
3	5	14
4	7	20
5	8	24
6	6	17
7	7	21
8	4	14
-		

- ۲. ظلل الأمر CORR في النافذة الرئيسية لبرنامج MSTAT-C ثم اضغط Enter في لوحة المفاتيح
- ٣. تظهر نافذة كما بالشكل التالي تحتوي علي خانة أكتب فيها عدد الارتباطات والانحدارات المطلوب حسابها ثم اضغط Enter في لوحة المفاتيح

Enter the number of correlations/regressions to calculate (1 - 2) : 1

٤. تظهر النافذة التالية وفيها يتم تحديد رقم المتغير المستقل والذي سيمثل X ورقم المتغير التابع والذي سيمثل Y كما بالشكل التالي - 121 -

= Press <F1> for a list of variables ______ Enter the variable numbers (1 - 2) for pair number (1) X : 1 Y : 2

د. تظهر النافذة التالية تخبرك بعدد الحالات الموجودة بملف البيانات اضغط Enter
 إذا كان عدد البيانات صحيح أما إذا كان غير صحيح اضغط مفتاح حرف N في لوحة المفاتيح وحدد المدى المطلوب تحليله.

= Get Case Range ______ The data file contains 9 cases. Do you wish to use all cases? Y/N

٦. تظهر نافذة Output Options اختر منها طريقة العرض أو الحفظ كما تعلمنا فيما سبق.

> Output options View output on screen Edit output Print output Save output to disk Quit output options

> > فيما يلى نتيجة التحليل السابق:

```
Data file: CORR¶
Title:
          CORR
Function: CORR
Data case no. 1 to 9
                         _____
Х
Variable 1 Average = 6.00
Variance = 2.00
Variable 2 Average = 18.00
Variance = 17.00
Number = 9
Covariance =
                   5.50
                          Correlation =
                                          0.943
Intercept = 1.50
                  slope = 2.750
                                  Standard Error = 0.366
Student's T value = 7.514 Probability = 0.000
                                                     _____
```

تفسير النتيجة: باستخراج قيمة r الجدولية لدرجة حرية ٩ عند مستوى معنوية ٥٪، ١٪ (تساوى r، ، ، ، ، ، ، ، ، ، ، ، على الترتيب) ومقارنتها بقيمة r المحسوبة (تساوى ، ، ، ، ،) نجد أن المحسوبة أكبر من الجدولية ومن ثم يتضح أنه يوجد ارتباط معنوي جداً وموجب بين المتغيرين مثالي،: في تجربة لدر اسة العلاقة بين المتغيرين X، Y كانت النتائج التالية 5 2 Х 6 3 10 8 7 9 1 4 3 1 5 Y 3 2 Δ 3 6 1 2 المطلوب حساب معامل الارتباط والانحدار قم بعمل ملف بيانات باسم CORR2 و أدخل فيه البيانات بحيث تكون كما بالشكل. التالى 1 X 6 23264313512 Case 1 2 3 4 5 6 7 8 9 10 3 10 8 5 2 7 9 1 ٢. اتبع نفس خطوات المثال السابق وستكون النتيجة كما يلى Data file : ←©CORR2← Title : CORR2 Function : CORR Data case no. 1 to 10 х Variable Average = 9.17 1 5.50 Variance = Variable 3.00 2 Average = Variance = 2.67 Number = 10Covariance = 4.78Correlation = 0.966 Intercept = 0.13 slope = 0.521 Standard Error = 0.049 Student's T value = 10.626 Probability = 0.000_____

تفسير النتبجة:

- من النتيجة السابقة نستنتج أن معادلة خط الانحدار (معادلة الخط المستقيم) وصيغتها العامة v = a + bx تكون كما يلي: y = 0.13 + 0.521 x
- باستخراج قيمة T الجدولية لدرجة حرية n-2 أي ٨ عند مستوى معنوية ٥٪، ١٪ (تساوى ٢,٣٦، ٢,٣٦ على الترتيب) ومقارنتها بقيمة T المحسوبة (تساوى ١٠,٦٢٦) نجد أن المحسوبة أكبر من الجدولية وبالتالي هناك علاقة معنوية جداً (**) بين المتغيرين X، Y ويمكن تمثيل هذه العلاقة في صورة دالية بخط مستقيم ومعادلته هي معادلة خط الانحدار السابقة
- مثالي»: الجدول الآتي يبين إنتاج محصول الذرة Y من المساحة المزروعة بـ X . اختبر معنوية معامل الانحدار عند مستوى معنوية ٥٠,٠٠؟

Area	1	2	3	4	5	6	7	8	9	10
Х	50	200	110	80	120	74.5	88.9	5.7	11	3.5
Y	140	500	400	300	356	240.5	200.6	33.5	69.8	18.7

1 X 50.0

200.0

110.0

120.0

74.5

80.0

قم بعمل ملف بيانات باسم CORR3 وأدخل فيه البيانات بحيث تكون كما يلي.

2 Y 140.0

500.0

400 0

300.0

240.5

200.6

88.9 5.7 33.5 69.8 18.7 8 9 11.0 10 3.5 ٢. اتبع نفس خطوات المثال السابق وستكون النتيجة كما يلي Data file : ←♯CORR3← Title : CORR3 Function : CORR Data case no. 1 to 10 Variable 1 74.36

Case

1 2

3 4

5 6 7

Average = 3747.23 Variance = . Variable 2 225.91 Average =

					تفسير النتيجة:
Student's T va	alue =	9.794	Probabilit	y = 0.000	
Intercept =	35.17	<pre>slope =</pre>	2.565	Standard Error =	0.262
Covariance =	9612.0	1 Corre	lation =	0.961	
Number = 10					
Variance =	26711.92				

يتم تفسير النتيجة بنفس السياق المتبع في المثالين السابقين.

معامل ارتباط الرتب لسبيرمان Spearman rank correlation:

في بعض الحالات **Source Service** في بعض الحالات المجتمع موضع الدراسة أن يكون توزيع هذا المجتمع له توزيع طبيعي أو يقترب منه، لذلك فإن استخدام الاختبار ات المعملية في مثل هذه الحالات قد يؤدي إلى نتائج غير دقيقة، كذلك يفترض أن تكون بيانات الظاهرة موضع الدراسة دقيقة، ولكن في بعض الأحيان يتعذر أخذ قياسات عددية دقيقة على بعض الظواهر، لذلك فإننا نستخدم طرق غير معملية لا تعتمد على شروط معينة تتعلق بتوزيع المجتمع و لا تحتاج إلى قياسات دقيقة.

يمكن حساب معامل ارتباط الرتب (سبيرمان) وذلك في حالة المتغيرات التي يصعب قياسها بوحدات القياس المعروفة مثل صفات اللون والطعم والرائحة والذكاء وغيرها والتي لا تتوزع توزيعاً طبيعياً من خلال الأمر NONPARAM رقم ٣٣ في النافذة الرئيسية لبرنامج MSTAT-C.

مثالى ٤: في در اسة للعلاقة بين لون ثمرة البرتقال وطعم الثمرة اختيرت ٨ برتقالات وأعطيت الرتب لكلا المتغيرين كما في الجدول التالي:

> Color Rank 6 2 3 5 1 4 8 7 Taste Rank 6 3 1 7 2 4 8 5 المطلوب: حساب معامل ارتباط الرتب؟

 قم بإنشاء ملف بيانات باسم SPEARMAN وأدخل فيه البيانات بحيث تكون بالشكل التالي Case 1 Color 2 Taste 62351 6 3 23 1 7 4 5 6 4 4 8 7 ٢. ظلل الأمر NONPARAM في النافذة الرئيسية لبرنامج MSTAT-C ثم اضغط Enter في لوحة المفاتيح ٣. تظهر نافذة تحتوى على قائمة بالاختبارات التي يمكن إجراؤها في حالة المتغيرات.

التي يصعب قياسها بوحدات القياس المعروفة، اختر منها معامل ارتباط الرتب لسبيرمان Spearman's Rank Correlations Coefficient ثم اضغط Enter في لوحة المفاتيح

NONPARAM: Non-Parametric Statistics Originally written by Scott P. Eisensmith C/Panel versions by Steven D. Fischer and Anupam Srivasta Options: Spearman's Rank Correlation Coefficient Wilcoxon's Signed Ranks Test Mann-Whitney Test for Two Independent Samples Kruskal-Wallace Test for Several Independent Samples Wald-Wolfowitz Runs Test McNemar Test for Significant Changes Sign Test with some Variations Press <ESC> to return to the main MSTAT menu.

٤. تظهر النافذة التالية تخبرك بأن هناك ملف بيانات نشط وإذا كنت تريد أن يتم قراءة البيانات من هذا الملف اضغط F أو اضغط K إذا كنت تريد أن يتم إدخال البيانات يدوياً من خلال لوحة المفاتيح. اضغط F

■ NONPARAM: Data Entry =

You have an active data file. Would you like to use it or would you rather enter the data from the keyboard? Press F for file, K for Keyboard: F/K

* F = Data File K = Keyboard تظهر نافذة بالشكل التالي وفيها يتم إدخال معلومات عن المتغيرات الموجودة في ملف البيانات وهي: رقم المتغير ورقم أول حالة في المتغير ورقم أخر حالة في المتغير

NONPARAM: File Info = Variable Number for first set of Observations (1-2): 1 First Case (1-8): 1 Last Case (1-8): 8 Variable Number for second set of Observations (1-2): 2 First Case (1-8): 1 Last Case (1-8): 8

٣. تظهر نافذة Output Options اختر منها طريقة العرض أو الحفظ. فيما يلي نتيجة التحليل السابق:

Data file:	SPEARMAN¶
Title:	SPEARMAN
Function:	NONPARAM
Test:	Spearman's Rank Correlation Coefficient
Using Variab	le 1 (Color) cases 1 to 8.
Using Variab	le 2 (Taste) cases 1 to 8.

Data:	First Observation	Second Observation
1.	6.000	6.000
2.	2.000	3.000
3.	3.000	1.000
4.	5.000	7.000
5.	1.000	2.000
6.	4.000	4.000
7.	8.000	8.000
8.	7.000	5.000

Rank Correlation Coefficient: 0.8333 T is 3.693 with 6 degrees of freedom Signif:0.010

تفسير النتيجة:

باستخراج قيمة T الجدولية لدرجة حرية ٦ عند مستوى معنوية ٥٪، ١٪ (تساوي ٣,٧٠٧، ٢,٤٤٧ على الترتيب) ومقارنتها بقيمة T المحسوبة فنجد أن الأخيرة أكبر من الجدولية عند مستوي معنوية ٥٪ وأقل من الجدولية عند ١٪ وعليه يكون هناك ارتباط موجب ومعنوي (*) بين لون الثمرة وطعمها. مثاله: في تجربة لدراسة العلاقة بين متغيرين A ، B لثمانية أفراد كانت نتائج التجربة كما يلي:

> Var. A 3.5 5 3.5 6 2 1 8 7 7.5 3 3 75 5 Var. B 6 1 3
المطلوب تقدير معامل الرتب:

قم بإنشاء ملف بيانات باسم SPEARMAN2 بحيث يكون شكل البيانات في ملف البيانات بالشكل التالي
 ملف البيانات بالشكل التالي
 Case 1 Var. A 2 Var. B
 6.0
 2.0
 3.0
 3.5
 1.0
 4.5.0
 7.5
 5.0
 7.5
 7.5
 7.5
 7.5
 7.5
 7.5
 7.5
 7.5
 7.5
 7.5
 7.5
 7.5
 7.5
 7.5
 7.5
 7.5
 7.0
 7.5
 8.7
 7.0
 7.5
 8.7
 7.0
 7.5
 8.7
 7.0
 7.5
 8.7
 7.0
 7.5
 8.7
 7.0
 7.5
 8.7
 7.0
 7.5
 8.7
 7.0
 7.5
 8.7
 7.0
 7.5
 8.7
 7.0
 7.5
 8.7
 7.0
 7.5
 8.7
 7.0
 7.5
 8.7
 7.0
 7.5
 7.0
 7.5
 7.5
 7.6
 7.6
 7.7
 7.6
 7.7
 7.6
 7.7
 7.6
 7.7
 7.0
 7.5
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 7.0
 <li

Data file:	SPEARMAN2¶
Title:	SPEARMAN2
Function:	NONPARAM

Test: Spearman's Rank Correlation Coefficient Using Variable 1 (Var. A Rank) cases 1 to 8. Using Variable 2 (Var. B Rank) cases 1 to 8.

Data:	First Observation	Second Observation
1.	6.000	6.000
2.	2.000	3.000
3.	3.500	1.000
4.	5.000	7.500
5.	1.000	3.000
6.	3.500	3.000
7.	8.000	7.500
8.	7.000	5.000

Rank Correlation Coefficient: 0.7381 T is 2.680 with 6 degrees of freedom Signif: 0.037

تفسير النتيجة:

باستخراج قيمة T الجدولية لدرجة حرية ٦ عند مستوى معنوية ٥٪، ١٪ (تساوي ٣,٧٠٧، ٢,٤٤٧ على الترتيب) ومقارنتها بقيمة T المحسوبة نجد أن الأخيرة أكبر من الجدولية عند مستوي معنوية ٥٪ وأقل من الجدولية عند ١٪ وعليه يكون هناك ارتباط موجب ومعنوي (*) بين المتغيرين A، B.

				ن المجموعات	سيط داخل وبي	الانحدار الب
ية لبرنامج	الرئيس	م ٤٠ في النافذة	RECرة	GR الأمر		T۲
ل الانحدار	ب معاما	رض منـه: حساب	M والغ	STAT-C		JK
جمو عات	ين الم	ر مستقل داخل وب	بع والأخ	X &) احدهما تا	متغیر ات (Y ز	لزوج من ال
يل (الغسيل	ن الغس	استخدام نو عين م	الملحية ب	سلاح الأراضي	، تجربة لاست م	مثال ٦: في
ں وحامض	(الجبس	من المصلحات (نـوعين ا	ع) تحت تـأثير	لغسيل المتقط	المستمر وا
F كما يلي.	REGR	في ملف باسم	MSTA	ج إلي برنامج T	أدخلت النتائج	الكبريتيك)
ة (pH):	حموضا	E) علي درجة ال	ربي (C	جة التوصيل الكه	ساب تأثیر در.	المطلوب حد
دas ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	se 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 17 18 19 10 17 18 19 10 17 18 19 10 17 18 19 10 17 18 19 10 17 18 19 19 10 17 18 19 19 10 10 17 18 19 10 10 10 10 10 10 10 10 10 10	1 Leaching 1 1 1 1 1 1 1 1 1 1 1 1 1	2 soil 1 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1	Amendment بي النافذة الرئيس	3 EC 12.11 12.11 11.99 13.18 13.15 13.10 12.77 12.77 12.77 11.17 11.25 11.17 11.25 11.13 10.49 10.34 10.38 9.73 9.73 9.61 8.93 8.94 8.93 7.35 7.34 7.18 e REGR	4 PH 7.99 8.00 8.03 7.76 7.99 7.98 7.69 7.66 7.76 7.91 7.88 7.76 7.91 7.88 7.76 7.91 7.89 7.99 7.99 7.99 8.03 7.99 8.03 7.99 8.03 7.99 8.03 7.99 8.03 7.99 8.03 7.99 8.03 7.99 8.03 7.99 8.03 7.99 8.03 7.99 8.03 7.99 7.99 8.03 7.99
C	,	C		حة المفاتيح	Enter في لو	الادخال
ات اضعط	مجموع	یانات فی شکل ہ	رتيب الب	خبرك بوجوب ن	نافذة التالية ت	۲. تظهر ال
		•		تيح للاستمر ار	في لوحة المفا	Enter
1	Press	s <enter> to conti</enter>	1ue ——		*	1
	Your c You ma If you If you If you	data file must be a ay do this using t ur data is not sor u don't press <esc u wish to continue</esc 	sorted on ne SORT p ted you m > the pro with the	the GROUP variab rogram of MSTAT. ay exit now by pr gram will continu program press <e< td=""><td>les. essing <esc>. e. NTER>.</esc></td><td></td></e<>	les. essing <esc>. e. NTER>.</esc>	

٣. تظهر النافذة التالية، حدد فيها رقم المتغير المستقل وهو درجة التوصيل الكهربي.
(EC) و المتغير التابع وهو درجة الحموضة (pH) ثم اضغط مفتاح الإدخال
Enter في لوحة المفاتيح

Press <F1> for a list of variables
Enter the variable numbers for X and Y (1 - 4)
X : 3
Y : 4

٤. تظهر النافذة التالية، حدد فيها عدد المتغيرات التي يتم استخدمها كمجموعات وبين قوسين يوجد عدد المتغيرات المتاح استخدامه كمجموعات داخل ورقة البيانات ونلاحظ أن بين القوسين العدد المتاح ١: ٢ حيث يوجد متغيرين متاح استخدامهم كمجموعات وهما المتغير الأول والثاني، أكتب في الخانة النشطة ٢ ثم اضغط Enter في لوحة المفاتيح

Enter the number of GROUP variables you will use (1 - 2) : 2

م. تظهر النافذة التالية، حدد فيها أرقام المتغيرات التي يتم استخدامها كمجموعات،
 أكتب في الخانة النشطة ١ ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح
 فينتقل المؤشر إلي الخانة الثانية، أكتب فيها ٢ ثم اضغط مفتاح الإدخال Enter في
 لوحة المفاتيح

Press <F1> for a list of variables ______ Enter the variable number (1 - 4) for GROUP number (2) : 1 Press <F1> for a list of variables ______ Enter the variable number (1 - 4) for GROUP number (2) : 2

Enter ... تظهر نافذة تخبرك بعدد الحالات الموجودة في ملف البيانات اضغط ... للمتابعة أو مفتاح N في لوحة المفاتيح لتحديد المدى المطلوب تحليله ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح

REGR =

٧. تظهر نافذة Output Options اختر منها طريقة العرض أو الحفظ

فيما يلى نتيجة التحليل السابق:

Data f Title:	ile: F REGR	REGR¶						
Functi Data c	on: RE ase no	EGR D. 1	to 24					
REGRES X-vari Y-vari Group	SION able able variab	3 E 4 P oles	C H 1	2				
Fro	m	то	DF	X-BAR	Y-BAR	VAR.>	VAR.y	COVAR
 1 1	1 7 3 9	6 12 18 24	4 4 4 4	12.61 11.97 10.05 8.11	7.92 7.78 7.94 7.95	0.35 0.74 0.16 0.81	0.01 0.01 0.00 0.00 0.01	-0.06 -0.07 -0.01 0.06
Tota With Betw	l in Gr een Gr		22 19 2	10.68	7.90	3.67 0.52 24.74	0.01 0.01 0.04	-0.09 -0.02 -0.54
Fro	m 	то	DF	r	a	b	s.b	t P%
1	1 7 3 9	6 12 18 24	4 4 4	-0.7917 -0.7939 -0.4440 0.6031	9.9171 8.8817 8.3560 7.3682	-0.1580 -0.0923 -0.0416 0.0719	0.0610 -2.59 0.0354 -2.61 0.0420 -0.99 0.0476 1.51	21 0.061 15 0.059 09 21 0.205
Tota With Betw	 1 in een		22 19 2	-0.3873 -0.2593 -0.5387	8.1461	-0.0232 -0.0347 -0.0216	0.0118 -1.97 0.0296 -1.17 0.0239 -0.90	06 0.061 05 0.256 44

TEST FOR DIFFERENCES BETWEEN LEVEL REGRESSIONS

ANALYSIS OF VARIANCE TABLE

Source	Degrees of Freedom	Sum of Squares	Mean Square	F Value	Prob
Differences Differences in Error Differences in Error	6 level 3 19 angle 3 16	0.172 0.087 0.172 0.085 0.085	0.029 0.029 0.009 0.028 0.028 0.005	5.27 3.19 5.23	0.004 0.047 0.010

Abbreviation: correlation (r), Y intercept (a), slope (b), standard error of the slope (s.b), the t-value (t) and the significant probability of the null hypotheses \times 100% (P%)

الانحدار المتعدد (المركب):

الأمر MULTIREG الأمر MULTIREG والنافذة الرئيسية لبرنامج mSTAT-C والغرض منه: حساب الانحدار المتعدد لمتغير تابع وعدد من المتغيرات المستقلة.

X ₁	110.5	105.4	118.1	104.5	93.6	84.1	77.8	75.6
\mathbf{X}_{2}	14.5	16	14.5	18.2	15.4	17.6	17.9	19.4
Y	5755	5939	6010	6545	6730	6750	6899	7862

آ. قم بإنشاء ملف بيانات باسم MULTIREG و أدخل فيه البيانات كما يلي

ase	1 X1	2 X2	3 Y
1 2	10.5	14.5	5755.0
3	118.1	14.5	6010.0
4	104.5	18.2	6545.0
5	93.6	15.4	6730.0
6	84.1	17.6	6750.0
7	77.8	17.9	6899.0
8	75.6	19.4	7862.0

- ٢. ظلل الأمر MULTIREG في النافذة الرئيسية لبرنامج MSTAT-C ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح
- ٣. تظهر نافذة كما بالشكل التالي تحتوي علي خانة نشطة أكتب فيها رقم المتغير التابع
 ٢ ثم اضغط في لوحة المفاتيح Enter

٤. تظهر النافذة التالية والتي تحتوي علي قائمة بالمتغيرات الموجودة في ملف البيانات اختر منها المتغيرات المستقلة وهي X1 والمتغير X2 وذلك من خلال الأسهم الموجودة في لوحة المفاتيح ومفتاح المسافة Spacebar ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح

Choose up to 2 variables (Press ESC to quit) = 01 (NUMERIC) X1 ▶02 (NUMERIC) X2 03 (NUMERIC) Y

 و. تظهر النافذة التالية تخبرك بعدد الحالات الموجودة في ملف البيانات اضغط Enter للمتابعة إذا كان العدد مضبوط أو مفتاح N في لوحة المفاتيح لتحديد المدى المر اد تحليله ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح

144.

= Get Case Range —————— The data file contains 8 cases. Do you wish to use all cases? Y/N

٦. تظهر نافذة كما بالشكل التالي تحتوي علي قائمة المصفوفات التي يمكن حسابها وإظهار ها في المخرجات، وبالتالي اضغط مفتاح Y في لوحة المفاتيح ليتم حسابها وظهور ها في النتيجة النهائية أو اضغط مفتاح N في لوحة المفاتيح وبالتالي لن يتم حسابها ولن تظهر في المخرجات.

٧. تظهر النافذة التالية تسألك: هل تريد تخزين المتبقيات في ملف البيانات؟ اضغط مفتاح Y للموافقة وفي هذه الحالة يلزم تعريف متغير جديد لتخزين المتبقيات فيه أما إذا تم الضغط علي مفتاح N في لوحة المفاتيح فلن يتم تخزين المتبقيات ثم اضغط Enter للمتابعة. اضغط N للرفض

٨. تظهر نافذة Output Options اختر منها طريقة العرض أو الحفظ.

= Output options ______ View output on screen Edit output Print output Save output to disk Quit output options

فيما يلى نتيجة التحليل السابق:

Data file : MULTIREG¶ Title : MULTIREG

Function : MULTIREG Data case no. 1 to 8 X1 X2 Y Uncorrected Mean Sum of Squares Minimum Maximum Sum _____ ____ 75.60118.10769.6096.20075789.2414.5019.40133.5016.6882251.435755.007862.0052490.006561.250347611516.00 1 3 _ _ _ ----------8 Cases read 0 Missing cases discarded Uncorrected Sums of Squares and Cross Products Matrix 1 2 3 7.57892e+004 12 1.26839e+004 2.25143e+003 4.98434e+006 8.83192e+005 Corrected Sums of Squares and Cross Products Matrix -----·-----_____ 2 1 З 1 1.75372e+003 2 -1.58840e+002 2.36488e+001 3 -6.51940e+004 7.26552e+003 3.21150e+006 Variance - Covariance Matrix 1 _____ 2 3 1 2.50531e+002 -2.26914e+001 3.37839e+000 -9.31343e+003 1.03793e+003 4.58786e+005 2 Correlation Matrix 1 2 3 1.000 -0.780 -0.869 1 2 1.000 0.834 1.000 Determinant of matrix = 0.391653X'X Inverse Matrix 2 1.45592e-003 1 2 9.77889e-003 1.07967e-001 Coefficient Variance - Covariance Matrix _____ 2 1 1.71227e+002 2 1.15007e+003 1.26977e+004 Coefficient Correlation Matrix ------1 2 1.000 1 0.780 2 0.780 1.000 2 0.780 1.000 Variable Regression Standard Std. Partial Std. Err. of Student Number Coefficient Error Regr. Coeff. Partial Coef T Value Prob. -----1 -2.3869e+001 1.3085e+001 -5.5777e-001 3.0578e-001 -1.824 0.111 2 1.4691e+002 1.1268e+002 3.9866e-001 3.0578e-001 1.304 0.234 Intercept Intercept Coefficient of Determination (R-Square) = = 6405.8469680.817 Adjusted R-Square 0.744 0.904 Multiple R = Standard Err of Est. 342.939 ANALYSIS OF VARIANCE TABLE Sum of Squares df F uares df Mean Square Sianif -----
 Regression
 2623467.021612
 2
 1311733.51081
 11.15
 0.014

 Residual
 588036.478388
 5
 117607.29568

 Total
 3211503.500000
 7

RESIDUAL TABLE

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.4186 -0.8796 0.8539 -0.1176 0.8627 -0.6827 -0.8152 1.1972

Durbin-Watson Statistic = 2.315559

GETDEF =

انتبه: بفرض أنك اخترت Yes في الخطوة رقم ٦ ستظهر رسالة تخبرك بأنك ربما تحتاج لمتغير جديد لتخزين المتبقيات فيه أو يمكنك استخدام متغير موجود بالفعل، اضغط Enter للاستمر ار

تظهر نافذة تسألك هل تريد إنشاء متغير جديد وستكون الإجابة بالرفض عند الضغط على مفتاح حرف N وبالتالي سوف نختار متغير موجود بالفعل أو تكون بالموافقة عن طريق الضغط على مفتاح حرف Y وبالتالي سوف تظهر نافذة لتعريف المتغير الجديد وسوف نطلق عليه اسم Residuals مثلا

Do you want to establish new variables Yes

بالتالي عند الدخول إلي ملف البيانات سوف نجد متغير جديد باسم Residuals يحتوي على المتبقيات كما يلي

Case 1 2 3 4 5	1 X1 110.5 105.4 118.1 104.5 93.6 84.1	2 X2 14.5 16.0 14.5 18.2 15.4 17.6	3 Y 5755 5939 6010 6545 6730	4 Residuals -143.6 -301.7 292.8 -40.3 295.8 -234.1	
7	77.8	17.9	6899 7862	-279.6	
0	75.0	19.4	7802	410.0	تفسير النتيجة:
يتم تفسير النتيجة هي	ن خلالها ب	ة والتي م	جة السابق	وجودة في النتي	أهم الجداول المو
•• '				**	الجداول التالية

- 110 -	-	۱	۷	٥	-
---------	---	---	---	---	---

/ariable Number	Regression Coefficient	Standard Error	Std. Pa Regr. C	rtial oeff.	Std. Err. o Partial Coe	f Studer f T Valu	nt Je Prob.		
1 2	-2.3869e+001 1.4691e+002	1.3085e+001 1.1268e+002	-5.5777 3.9866	e-001 e-001	3.0578e-00 3.0578e-00	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24 0.111 04 0.234		
Intercept = 6405.846968 Coefficient of Determination (R-Square) = 0.817 Adjusted R-Square = 0.744 Multiple R = 0.904 Standard Err of Est. = 342.939 ANALYSIS OF VARIANCE TABLE									
	Sum of	Squares	df	Меа	n Square	F	Signif		
Regress Residua Total	sion 2623467 al 588036 3211503	.021612 .478388 .500000	2 5 7	13117 1176	33.51081 07.29568	11.15	0.014		

- الجدول الأول يوضح
- معامل الانحدار (b) للمتغيرات المستقلة فنجد
 أنها تساوي -٢٣,٨٧ للمتغير المستقل الأول (X1) وهو ارتفاع النباتات،
 المتغير المستقل الثاني وهو عدد الأشطاء (X2).
- أسفل الجدول يوجد قيمة Intercept و التي تمثل قيمة a وهي تساوي
 أسفل الجدول يوجد قيمة Intercept و التي تمثل قيمة a وهي تساوي
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠٥,٨٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
 ٢٤٠,٩٥
- ومن المعادلة نستنج أن ارتفاع النباتات يؤدي إلى انخفاض كمية المحصول
 بينما زيادة عدد الأشطاء يؤدي إلى ارتفاع كمية المحصول
- ٢. الجدول الثاني يمثل جدول تحليل التباين ومن خلاله نحصل علي قيمة F المحسوبة وهي تساوي ١١,٥ وعند استخراج قيمة F الجدولية لدرجات حرية تساوي ٢، ٥ عند مستوي معنوية ٥٪، ١٪ نجدها تساوي ١٣,٢٧، ٥,٧٩ علي الترتيب وبالتالي عند مقارنة قيمة F الجدولية بالمحسوبة نجد أن قيمة F المحسوبة أكبر من الجدولية عند مستوي معنوية ٥٪ وأقل عند ١٪ وعلية توجد علاقة معنوية (*) بين المتغير التابع والمتغيرات المستقلة.

مثالم : في مثال ٢ كون جدول تحليل التباين للانحدار باستخدام الأمر MULTIREG وناقش النتيجة؟

1. قم بفتح ملف البيانات CORR2 بإتباع الخطوات التالية

$FILES \lrcorner \to Open \lrcorner \to F1 \to C: \backslash MSTATC \backslash DATA \backslash CORR2 \lrcorner$

٢. ظلل MULTIREG في النافذة الرئيسية للبرنامج ثم اتبع الأشكال التالية

= Press <F1> for a list of variables =

Enter the DEPENDENT (Yield) variable number (1 - 2) : 2

Enter →

Choose up to 2 variables (Press ESC to quit) = ▶01 (NUMERIC) X 02 (NUMERIC) Y

Enter →

Get Case Range
 The data file contains 10 cases.
 Do you wish to use all cases? Yes

Enter →

Enter →

Enter↓

Output options View output on screen Edit output Print output Save output to disk Quit output options

سوف تظهر النتيجة بالشكل التالي

Data file : *D*REGR¶ Title : REGR Function : MULTIREG Data case no. 1 to 10 X Uncorrected Minimum Maximum Sum Mean Sum of Squares 5.500 1.00 55.00 10.00 385.00 1 1.00 30.00 3.000 114.00 6.00 10 Cases read 0 Missing cases discarded Determinant of matrix = 1.000000Variable Regression Standard Std. Partial Std. Err. of Student Regr. Coeff. Partial Coef Number Coefficient Error т Value Prob. 1 5.2121e-001 4.9050e-002 9.6635e-001 9.0941e-002 10.626 0.000 Intercept = 0.1333330.934 0.926 Coefficient of Determination (R-Square) Adjusted R-Square 0.966 Multiple R = Standard Err of Est. 0.446 = ANALYSIS OF VARIANCE TABLE Sum of Squares df Mean Square F Signif 22.412121 Regression 22.41212 0.000 1 112.92 Residual 1.587879 24.000000 8 0.19848ğ Total تفسير النتيجة:

من الجدول الثاني يتضح أن قيمة T المحسوبة (تساوي ١٠,٦٢٦) وباستخراج قيمة T الجدولية لدرجة حرية n-2 أي ٨ عند مستوى معنوية ٥٪، ١٪ (تساوي n,٣٦، ٢,٣٦ على الترتيب) ومقارنتها بقيمة T المحسوبة نجد أن المحسوبة أكبر من الجدولية وبالتالي هناك علاقة معنوية جداً (**) لذا يمكن القول بأنه توجد علاقة معنوية جدا موجبة بين المتغيرين X، Y ويمكن تمثيل هذه العلاقة في صورة دالية بخط مستقيم ومعادلته هي معادلة خط الانحدار التالية

y = 0.13 + 0.521 x

ومن الجدول الثالث (جدول تحليل التباين) يتضح أن قيمة F المحسوبة تساوي المن الجدول الثالث (جدول تحليل التباين) يتضح أن قيمة F المحسوبة مرد، ١٢,٩٢ وباستخراج قيمة F الجدولية عند مستوي معنوية ٥٪، ١٪ (تساوي ٥,٣٢،، ١، ٢٦ المحسوبة أكبر من الجدولية و عليه يمكن القول بأنه

توجد علاقة حقيقية ومعنوية جدا (**) بين المتغيرين x ، y ويمكن تمثيل هذه العلاقة بالمعادلة السابقة.

		SA	برنامج AS	ل باستخدام	رتباط البسيم	ب معامل الا ة (١٦٠)	ق ۱: حسام ب: صفح	ملد مثال
DATA INPUT CARDS 4 13 6 16 5 14 7 20 8 24 6 17 7 21 4 14 7 23 ;	MOHAMEDKAMAL; Y X Y; ;;							
PROC VAR >	CORR DATA=MOHAME	DKAMAL P	EARSON SPEARMA	N HOEFFDING;				
RUN;			т	he CORR Proced	ure			
			2 Varia	bles: X	Y			
			S	imple Statisti	cs			
	Variable	N	Mean	Std Dev	Median	Minimum	Maximum	
	X Y	9 9	6.00000 18.00000	1.41421 4.12311	6.00000 17.00000	4.00000 13.00000	8.00000 24.00000	
			Pearson Corr Prob	elation Coeffi > r under HO	cients, N = 9 : Rho=0			
				X	Y			
			Х	1.00000	0.94324 0.0001			
			Y	0.94324 0.0001	1.00000			
			Spearman Corr Prob >	elation Coeffi r under H0:	cients, N = 9 Rho=0			
				х	Y			
			Х	1.00000	0.96589 <.0001			
			Y	0.96589	1.00000			
			Hoeffding Dep Prob	endence Coeffi > D under HO:	cients, N = 9 D=0			
				х	Y			
			х	0.56498 <.0001	0.53088 0.0001			
			Y	0.53088 0.0001	0.91791 <.0001			
				ما يلي	والمستقل كه	تغير التابع	ن تحديد الم	يمكر

DATA MOHAMEDKAMAL; INPUT X Y; CARDS; 4 13 6 16 5 14 7 20 8 24 6 17 7 21 4 14 7 23 ; PROC CORR DATA=MOHAMEDKAMAL PEARSON SPEARMAN HOEFFDING; VAR Y; WITH X; RUN;

	-	۱	٨	٠	-
--	---	---	---	---	---

		Th	ne CORR Proced	ıre			
		1 With 1	Variables: Variables:	X Y			
		Si	mple Statisti	38			
Variable	N	Mean	Std Dev	Median	Minimum	Maximum	
X Y	9 9	6.00000 18.00000	1.41421 4.12311	6.00000 17.00000	4.00000 13.00000	8.00000 24.00000	
		Pearson Corre Prob >	elation Coeffi r under H0	cients, N = 9 : Rho=0			
			Y				
		Х	0.943	24 01			
		Spearman Corre Prob >	elation Coeffi r under H0:	cients, N = 9 Rho=0			
			У				
		х	0.965	39 D1			
		Hoeffding Depe Prob	endence Coeffi > D under H0:	cients, N = 9 D=0			
			Y				
		х	0.530	38 01			
SAS فمثلاً إذا	برنامج	P باستخدام	artial co	rrelation	ط الجزئي*	ساب الارتباد	2
الثلاثة متغيرات	اط بين	يجاد الارتب	A, ونريد إ	B, C, D	ة متغير ات	ن هنـاك أربع	کا
ذلك كما يلي	دم لفعل ا	كود المستخد	D) يكون ال	ير الرابع (ماد أثر المتغ	أولي مع استب	الا
<pre>PROC CORR DATA= VAR A B C; PARTIAL D; RUN;</pre>	(Data f.	ile name) P	PEARSON SPE	ARMAN HOEFI	FDING;		
					ة (۱۶٤)	ال _{٤:} صفد	â
DATA MOHAMEDKAMAL; INPUT Color Taste; CARDS; 6 6 2 3 3 1 5 7 1 2 4 4 8 8 8 7 5 ; PROC CORR DATA=MOHAM RUN;	1EDKAMAL SE	YEARMAN ;					

^{*} الارتباط الجزئي هو عبارة عن مقياس لقوة واتجاه الارتباط بين متغيرين كميين بعد استبعاد اثر متغير كمي ثالث حيث يلاحظ انه بالرغم من أن قيمة معامل الارتباط بيرسون قد تكون كبيرة ولكن لا يمكن الاعتماد عليها لكونه يعتمد في قياسه على متغيرين فقط ، فقد يوجد متغير ثالث يؤثر في المتغيرين ولهذا برزت أهمية معامل الارتباط الجزئي

The CORR Procedure

2 Variables: Color Taste

Simple Statistics

Variable	Ν	Mean	Std Dev	Median	Minimum	Maximum
Color	8	4.50000	2.44949	4.50000	1.00000	8.00000
Taste	8	4.50000	2.44949	4.50000	1.00000	8.00000

Spearman Correlation Coefficients, N = 8 Prob > |r| under H0: Rho=0

	Color	Taste
Color	1.00000	0.83333 0.0102
Taste	0.83333 0.0102	1.00000

- 1 / 7 -			وزها	أيينى الغا	النصل الثامن مذ
•	ن	مجموعات	حدار بين ال	معامل الاد (۱٦۸)	ملحق ۲: حساب مثال ٦: صفحة
DATA MOHAMEDKAMAL;					
<pre>INPUT Leaching Soil EC PH; CARDS;</pre>					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
1 1 11.99 8.03					
1 1 13.15 7.79					
1 1 13.10 7.98 1 2 12.77 7.69					
1 2 12.77 7.66 1 2 12.72 7.76					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
1 2 11.13 7.76					
2 1 10.49 7.91 2 1 10.34 7.97					
2 1 10.38 7.89 2 1 9.73 7.99					
2 1 9.73 7.94 2 1 9.61 7.93					
2 2 8.93 8.03 2 2 8 94 7 99					
2 2 8.93 8.02					
2 2 7.35 7.74					
2 2 7.18 7.95					
<pre>PROC REG DATA=MOHAMEDKAMAL; BY Leaching Soil;</pre>					
MODEL PH = EC; RUN;					
	I 02	ahina-1 Soi	1-1		
	The	REG Proced	ure		
	M Depend	odel: MODEL ent Variabl	1 e: PH		
	Anal	ysis of Var	iance		
		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model Error	1	0.04347	0.04347	6.72	0.0605
Corrected Total	5	0.06935	0.00017		
Root MSE		0.08043	R-Square	0.6268	
Dependent Coeff Vai	t Mean	7.92500 1.01495	Adj R-Sq	0.5335	
	Para	meter Estim	ates		
	Daramet	er St	andard		
Variable DF	Estima	te	Error t Va	lue Pr>	t
Intercept 1	9.917	09 0	.76922 12	.89 0.0	002
	Lea	ching=1 Soi	1=2		
	The M	REG Proced odel: MODEL	ure 1		
	Depend	ent Variabl	e: PH		
	Anal	ysis of Var	iance		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	- 0.03160	0.03160	6.82	0.0593
Error Corrected Total	4	0.01853	0.00463		
Root MSE		0.06807	R-Square	0.6303	
Dependent Coeff Var	r Mean r	0.87530	Adj K-Sq	0.5379	

Parameter Estimates

Variable Name ECDF EstimateStandard Errort Value Error $\mathbf{P} > t $ intercept SC1-0.092330.03556-2.610.0001 0.0553Hale SC Procedure Model: MODEL' Dependent Variable: PRData Scille ScilleSurceMade SquaresF Value Squares $\mathbf{P} > \mathbf{F} > \mathbf{F}$ Model Scille Scille0.001360.980.3778Error Corrected Total10.00136 S0.001380.00138Totameter EstimateModel DF0.03717 Scinet dot dd R-Sg 0.001380.1973 dd R-Sg dd R-Sg dd R-Sg dd R-Sg dd R-Sg0.1973 dd R-Sg dd R-Sg d		Pai	ameter Estimate	-8		
Intercept 1 0.8815 0.42407 20.94 0.0011 BC 1 -0.0923 0.0353 -2.61 0.0593 Intercept Intercept Intercept Intercept Intercept Intercept Intercept Note: Intercept Sum of Mean Corrected Total Sum of Mean Corrected Total Dependent Mean 7.9383 Corrected Total Extinate Extinate Mainter Estimate Mainter Mean Corrected Total 5 Mainter Estimate Sum of Mean Sum of Square F Value Pr > F <td cols<="" td=""><td>Variable</td><td>Paramet DF Estima</td><td>er Standa te Err</td><td>ard For t Value</td><td>Pr > t </td></td>	<td>Variable</td> <td>Paramet DF Estima</td> <td>er Standa te Err</td> <td>ard For t Value</td> <td>Pr > t </td>	Variable	Paramet DF Estima	er Standa te Err	ard For t Value	Pr > t
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $	Intercept EC	1 8.881 1 -0.092	75 0.424 33 0.035	107 20.94 536 -2.61	<.0001 0.0593	
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $		Lea	ching=2 Soil=1			
$Hodd : MODELI Bogendent Variable: PH Hodd : MODELI Dependent Variable: PH Analysis of Variance \frac{DF}{Quares} & Mean \\ Square FValue Pr > F Model 1 0.00136 0.00138 0.98 0.3778 Corrected Total 5 0.00553 0.00138 Corrected Total 5 0.00688 Root MSE 0.03717 R-Square 0.1971 Dependent Mean 7.93833 Adj R-Sq -0.0036 Coeff Var Demeter Estimates \frac{Variable DF}{Variable DF} & Standard Total Pr > t Intercept 1 8.35602 0.42178 19.81 <.0001 EC 1 -0.04157 0.04195 -0.99 0.3778 Dependent Variable: PH Dependent Variable: PH Dependent Variable: PH Nalysis of Variance \frac{Variable DF}{Variable DF} & Standard Total Pr > t Intercept 1 8.35602 0.42178 19.81 <.0001 EC 1 -0.04157 0.04195 0.99 0.3778 Dependent Variable: PH Nalysis of Variance Nalysis of Variance Nadel: MODELI Dependent Variable: PH Nalysis of Variance \frac{Variable Mean 7.95167 0.02015 2.29 0.2051}{Variance Square Square Value Pr > F} \frac{Model 1 0.02105 0.02021 0.00921}{Variance Square Square Value Pr > F} \frac{Model 1 0.02105 0.02021 0.00921}{Variance Square Squa$		The	DEC Drogoduro			
Source DF Sum of Square Mean Square F Value Pr > F Model 1 0.00155 0.00136 0.98 0.3778 Error 0.00135 0.00136 0.98 0.3778 Dependent Mean 0.0371 R-Square 0.1971 Dependent Mean 0.0371 R-Square 0.1971 Dependent Mean 0.0371 R-Square 0.1971 Dependent Mean 0.0370 Adj R-Sg 0.1971 Dependent Mean 0.0370 Adj R-Sg 0.1971 Dependent Mean 0.0370 Adj R-Sg 0.0002 Intercept 1 8.35602 0.42178 19.81 <0.001		ne Depend	odel: MODEL1 ent Variable: F	РН		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Anal	ysis of Varianc	e		
Model 1 0.00136 0.00136 0.98 0.3778 Error 4 0.00583 0.00138 0.0171 Root MSE 0.03717 R-Square 0.1971 Dependent Mean 0.46824 0.46824 0.0036 Dependent Mean Coeff Var 0.46824 0.46824 Dependent Mean Variable Pr Standard Variable P Standard Standard Scoret 1 -0.04175 0.42178 19.81 <.0001	Source	DF	Sum of Squares	Mean Square F	Value Pr > F	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Model	1	0.00136	0.00136	0.98 0.3778	
Root MSE 0.03717 R-Square 0.1971 Dependent Mean 7.93833 Adj R-Sq -0.0036 Coeff Var Parameter Standard Error t Value $Pr > t $ Intercept 1 8.35602 0.42178 19.81 <.0001	Error Corrected Total	4	0.00553 0.00688	0.00138		
$\begin{array}{c cccc} Root MSE & 0.03717 & R-Square & 0.1971 \\ \hline Pependent Mean & 7.93833 & Adj R-Sq & -0.0036 \\ \hline \\ $		-				
Parameter Standard EstimateVariableDFEstimateStandard EstimateProvt ValuePr > t Intercept18.356020.4217819.81<.0001 ECC1-0.041570.04195-0.990.3778Leaching=2 soil=2The REG Procedure Model: MODEL1 Dependent Variable: PHAnalysis of VarianceSourceDFSquaresSquare SquareF ValuePr > FModel10.021050.021052.290.2051Error40.036830.009210.009210.2046Corrected Total50.057880.009210.2046Dependent Mean T.95167Adj R-Sq0.3637 0.2046Corrected Total50.05788Errort ValuePr > t Intercept17.368210.3878519.00<.0001	Roc Dep Coe	ot MSE pendent Mean eff Var	0.03717 R- 7.93833 Ad 0.46824	-Square 0.1 lj R-Sq -0.0	971 036	
VariableDFParameter EstimateStandard ErrorPr > t Intercept1 8.35602 0.42178 19.81 <.0001		Para	meter Estimates	3		
VariableDFEstimateErrort Value $Pr > t $ Intercept18.356020.4217819.81<.0001		Paramet	er Standa	ard		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Variable	DF Estima	te Err	or t Value	Pr > t	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Intercept EC	1 8.356 1 -0.041	02 0.421 57 0.041	.78 19.81 .95 -0.99	<.0001 0.3778	
HIGHING FINITE Here REG Procedure Model: MODEL1 Dependent Variable: PH Analysis of Variance Sum of Mean Source DF Squares Square FValue Pr > F Model 1 0.02105 0.02105 2.29 0.2051 Error 4 0.03683 0.00921 Corrected Total 5 0.05788 Root MSE 0.09596 R-Square 0.3637 Dependent Mean 7.95167 Adj R-Sq 0.2046 Coeff Var 1.20675 Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > t Intercept 1 7.36821 0.38785 19.00 <.0001 EC 1 0.07193 0.04757 1.51 0.2051		Lea	ching=2 Soil=2			
Model: MODELI Dependent Variable: PHAnalysis of VarianceSum ofMean SquaresSquareF Value $Pr > F$ Model10.021050.021052.290.2051Error40.036830.009210.00921Corrected Total50.057880.09596R-Square0.3637Root MSE0.09596R-Square0.3637Dependent Mean7.95167Adj R-Sq0.2046Coeff Var1.20675Parameter EstimatesParameterStandard ErrorT Value $Pr > t $ Intercept17.368210.3878519.00<.0001		The	DEC Drogoduro			
Analysis of VarianceSource DF Square SquaresMean Square $Square$ F Value $Pr > F$ Model Error10.02105 40.02105 		The M Depend	REG Procedure Nodel: MODEL1 Nent Variable: F	РН		
SourceDFSum of SquaresMean SquareF ValuePr > FModel Error Corrected Total10.02105 50.02105 0.036832.290.2051Root MSE Dependent Mean Coeff Var0.09596 1.20675R-Square Adj R-Sq0.3637 0.2046 \cdot Parameter EstimatesVariableDFParameter EstimateStandard 		Anal	ysis of Varianc	e		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Source	DF	Sum of Squares	Mean Square F	Value Pr > F	
Bodel 1 0.02103 0.02103 2.29 0.2031 Error 4 0.03683 0.00921 0.00921 Corrected Total 5 0.05788 Root MSE 0.09596 R-Square 0.3637 Dependent Mean 7.95167 Adj R-Sq 0.2046 Coeff Var 1.20675 0.2046 Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > t Intercept 1 7.36821 0.38785 19.00 <.0001	Model	1	0 02105	0 02105	2 29 0 2051	
Corrected Total 5 0.05788 Root MSE 0.09596 R-Square 0.3637 Dependent Mean 7.95167 Adj R-Sq 0.2046 Coeff Var 1.20675 Parameter Standard Parameter Estimates Variable DF Estimate Error t Value Pr > t Intercept 1 7.36821 0.38785 19.00 <.0001	Error	4	0.03683	0.00921	2.29 0.2051	
Root MSE 0.09596 R-Square 0.3637 Dependent Mean 7.95167 Adj R-Sq 0.2046 Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > t Intercept 1 7.36821 0.38785 19.00 <.0001	Corrected Total	5	0.05788			
Dependent Mean 7.95167 Adj R-Sq 0.2046 Coeff Var 1.20675 Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > t Intercept 1 7.36821 0.38785 19.00 <.0001 EC 1 0.07193 0.04757 1.51 0.2051	Rod	ot MSE	0.09596 R-	Square 0.3	637	
Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > t Intercept 1 7.36821 0.38785 19.00 <.0001	Der Coe	pendent Mean eff Var	7.95167 Ac 1.20675	ij R-Sq 0.2	046	
Parameter EstimatesParameterStandardVariableDFEstimateErrort ValuePr > t Intercept17.368210.3878519.00<.0001						
Parameter Standard Variable DF Estimate Error t Value Pr > t Intercept 1 7.36821 0.38785 19.00 <.0001		Para	meter Estimates	3		
Intercept 1 7.36821 0.38785 19.00 <.0001 EC 1 0.07193 0.04757 1.51 0.2051	Variable	Paramet DF Estima	er Standa te Err	ard for t Value	Pr > t	
EC 1 0.07193 0.04757 1.51 0.2051	Intercept	1 7.368	21 0.387	/85 19.00	<.0001	
	EC	1 0.071	.93 0.047	1.51	0.2051	

ملحق ٣: الانحدار البسيط والمتعدد باستخدام برنامج SAS مثالى، صفحة (١٧١)

DATA MOHAMEDKAMAL; INPUT X1 X2 Y; CARDS; 110.5 14.5 5755 105.4 16.0 5939 118.1 14.5 6010 104.5 18.2 6545 93.60 15.4 6730 84.10 17.6 6750 77.80 17.9 6899 75.60 19.4 7862

PROC REG DATA=MOHAMEDKAMAL; MODEL Y=X1 X2; RUN;

The REG Procedure Model: MODEL1 Dependent Variable: Y

Analysis of Variance

3467 1311733 11.15 8037 117607 1504	0.0143
	8037 117607 1504

Root MSE	342.93921	R-Square	0.8169
Dependent Mean	6561.25000	Adj R-Sq	0.7437
Coeff Var	5.22674		

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	6405.84446	2971.15634	2.16	0.0836
X1	1	-23.86858	13.08538	-1.82	0.1277
X2	1	146.91011	112.68401	1.30	0.2491

مثالم: صفحة (۱۷۰)

MODEL Y=X; RUN;

The REG Procedure Model: MODEL1 Dependent Variable: Y Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	22.41212	22.41212	112.92	<.0001
Error	8	1.58788	0.19848		
Corrected Total	9	24.00000			
Root MS	E	0.44552	R-Square	0.9338	
Depende	nt Mean	3.00000	Adj R-Sq	0.9256	
Coeff V	ar	14 85055	· ·		

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	0.13333	0.30435	0.44	0.6729
X	1	0.52121	0.04905	10.63	<.0001

معتمر القامين القضل القاضي المحليل الإحصائي المعارب العاملية FACTOR

التحليل الإحصائي للتجارب العاملية

FACTOR التجارب العاملية هي التجارب التي عتضمن أكثر من عامل من عوامل الدراسة في التجربة. فمثلا إذا أردنا دراسة استجابة ثلاثة أصناف من القمح لأربعة معدلات تسميد من السماد الأزوتي في تجربة واحدة فإن أصناف القمح تعتبر عامل ومعدلات السماد الأزوتي عامل أخر ولذلك تعتبر هذه التجربة تجربة عاملية ذات عاملين. التجارب العاملية يتم تحليلها من خلال الأمر FACTOR وهو الأمر رقم ١٩ في النافذة الرئيسية لبرنامج MSTAT-C.

مثال ١: أقيمت تجربة لمعرفة تأثير أثنين من محسنات التربة (الجبس وحامض الكبريتيك)، نوع الغسيل (الغسيل المستمر والمتقطع) وعمق التربة علي درجة التوصيل الكهربي للأراضي الملحية القلوية وكررت كل معاملة ٣ مرات والتصميم المستخدم قطاعات كاملة العشوائية ودونت النتائج في الجدول التالي؟

Leaching Type "L"	Soil Amendment "SA"	Soil Depth "SD"		Replicate "R"		
[Factor A]	[Factor B]	[Factor	r C]	1	2	3
Continues Leaching [1]	Gynsum [1]	0-20	[1]	3.50	3.58	3.48
	Gypsulli [1]	20-40	[2]	3.56	3.66	3.70
	Sulfuric acid [2]	0-20	[1]	4.11	4.21	4.15
	Sulfuire actu [2]	20-40	[2]	4.52	4.60	4.77
	Gynsum [1]	0-20	[1]	2.16	2.34	2.22
Intermittent Leaching [2]	Gypsulli [1]	20-40	[2]	2.34	2.41	2.46
Internition Leaching [2]	Sulfuric acid [2]	0-20	[1]	3.11	3.45	3.33
	Sulfulle actu [2]	20-40	[2]	3.24	3.51	3.45

المطلوب: تحليل النتائج تحليلاً إحصائياً كاملاً

قبل أن نبدأ في الحديث عن كيفية تحليل هذا المثال دعونا أو لأ نلقي الضوء علي النقاط التالية: الملاحظ من الجدول أن الصفة المدروسة (درجة التوصيل الكهربي EC) تقع تحت تأثير ٣ عوامل وهي عوامل الدراسة كما يلي:

. نوع الغسيل [Leaching Type [L] وتحت هذا العامل معاملتين

د الغسیل المستمر Continues leaching ورمزنا له بـ ۱

الغسيل المتقطع Intermittent leaching ورمزنا له بـ ٢

٢. محسن التربة [Soil amendment [SA] وتحت هذا العامل معاملتين

۱. الجبس Gypsum ورمزنا له بـ ۱

۲. حامض الكبريتيك Sulfuric acid ورمزنا له بـ ۲

٣. عمق التربة [Soil depth [SD] وتحت هذا العامل معاملتين

العمق الأول ورمزنا له بـ ١

۲ العمق الثاني ورمزنا له بـ ۲

وبالتالي يمكن تلخيص الكلام السابق في الجدول التالي

L	SA	SD	R
1	1	1	1
2	2	2	2
			3

والآن تعالوا بنا نبدأ في تحليل التجربة، كما تعلمنا وقبل أي شيء لابد من عمل ملف بيانات جديد وليكن باسم FACTOR1 ثم ندرج فيه البيانات بحيث يكون بالشكل التالي:

Case	1 Replicates	2 Leaching	3 Soil Amendment	4 Soil Depth	5 EC
1	1	1	1	1	3.50
2	2	1	1	1	3.58
3	3	1	1	1	3.48
4	1	1	1	2	3.56
5	2	1	1	2	3.66
6	3	1	1	2	3.70
7	1	1	2	1	4.11
8	2	1	2	1	4.21
9	3	1	2	1	4.15
10	1	1	2	2	4.52
11	2	1	2	2	4.60
12	3	1	2	2	4.77
13	1	2	1	1	2.16
14	2	2	1	1	2.34
15	3	2	1	1	2.22
16	1	2	1	2	2.34
17	2	2	1	2	2.41

18	3	2	1	2	2.46
19	1	2	2	1	3.11
20	2	2	2	1	3.45
21	3	2	2	1	3.33
22	1	2	2	2	3.24
23	2	2	2	2	3.51
24	3	2	2	2	3.45

- ١. ظلل الأمر FACTOR ثم اضعط مفتاح الإدخال Enter في لوحة المفاتيح
- ٢. تظهر نافذة تحتوي علي سؤال: هل تود تحليل التباين المشترك^{*} اضغط علي مفتاح حرف N للرفض ثم اضغط مفتاح الإدخال Enter في لوحة المفاتيح.

Would you like to do covariance analysis? Y/N

٣. تظهر النافذة التالية تحتوي علي قائمة بالطرق المختلفة لتصميم التجارب ومنها اختر تصميم التجارب ومنها اختر تصميم التجربة وفي هذه التجربة كان التصميم مع التجاربة وهو Complete Block ذو ثلاث عوامل لذا سوف نختار التصميم رقم ١٠ وهو RCBD 3 Factor في لوحة المفاتيح

* تطبيل التباين المشترك of covariance يلل ق عليه اختصاراً أنكوف المتحليل التباين المشترك axi الأسلوب الإحصائي عندما لا تكون مجموعات الدراسة متكافئة مبدئياً ويطلق على المتغير الذي يستخدمه الباحث لضبط حساب الأثر الإحصائي للمتغير التجريبي بالمتغير المصاحب ولتوضيح أهمية هذا التحليل سوف نسوق المثال التالي: بفرض أن باحث يدرس معدل التمثيل الغذائي لمجموعة من الحيوانات ماذا يفعل إذا كانت جميع أعمار الحيوانات في بداية التجريبة مختلفة بالشكل الذي لا يمكن معه تصنيفها في مجموعات عمريه أصل أن الحيوانات في بداية التجريبة مختلفة بالشكل الذي لا يمكن معه تصنيفها في مجموعات عمريه أصل الحيوانات في بداية التجريبة مختلفة بالشكل الذي لا يمكن معه تصنيفها في مجموعات عمريه تسهل عملية التحليل الإحصائي مع العلم أن معدل التمثيل الغذائي يتأثر بالعمر؟ ويمكن الإجابة على هذا التساؤل بصورة عامة وهو إذا كانت التجريبة تضم المتغير (y) الذي يمثل الظاهرة التي يتم قياسها عملية التعذائي أي المتغير التابع وأن هناك متغير أخر هو (x) الذي يمثل المتغير المستقل أي يمثل أعمار الحيوانات وأن (y) يتأثر بالمتغير (x) بعلاقة خطية والمتغير (x) يمثل المنورة عامة وهو إذا كانت التجريبة تضم المتغير (x) بعلاقة خطيبة والمتغير (x) يمثل المتغير المستقل أي يمثل أعمار الحيوانات وأن (y) يتأثر بالمتغير (x) بعلاقة خطيبة والمتغير (x) يمثل المتغير المتغير أمر من المتغير أمر مو (x) الذي يمثل المتغير المستقل عنها أي المتغير التابع وأن هناك متغير (x)، فإن المتغير (x) يممن المتغير (x) يمثل أعمار الحيوانات وأن (y) يتأثر بالمتغير (x) بعلاقة خطيبة والمتغير (x) يمثل المتغير المتغير المتغير أمر مو يمن قبل الباحث ولكن يمكن قياسه بمصاحبة المتغير (y)، فإن المتغير (x) يممى المتغير أي يمثل أعمار الحيوانات وأن (y) يتأثر بالمتغير (x) بعلاقة خطيبة والمتغير (x) يمكن المنورة المتغير (x)، فإن المتغير (x) يممن المتغير أمر مو وأي عمان المتغير أي يمثل أعمار الحيوانات وأن (y) يتأثر بالمتغير (x) بعلاقة خطيبة والمتغير (x) يممن المتغير أي يمثل أعمار الحيواني وأدن يمكن قياسه بمصاحبة المتغير (y)، فإن المتغير (x) يسمى المتغير المصاحب أو المتغاير أو المستقل، ويطلق على الطريقة التي تمكنا من التخلص من تأثير المتغير وتحمع هذه الطريقة بين مبادئ تحليل التباين المتغير وتحمع كيفية تحليل هذا الأسلوب الإحصائي وتحلي

_	FACTOR	Design Menu -								
_	TACTOR:	besign Menu -								
		Three	Factor Ram	ndomized	Com	olete	В٦	ock Des	sign	
	1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.	CRD 2 Factor CRD 2 Factor CRD 3 Factor CRD 3 Factor CRD 4 Factor RCBD 1 Factor RCBD 2 Factor RCBD 2 Factor RCBD 3 Factor RCBD 3 Factor RCBD 3 Factor RCBD 3 Factor RCBD 4 Factor RCBD 1 Factor RCBD 1 Factor RCBD 1 Factor RCBD 1 Factor	(a) (b) (c) (c) (a) (b) (c) (d) Combined Combined Combined	(a) (b) (c) (d)	19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35.	RCBD RCBD RCBD RCBD RCBD RCBD RCBD RCBD	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Factor Factor Factor Factor Factor Factor Factor Factor Factor Factor Factor Factor Factor Factor Factor	Combined Combined Combined Combined Combined Combined Combined Combined Combined Sombined Strip Plo Split Plo Split Plo Design	(a) (b) (c) (d) (e) (f) (h) (a) (b) (b) (c) (b) (c) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c

٤. تظهر النافذة التالية تحتوي علي شكل جدول تحليل التباين ANOVA الذي سينتج في نهاية التحليل فإذا كان هو الشكل المرغوب اضغط Enter في لوحة المفاتيح أم إذا كان ليس هو الشكل المرغوب اضغط N في لوحة المفاتيح ثم Enter لإعادة اختيار نوع أخر من قائمة التصميمات.

F	FACTOR:	ANOVA Table for this mo	del	
	к Value	Source	Degrees of Freedom	Is this what
	1	Replication	r-1	mind? Y/N
1	2	Factor A	a-1	
1	4	Factor B	b-1	
	6	AB	(a-1)(b-1)	
	8	Factor C	c-1	
	10	AC	(a-1)(c-1)	
	12	BC	(b-1)(c-1)	
	14	ABC	(a-1)(b-1)(c-1)	
	-15	Error	(r-1)(abc-1)	

- م. بعد الموافقة علي شكل جدول تحليل التباين ANOVA تظهر النافذة التالية وفيها يتم تحديد رقم المتغير المحتوي علي المكررات وأقل وأعلى مستوى في ذلك المتغير كما في الشكل التالي ثم في النهاية اضغط Enter في لوحة المفاتيح
 FACTOR: First Variable (Replication)
 Enter the desired Variable Number:
 Enter the lowest level for this Variable:
 Batter the highest level for this Variable:
- ٦. تظهر نافذة مثل النافذة السابقة لتحديد نفس المعلومات السابقة ولكن عن عامل الدر اسة الأول

FACTOR: Second Variable (Factor A) ————		
Enter the desired Variable Number: Enter the lowest level for this Variable: Enter the highest level for this Variable:	2 1 2	

٧. تظهر نافذة مثل النافذة السابقة لتحديد نفس المعلومات السابقة ولكن عن عامل

الدر اسة الثاني FACTOR: Third Variable (Factor B) —————— Enter the desired Variable Number: Enter the lowest level for this Variable: Enter the highest level for this Variable: 2

٨. تظهر نافذة مثل النافذة السابقة لتحديد نفس المعلومات السابقة ولكن عن عامل

الدر اسة الثالث

FACTOR: Fourth Variable (Factor C)
 Enter the desired Variable Number:
 Enter the lowest level for this Variable:
 Enter the highest level for this Variable:

٩. تظهر النافذة التالية والتي تحتوي علي المعلومات التي أدخلتها وتسألك هل هي صحيحة اضغط N في لوحة المفاتيح إذا كانت غير صحيحة ثم اضغط Enter لإعادة إدخال المعلومات مره ثانية أم إذا كانت صحيحة اضغط Y في لوحة المفاتيح ثم نضغط Enter للمتابعة

FACTOR: Selected Va	riables ——————							
Number of Factors: 4								
Variable Descri	ption Anova Use	Lowest Level	Highest Level					
1 Replicate 2 Leaching type 3 Soil amendment 4 Soil depth	Replication Factor A Factor B Factor C	1 1 1 1	3 2 2 2					
	Is this correct? Y/N							

ر. تظهر النافذة التالية تخبرك بعدد الحالات الموجودة في ملف البيانات فإذا كانت صحيحة اضبغط Enter للمتابعة وإذا كانت غير صحيحة اضبغط N في لوحة المفاتيح ثم Enter لتحديد مدى البيانات المراد تحليلها

 ١١. تظهر نافذة تحتوي علي قائمة بالمتغيرات كما بالشكل التالي اختر منها المتغير المراد تحليله ثم اضغط علي مفتاح المسافة Spacebar لتظليله ثم اضغط Enter في لوحة المفاتيح

= Choose up to 5 variables (Press ESC	to	quit)	-
01 (NUMERIC) Replicate			
02 (NUMERIC) Leaching type			
03 (NUMERIC) Soil amendment			
04 (NUMERIC) Soil depth			
▶05 (NUMERIC) EC			

١٢. تظهر نافذة تحتوي علي سؤال: هل تريد تخزين البيانات في نهاية ملف البيانات؟ اضغط Y للموافقة أو N للرفض ثم اضغط Enter في لوحة المفاتيح للمتابعة

Do you want all means stored at the end of your file? $\underline{Y/N}$

= FACTOR ==

١٣. تظهر نافذة Output Options اختر منها طريقة العرض أو الحفظ

= Output options ------View output on screen Edit output Print output

Save output to disk

Quit output options

فيما يلى نتيجة التحليل السابق:

```
Data file: FACTOR19
Title: factor
Function: FACTOR
Experiment Model Number 10:
Three Factor Randomized Complete Block Design
Data case no. 1 to 24.
        Factorial ANOVA for the factors:
Replication (Var 1: Replicate) with values from 1 to 3
Factor A (Var 2: Leaching Type) with values from 1 to 2
Factor B (Var 3: Soil Amendment) with values from 1 to 2
Factor C (Var 4: Soil Depth) with values from 1 to 2
        Variable 5: EC
        Grand Mean = 3.411 Grand Sum = 81.860 Total Count = 24
                               TABLE OF MEANS
                        2
                                                         5
                                                                                 Total
                 1
                               3
                                                                                             _____
                                                                                    26.540
27.760
                  *
                        *
                                                        3.317 3.470
           1
2
3
                  *
                        *
                               *
                        *
                               *
                                                         3.445
                                                                                    27.560
                  *
                                                        3.987
                                                                                    47.840
                 2
                                                        2.835
                                                                                    34.020
```

	*	: 3	* 1 * 2	*			2.9 3.8	51 71			35.4 16.4	10 50	
	****		L 1 L 2 2 1 2 2	* * *			3.5 4.3 2.3 3.3	80 93 22 48		1	21.4 26.3 L3.9 20.0	80 60 30 90	
	*	: 3	* *	1 2			3.3 3.5	03 18		3	39.6 12.2	40 20	
	 * * *		L * L * 2 *	1 2 1 2			3.8 4.1 2.7 2.9	38 35 68 02		2	23.0 24.8 16.6 17.4	30 10 10 10	
	*	3	* 1 * 1 * 2 * 2	1 2 1 2			2.8 3.0 3.7 4.0	80 22 27 15		1	L7.2 L8.1 22.3 24.0	80 30 60 90	
	 * * * * * *		L 1 L 2 L 2 L 2 L 2 L 2 L 2 L 2 L 2 L 2 L 2	1 2 1 2 1 2 1 2			3.5 3.6 4.1 4.6 2.2 2.4 3.2 3.4	20 40 57 30 40 03 97 00		1 1 1 1	L0.5 L0.9 L2.4 L3.8 6.7 7.2 9.8 L0.2	60 20 70 90 20 10 90 00	
к		A	NAL	.YSI Dea	S rees	 0 F of	V A Sum o	RIA f	N C E	iean	Г А	BLE F	
Valu	e 	Sou	urce	F	reedo	m 	Squar	es 	Sq	juare	<u>.</u>	Value	Prob
1 2 4 6 8 10 12 14 -15		Rep Fact Fact AB Fact AC BC ABC Erro	licati tor A tor B tor C	on	2 1 1 1 1 1 1 1 1		0.1 7.9 5.0 0.2 0.0 0.0 0.0 0.0	07 58 78 68 77 40 32 64 70		0.05 7.95 5.07 0.06 0.27 0.04 0.03 0.04 0.03	54 58 78 58 77 40 54 55 54	$\begin{array}{c} 10.6476\\ 1583.3095\\ 1010.3872\\ 13.5822\\ 55.1809\\ 7.9616\\ 6.4197\\ 12.7465\end{array}$	0.0015 0.0000 0.0024 0.0000 0.0136 0.0239 0.0031
		Tota	a]		23		13.6	96					
	Coe	ffi	cient	of Var	iatio	n: 2	.08%						
	s_ y	for	means	group	1:	0	0.0251		Numbe	er of	F Ob	servations:	8
	s_ y	for	means	group	2:	0	0.0205		Numbe	er of	F Ob	servations:	12
	s_ y	for	means	group	4:	0	.0205		Numbe	er of	F Ob	servations:	12
	s_ y	for	means	group	6:	0	.0289		Numbe	er of	F Ob	servations:	6
	s_ y	for	means	group	8:	0	.0205		Numbe	er of	F Ob	servations:	12
	s_ y	for	means	group	10:	0	.0289		Numbe	er of	F Ob	servations:	6
	s_ y	for	means	group	12:	0	.0289		Numbe	er of	F Ob	servations:	6
	s_ y	for	means	group	14:	0	.0409		Numbe	er of	F Ob	servations:	3

تفسير النتيجة: بالنظر إلي جدولي المتوسطات وتحليل التباين (ANOVA) نجد ما يلي

- تأثير عامل الدراسة الأول (A): باستخراج قيمة F عند مستوى معنوية ٥٪، ١٪ (تساوي حامل الدراسة الأول (A): باستخراج قيمة F عند مستوى معنوية (تساوي (تساوي ١٠٤، ٢٠، ٢٠٤، ٢٠٠٠) نجد أن قيمة F المحسوبة أكبر من قيمة F الجدولية عند مستوى معنوي معنوية ٥٪، ١٪ وبالتالي يكون هناك فرق معنوي جداً (**) بين نوعى الغسيل في خفض درجة التوصيل الكهربي EC لعسالح الغسيل المتقطع.
- تأثير عامل الدراسة الثاني (B): نفس الكلام السابق وبالتالي يكون هناك فرق معنوي جداً (**) بين أنواع محسنات التربة المستخدمة في خفض درجة التوصيل الكهربي EC لصالح الجبس الزراعي.
- تأثير التداخل بين عامل الدراسة الأول والثاني (A*B): نفس الكلام السابق وبالتالي يكون هناك فرق معنوي جداً (**) بين نوعى الغسيل (A) × نوعى المحسنات (B) في خفض درجة التوصيل الكهربي EC لصالح التداخل بين الغسيل المتقطع والجبس الزراعي
- تأثير عامل الدراسة الثالث (C): نفس الكلام السابق وبالتالي يكون هذاك فرق معنوي جداً (**) بين أعماق التربة المختلفة في خفض درجة التوصيل الكهربي EC لصالح العمق الأول.
- تأثير التداخل بين عامل الدراسة الثاني والثالث (B*C): بمقارنة قيمة F
 المحسوبة بقيمة F الجدولية نجدها أكبر عند مستوى معنوية ٥٪ و أقل عند مستوى

معنوية ١٪ وبالتالي يكون هناك فرق معنوي (*) بين محسنات التربة المختلفة EC > أعماق التربة المختلفة (C) في خفض درجة التوصيل الكهربي EC لصالح الجبس الزراعي × العمق الأول.

تأثير التداخل بين عوامل الدراسة الثلاثة (A*B*C): بمقارنة قيمة F المحسوبة بقيمة F المحسوبة بقيمة F الجدولية نجدها أكبر عند مستوى معنوية ٥٪، ١٪ وبالتالي يكون هناك فرق معنوي (**) بين نوعى الغسيل (A) × محسنات التربة (B) × أعماق التربة المختلفة (C) في خفض درجة التوصيل الكهربي EC لصالح الغسيل المتقطع × الجبس الزراعي × العمق الأول.

مثالي ۲: يتأثر إنتاج مادة ما بثلاثة عو امل و هي:

- ا. زمن التعبئة بعد الإنتاج A (هناك فترتان ١٥ دقيقة " A_1 " و ٢٠ دقيقة " A_2 ").
 - $(B_1, B_2, B_3$ المهندس B (هناك ثلاثة مهندسين B_1). ۲
- . المادة المساعدة على إنتاج المادة المطلوبة C (هناك ثلاثة أنواع من المواد C. المساعدة (C_1, C_2, C_3) .

دونت النتائج في الجدول التالي والمطلوب تحليل التجربة تحليلا إحصائيا كاملا؟ ملحوظة: التصميم المستخدم في التجربة التصميم العشوائي التام CRD

	р		С		
A	Б	C ₁	C ₂	C_3	
	B ₁	10.7, 10.8, 11.3	10.3, 10.2, 10.5	11.2, 11.6, 12.0	
A_1	B_2	11.4, 11.8, 11.5	10.2, 10.9, 10.5	10.7, 10.5, 10.2	
	B ₃	13.6, 14.1, 14.5	12.0, 11.5, 11.6	11.1, 11.0, 11.5	
	B ₁	10.9, 12.1, 11.5	10.5, 11.1, 10.3	12.2, 11.0, 11.7	
A_2	B_2	9.8, 11.3, 10.9	12.6, 7.5, 9.9	10.8, 10.2, 11.5	
	B ₃	10.7, 11.7, 12.7	10.2, 11.5, 10.9	11.9, 11.6, 12.2	

قم بإنشاء ملف بيانات باسم Factor2 ثم ادخل فيه البيانات بحيث تكون كما يلى.

Case	1 REPS	2 A	3 в	4 C	5 DATA
1	1	1	1	1	10.7
2	2	1	1	1	10.8
3	3	1	1	1	11.3
4	1	1	1	2	10.3
5	2	1	ī	2	10.2
6	3	1	1	2	10.5
7	1	1	1	3	11.2
8	2	ī	1	3	11.6
9	3	1	1	3	12

-		**	••••	•••	· .
10 1 11 2 12 3 13 1 14 2 15 3 16 1 17 2 18 3 19 1 20 2 21 3 22 1 23 2 24 3 25 1 26 2 27 3 28 1 29 2 30 3 31 1 26 2 27 3 28 1 29 2 30 3 31 1 32 2 33 3 40 1 44 2 45 3 46 1 47 2 50 2 51 3 52 <t< td=""><td>ا ا ا ا ا ا 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>2222222222222222222222222222222222222</td><td>1 1 1 1 2 2 3 3 1 1 1 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 2 2 2 3 3 3 1 1 2 2 2 3 3 3 1 CRD 3 F</td><td>$\begin{array}{c} 11.4\\ 11.8\\ 11.5\\ 10.2\\ 10.9\\ 10.5\\ 10.7\\ 10.5\\ 10.7\\ 10.5\\ 10.2\\ 13.6\\ 14.1\\ 14.5\\ 12\\ 11.5\\ 11.5\\ 11.5\\ 11.5\\ 11.6\\ 11.1\\ 11.5\\ 10.9\\ 12.1\\ 11.5\\ 10.5\\ 11.1\\ 11.5\\ 10.9\\ 12.6\\ 7.5\\ 9.9\\ 10.8\\ 10.9\\ 12.6\\ 7.5\\ 9.9\\ 10.8\\ 10.9\\ 11.5\\ 10.7\\ 11.7\\ 12.7\\ 10.2\\ 11.5\\ 10.7\\ 11.5\\ 10.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.6\\ 12.2\\ 10.7\\$</td><td>، ۲. اتبع نذ الثالث</td></t<>	ا ا ا ا ا ا 1 1 1 1 1 1 1 1 1 1 1 1 1	2222222222222222222222222222222222222	1 1 1 1 2 2 3 3 1 1 1 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 2 2 2 3 3 3 1 1 2 2 2 3 3 3 1 CRD 3 F	$\begin{array}{c} 11.4\\ 11.8\\ 11.5\\ 10.2\\ 10.9\\ 10.5\\ 10.7\\ 10.5\\ 10.7\\ 10.5\\ 10.2\\ 13.6\\ 14.1\\ 14.5\\ 12\\ 11.5\\ 11.5\\ 11.5\\ 11.5\\ 11.6\\ 11.1\\ 11.5\\ 10.9\\ 12.1\\ 11.5\\ 10.5\\ 11.1\\ 11.5\\ 10.9\\ 12.6\\ 7.5\\ 9.9\\ 10.8\\ 10.9\\ 12.6\\ 7.5\\ 9.9\\ 10.8\\ 10.9\\ 11.5\\ 10.7\\ 11.7\\ 12.7\\ 10.2\\ 11.5\\ 10.7\\ 11.5\\ 10.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.9\\ 11.6\\ 12.2\\ 10.7\\$	، ۲. اتبع نذ الثالث
Data file: FACTOR2¶ Title: FACTOR2					
Function: FACTOR					
Experiment Model Number 3 Three Factor Complet	: ely Randomized	Design			
Data case no. 1 to 54.					
Factorial ANOVA for the f Replication (Var 1: Factor A (Var 2: A) Factor B (Var 3: B) Factor C (Var 4: C)	actors: REPS) with val with values fr with values fr with values fr	ues from 1 fom 1 to 2 fom 1 to 3 fom 1 to 3	to 3		
Variable 5: DATA					
Grand Mean = 11.063 Gra	and Sum = 597.4	00 Total	Count = 54		
TABLE	OF MEAN	I S			
1 2 3 4	5	Tota	1	_	
* 1 * * * 2 * *	11.378 10.748	307 290	.200 .200		
* * 1 *	11.106	199	.900	-	

*	*	2 3	*	10.678 11.406	192.200 205.300
* * * *	1 1 2 2 2	1 2 3 1 2 3	* * * * *	10.956 10.856 12.322 11.256 10.500 10.489	98.600 97.700 110.900 101.300 94.500 94.400
* * *	* * *	* *	1 2 3	11.739 10.178 11.272	211.300 183.200 202.900
* * * *	1 1 2 2 2	* * * * *	1 2 3 1 2 3	12.189 10.856 11.089 11.289 9.500 11.456	109.700 97.700 99.800 101.600 85.500 103.100
 * * * * * *	* * * * * * *	1 1 2 2 3 3 3	1 2 3 1 2 3 1 2 3 1 2 3	$\begin{array}{c} 11.217\\ 10.483\\ 11.617\\ 11.117\\ 10.267\\ 10.650\\ 12.883\\ 9.783\\ 11.550\end{array}$	67.300 62.900 69.700 61.600 63.900 77.300 58.700 69.300
*****	1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 3 1 1 2 2 3 3 3 1	1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3	$\begin{array}{c} 10.933\\ 10.333\\ 11.600\\ 11.567\\ 10.533\\ 10.467\\ 14.067\\ 11.700\\ 11.200\\ 11.500\\ 10.633\\ 11.633\\ 10.667\\ 10.000\\ 10.833\\ 11.700\\ 7.867\\ 11.900\\ \end{array}$	32.800 31.000 34.800 34.700 31.600 31.400 42.200 35.100 34.500 31.900 34.900 32.000 30.000 32.500 35.100 23.600 35.700

ANALYSIS OF VARIANCE TABLE

K Value	Source	Degrees of Freedom	Sum of Squares	Mean Square	F Value	Prob
2 4 6 10 12 14 -15	Factor A Factor B AB Factor C AC BC ABC Error	1 2 2 2 2 4 4 36	5.352 4.816 10.747 23.116 7.167 12.041 10.374 75.013	5.352 2.408 5.374 11.558 3.584 3.010 2.594 2.084	2.5684 1.1556 2.5788 5.5468 1.7198 1.4446 1.2447	0.1178 0.3263 0.0898 0.0079 0.1935 0.2394 0.3096
	Total	53	148.626			

Coefficient of Variation: 13.05%

s_ y	for	means	group	2:	0.2778	Number	of	Observations:	27
s_ y	for	means	group	4:	0.3402	Number	of	Observations:	18
s_ y	for	means	group	6:	0.4812	Number	of	Observations:	9

s_ y	for	means	group	8:	0.3402	Number of Observations: 18
s_ y	for	means	group	10:	0.4812	Number of Observations: 9
s_ y	for	means	group	12:	0.5893	Number of Observations: 6
s_ y	for	means	group	14:	0.8334	Number of Observations: 3

تفسير النتيجة:

- F يتم تفسير النتيجة بنفس السياق الموضح في المثال السابق حيث نستخرج قيمة F
 الجدولية عند مستوى معنوية ٥٪، ١٪ ونقارنها بقيمة F المحسوبة فإذا كانت F
 المحسوبة أكبر من الجدولية عند ٥٪، ١٪ يكون هناك فرق معنوي جداً (**) بينما
 إذا كانت أكبر من F الجدولية عند ٥٪ وأقل عند ١٪ يكون هناك فرق معنوي (*)
 بينما إذا كانت أقل من الجدولية عند ٥٪ لا يكون هناك فرق معنوي (NS).
- P-Value لدما يمكن من خلال P-Value الوصول لنفس النتيجة حيث إذا كانت P-Value يكون هناك فرق معنوي (*) وإذا كانت $P \ge 0.01 \ge P$ يكون هناك فرق معنوي جدا (**) بينما إذا كانت $P \ge 0.05 \le P$ لا يكون هناك فرق معنوي (NS). وبتطبيق هذه المعلومة نجد التالي
- ١. تأثير عامل الدراسة الأول على الإنتاج "زمن التعبئة (A)": من جدول الأنوفا نجد أن قيمة P أكبر من ٢٠٠٠ (تساوي ١٦٨٦.٠) ولذا لا يكون هناك فرق معنوي (NS) بين زمن التعبئة بعد الإنتاج بمعنى أن زمن التعبئة لا يؤثر على الإنتاج.
- ٢. تأثير عامل الدراسة الثاني على الإنتاج "المهندس (B)": من جدول تحليل التباين نجد أن قيمة P أقل من ٢٠٠٠ (تساوي ٢٠٠٠٠) لذا فهناك فرق معنوي جداً (**) بين المهندسين أي أن المهندس يؤثر في الإنتاج وهذا الفرق المعنوي لصالح المهندس الثالث.
- ٢. تأثير التداخل بين المهندس والزمن على الإنتاج (A*B): من جدول تحليل التباين نجد أن قيمة P أكبر من ٥٠.٠ (تساوي ١٠٢٧) بالتالي لا يوجد فرق

معنوي بمعني ليس هناك تأثير على إنتاج المادة نتيجة التداخل بين المهندس والزمن.

- ٤. تأثير عامل الدراسة الثالث ''نوع المادة المساعدة (C)'': من جدول تحليل التباين نجد أن قيمة P أقل من ١٠.٠١ (تساوي ١٠.٠١) إذن هناك فرق معنوي جداً (**) بين المواد المساعدة على الإنتاج لصالح المادة المساعدة الأولى.
- من جدول (A*C). تأثير التداخل بين الزمن والمادة المساعدة علي الإنتاج (A*C): من جدول تحليل التباين نجد أن قيمة P أكبر من ٥٠. (تساوي ٢٦٠.) بالتالي لا يوجد فرق معنوي أي أن لا يوجد تأثير نتيجة التداخل بين الزمن والمادة المساعدة علي الإنتاج.
- ٢. تأثير التداخل بين الزمن والمهندس علي الإنتاج (B*C): من جدول تحليل التباين نجد أن قيمة P أكبر من ٢٠٠٠ (تساوي ١١٧٢.) بالتالي لا يوجد فرق معنوي أي أن لا يوجد تأثير نتيجة التداخل بين الزمن والمهندس علي الإنتاج.
- Y. تأثير تداخل العوامل الثلاثة (A*B*C): من جدول تحليل التباين نجد أن قيمة P أكبر من ٥٠.٠ (تساوي ١٠٨٩) بالتالي لا يوجد فرق معنوي أي أن لا يوجد تأثير نتيجة التداخل بين الزمن، المهندس والمادة المساعدة على الإنتاج.

	М	lain effec	ets	Interaction						
Factor:	Α	В	C	AB	AC	BC	ABC			
P-Value	> 0.05	< 0.01	< 0.01	> 0.05	> 0.05	> 0.05	> 0.05			
	NS	**	**	NS	NS	NS				

يمكن تلخيص الكلام السابق فى الجدول التالى

مثالى ٣: أقيمت تجربة زراعية لدراسة تأثير ٤ مستويات من مياه الري مع مستويين من النتروجين بثلاث مكررات مصممة بتصميم القطع العشوائية المنشقة حيث استخدمت الأحواض الرئيسية لمستويات الري بينما خصصت الأحواض الثانوية لمستويات النتروجين فكانت القياسات التالية تمثل أطوال نباتات القمح وإنتاجية الحبوب. المطلوب تحليل التجربة تحليلاً إحصائياً كاملاً

Irrigation	N-	Pla	ant Heig	Yield			
water	Level	R ₁	R ₂	R ₃	R ₁	R_2	R ₃
\mathbf{W}_1	N_1	13.80	12.70	13.70	3.8	2.7	3.7
\mathbf{W}_1	N_2	13.40	13.80	13.60	3.4	3.8	2.5
W_2	N_1	12.50	13.70	12.55	2.5	3.7	3.9
W_2	N_2	13.10	12.50	14.00	3.1	2.5	2.5
W_3	N_1	12.80	13.30	12.50	2.8	3.3	2.4
W_3	N_2	12.50	12.80	12.40	2.4	2.8	3.2
\mathbf{W}_4	N_1	11.90	11.70	11.75	1.9	1.7	1.25
\mathbf{W}_4	N_2	11.70	11.65	11.25	1.8	1.65	1.75

آ. قم بإنشاء ملف بيانات جديد باسم FACTOR3 بحيث يكون كما بالشكل التالي

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 21 22 23 24 24 24 24	1 Replicates 2 W-Lev 1 1 1 2 1 1 3 1 1 1 1 1 2 2 2 3 2 2 1 2 2 3 2 2 3 2 2 3 3 3 1 4 4 2 4 4 3 4 4 3 4 4 4 4 4 5 4 4 4 4 4 5 4 4 6 4 4	/e] 3 N-Level 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 1 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{cccccc} 4 & \text{Pl-height} & 5 & \text{yield} \\ 13.80 & 3.80 \\ 12.70 & 2.70 \\ 13.70 & 3.70 \\ 13.40 & 3.40 \\ 13.80 & 3.80 \\ 13.60 & 2.50 \\ 12.50 & 2.50 \\ 12.50 & 2.50 \\ 13.70 & 3.70 \\ 12.55 & 3.90 \\ 13.10 & 3.10 \\ 12.55 & 2.50 \\ 14.00 & 2.50 \\ 14.00 & 2.50 \\ 12.80 & 2.80 \\ 13.30 & 3.30 \\ 12.50 & 2.40 \\ 12.80 & 2.80 \\ 12.50 & 2.40 \\ 12.50 & 2.40 \\ 12.50 & 2.40 \\ 12.50 & 2.40 \\ 12.50 & 2.40 \\ 12.60 & 2.80 \\ 11.90 & 1.90 \\ 11.75 & 1.25 \\ 11.75 & 1.25 \\ 11.75 & 1.65 \\ 11.25 & 1.75 \\ 11.25 & 1.75 \\ 11.75 & 1.55 \\ 11.25 & 1.75 \\ 11.25 & 1.75 \\ 11.75 & 1.25 \\ 11.75 & 1.25 \\ 11.75 & 1.25 \\ 11.25 & 1.75 \\ 11.25$	۲.
حليل كما يلي	R وستكون نتيجة الت	CBD 2 Factor	التصميم التاسع (b)	
سطات في نهاية ملفك؟	، تود حفظ كل المتو	ك أثناء التحليل هل	ملحوظة : عندما يسألا	•
ثم الضغط على مفتاح	في لوحة المفاتيح	فط علي مفتاح Y	أجب بالموافقة بالضد	
د حساب قيمة LSD	م هذه المتوسطات عذ	، أننا سوف نستخد	الإدخال Enter حيث	
Data file: FACTOR3 Title: FACTOR3	}¶ }			
Function: FACTOR				
Experiment Model Nu Randomized Com Factor B a Spl	ımber 9: ıplete Block Design fc it Plot on A	or Factor A, with		
Data case no. 1 to	24.			
Factorial ANOVA for	the factors:			

- 199 -

		Repl Fact Fact	icat or A or B	tion (\ \ (Var 3 (Var	/ar 2: 3:	1: W-L N-L	Rep eve eve	olic el) el)	ate wit wit	s) w h va h va	ith lues lues	valu fro fro	es 1 m 1 m 1	from 1 to 4 to 2	1 to 3	
	Varia	able	4: F	-heig	jht											
	Grand	l Mea	.n =	12.733	3	Gra	nd	Sum	1 =	305.0	600	То	tal	Count	t = 24	
				ТАЕ	3 L	Е	0	F	М	EAN	N S					
	1	2	3				4				т	otal				
	1 2	*	*				 12. 12	.712				101.	 700 150		-	
	3	*	*				12	.719				101.	750		_	
	*	1 2	*				13. 13.	. 500 . 058)			81. 78.	000 350			
	*	3 4	*				12. 11.	.717 .658				76. 69.	300 950			
	*	*	1 2				12 12	.742 .725				152. 152.	900 700		_	
	*	1 1	1				13. 13.	400)			40. 40.	200 800			
	*	2 2	1 2				12. 13.	.917 .200	,)			38. 39.	750 600			
	*	3	1 2				12. 12.	.867 .567				38. 37.	600 700			
	*	4	2				11. 11.	. 783 . 533				35. 34.	350 600		_	
		ΑN	A L	YSI	s	0	F	v	A R	ΙA	N C	Е	тA	A B L	E	
K alu	e s	Sourc	e	Degr Fr	rees	s of dom		Sur Squ	of are	S		Mea Squa	n re		F Value	Prob
1 2	Re Fa	plic	atic	on	2			0 11	0.01	5 6		0.	008 699		0.0525	0.0008
-3 4	Er Fa	ror actor	в		6 1			0	.87	0 2		0. 0.	145 002		0.0052	
6 -7	AE Er	ror			3 8			0 2	.40 .55	8 3		0. 0.	136 319		0.4256	
	тс	otal			23			14	.94	3						
	Coeff	icie	nt c	of Vari	ati	ion:	4.	.44%	6							
	s_ fo y	or me	ans	group	1:		0.	.134	6		Num	ber	of (Observ	vations:	8
	s_ fo y	or me	ans	group	2:		0.	.155	4		Num	ber	of (Observ	vations:	6
	s_ fo	or me	ans	group	4:		0.	.163	1		Num	ber	of (Observ	vations:	12
	s_ fo	or me	ans	group	6:		0.	. 326	52		Num	ber	of (Observ	vations:	3
	Varia	able	5: Y	/ield												
	Grand	Mea	.n =	2.710	Ģ	Gran	d s	Sum	= 6	5.050	C	Tota	1 Co	ount =	= 24	
				ТАЕ	3 L	Е	0	F	М	EAN	N S					
	1	2	3				5				т	otal			-	
	1 2	*	*				2	.712				21.	700 150			
	3	* 	* 				2.	.650) ,			21.	200		-	
	*	⊥ 2 3	× *				3. 3.	. 317 . 033 . 917				19.	200			
	*	4	*				1.	.675				10.	050		_	
	*	* *	1 2				2.	.804 .617	,			33. 31.	650 400			

	* 1 1 * 1 2 * 2 1 * 2 2 * 3 1 * 3 2		3.400 3.233 3.367 2.700 2.833 2.800 1.617	$ \begin{array}{r} 10.200 \\ 9.700 \\ 10.100 \\ 8.100 \\ 8.500 \\ 8.400 \\ 4.850 \end{array} $			
	* 4 2		1.733	5.200			
	ANAL	YSIS O	F VARI	ANCE TAE	3 L E		
K Value	e Source	Degrees o Freedom	f Sum of Squares	Mean Square	F Value	Prob	
1 2 -3	Replicatio Factor A Error	on 2 3 6	0.056 9.331 0.706	0.028 3.110 0.118	0.2399 26.4323	0.0007	-
4 6 -7	Factor B AB Error	1 3 8	0.211 0.519 3.211	0.211 0.173 0.401	0.5256 0.4314		
	Total	23	14.035				-
	Coefficient o	of Variation	: 23.37%				
	s_ for means	group 1:	0.1213	Number of Obs	servations:	8	
	s_ for means	group 2:	0.1400	Number of Obs	servations:	6	
	s_ for means	group 4:	0.1829	Number of Obs	servations:	12	
	s_ for means	group 6:	0.3658	Number of Obs	servations:	3	
	y						تذكر *:
:]	Plant Hei	لأولى ight	بالة الصفة ا	سة الأول في د	عامل الدرا ،	LSD ل	حساب قيمة
لمليل	حيث عند تخ	RANGE	لال الأمر E	^ة LSD من خ	مساب قيما	ابقا *يتم ح	كما ذكرنا س
لاتيح	ي لوحة المف	ے Enter ف	مفتاح الإدخال	الضغط علي ه	لرئيسية ثم	ب النافذة ا	هذا الأمر في
						التالية	تظهر النافذة
P P	RANGE erform Range arameters Ra	tests on g nge Quit	jiven input a	and parameters			
	INPUT (Press	F1 for hel	p, F10 when	done, ESC to a	abort) ——		J

 INPUT (Press F1 for help, F10 when done, ESC to abort)
 File to perform Range Tests on: C:\MSTATC\DATA\FACTOR3
 Mean Separation Test: lsd
 Source of Means: Disk Number of means : 4
 First Case (if disk): 30
 Alpha Level to use: 0.05
 Variable No for Means: 4
 Error Mean Square: 0.145
 Observations per Mean: 6
 Degrees of Freedom: 6

* راجع الفصل السابع المقارنات بين متوسطات المعاملات
قم بإكمال الخانات كما في الشكل السابق ثم اضغط مفتاح الإدخال Enter عندما يتم تظلل Range فتظهر نافذة خيارات المخرجات اختر منها طريقة العرض أو الحفظ. ستكون النتيجة كما يلى:

Data File : FACTOR3¶ Title : FACTOR3 Case Range : 30 - 33 Variable 4 : P1-height Function : RANGE¶ Error Mean Square = 0.1450 Error Degrees of Freedom = 6 No. of observations to calculate a mean = 6 Least Significant Difference Test LSD value = 0.5379 at alpha = 0.050

	original	order			капкеа	oraer	
Mean	1 =	13.50	А	Mean	1 =	13.50	А
Mean	2 =	13.06	AB	Mean	2 =	13.06	AB
Mean	3 =	12.72	В	Mean	3 =	12.72	в
Mean	4 =	11.66	С	Mean	4 =	11.66	C

تفسير النتيجة:

- المتوسطات التي لها نفس الحرف لا يوجد بينها فروق معنوية وللتأكد من ذلك سيكون ناتج طرح أي متوسطين لهما نفس الحرف الأبجدي سيكون أقل من قيمة LSD
- بينما المتوسطات التي تحمل حروف أبجدية مختلفة يكون بينها فروق معنوية وللتأكد أيضا من ذلك سيكون ناتج طرح أي متوسطين لهما أحرف مختلفة سيكون أكبر من أو يساوي من قيمة LSD.

سؤال يطرح نفسه: لماذا وضعنا في خانة (First Case (if disk رقم ٣٠؟

- كما ذكرنا أثناء التحليل أننا سوف نوافق علي تخزين المتوسطات في نهاية ملف البيانات (انظر الملحوظة الموجودة في الخطوة الثانية من هذا المثال)
- وبالدخول إلي ملف البيانات وجدنا أن أول متوسط لعامل الدراسة الأول تم تخزينه في الحالة رقم ٣٠
- مع العلم أنه قد يختلف ويتم تخزينه في حالة أخرى، لذلك قبل إجراء هذا التحليل
 لابد من الدخول إلي ملف البيانات والتأكد من رقم الحالة التي تم فيها تخزين أول
 متوسط لعامل الدر اسة المطلوب حساب قيمة LSD له.

جرب بنفسك: احسب قيمة LSD لعامل الدر اسة الثاني في حالة الصفة الثانية Yield وستكون نتيجة التحليل كما بلي:

Data File : ♬FACTOR3¶ Title : FACTOR3 Case Range : 30 - 33 Variable 4 : Pl-height Function : JRANGE¶ Error Mean Square = 0.1180 Error Degrees of Freedom = 6 No. of observations to calculate a mean = 6 Least Significant Difference Test LSD value = 0.4853 at alpha = 0.050 Original Order Ranked Order 13.50 13.06 13.50 13.06 12.72 Mean 1 = 2 = Mean 1 = 2 = Mean AB Mean AB 3 = 3 = Меап в Меап 12.72 в 11.66 4 = С 4 11.66 Mean Mean مثاليء: قامت تجربة ما لدر اسة تأثير عاملين هما B، A على المتغير Var_Y وكان هناك متغير هو Var X والبيانات المتحصل عليها من التجربة أدخلت إلى ملف بيانات باسم ANCOVA بالشكل التالي و المطلوب تحليل البيانات إحصائيا بحيث بتم إز الة تأثير المتغير المصاحب*? Case 1 REPLICATES 2 FACTORA 3 FACTORB 4 VAR_X 5 VAR_Y 1.0 1.0 1.01.0226.0 229.0 1.0 2.0 3.0 206.0 1 2 239.0 3 4 5 6 7 8 9 10 11 12 13 14 1.0 1.0 217.0 215.0 4.0 1.0 $1.0 \\ 0.0$ 177.0 188.0 252.0 1.0 1.0 226.0 228.0 240.0 2.0 1.0 0.0 196.0 198.0 $0.0 \\ 0.0 \\ 1.0$ 1.0 1.0 2.0 2.0 2.0 4.0 246.0 206.0 1.0 2.0 3.0 248.0 229.0 208.0 190.0 225.0 195.0 2.0 2.0 2.0 1.00.00.04.0 239.0 202.0 $1.0 \\ 2.0$ 190.0 177.0 261.0 225.0 15 16 3.0 2.0 0.0 194.0 167.0 بعد إدخال البيانات كما بالشكل السابق اتبع الخطوات التالية ظلل الأمر FACTOR في النافذة الرئيسية للبرنامج Enter 1 = FACTOR = Would you like to do covariance analysis? Yes Press $\langle Y \rangle$ key \rightarrow Enter \downarrow FACTOR: Design Menu Two Factor Completely Randomized Design 1. CRD 2 Factor (a) 2. CRD 2 Factor (b) 3. CRD 3 Factor (a) 4. CRD 3 Factor (c) 5. CRD 3 Factor (c) 6. CRD 4 Factor 19. RCBD 2 Factor Combined (a) 20. RCBD 2 Factor Combined (b) 21. RCBD 2 Factor Combined (c) 22. RCBD 2 Factor Combined (d) 23. RCBD 2 Factor Combined (e) 24. RCBD 2 Factor Combined (f) * انظر حاشية صفحة ١٨٨ لكي تعرف معنى المتغير المصاحب

Enter →

Enter ↓

= Get Case Range ———

The data file contains 16 cases.

Do you wish to use all cases? Yes

= Choose up to 1 variables	(Press	ESC	to	quit)	=
01 (NUMERIC) REPLICATES					
02 (NUMERIC) FACTORA					
03 (NUMERIC) FACTORB					

04 (NUMERIC) VAR_X ▶05 (NUMERIC) VAR_Y

FACTOR =

Do you want all means stored at the end of your file? Yes

Enter 1

Enter ↓

= Output options =====

View output on screen

Edit output

Print output

Save output to disk

Quit output options

لہ Enter ستظهر نتيجة التحليل كما يلي

Data file: ♫ANCOVA¶ Title: ANCOVA

Function: FACTOR (with covariance analysis)

Experiment Model Number 1: Two Factor Completely Randomized Design Data case no. 1 to 16.

Factorial ANOVA for the factors: Replication (Var 1: REPLICATES) with values from 1 to 4 Factor A (Var 2: FACTOR_A) with values from 1 to 2 Factor B (Var 3: FACTOR_B) with values from 0 to 1 Covariate (Var 4: VAR_X)

Variable 5: VAR_Y

Grand Mean = 202.813 Grand Sum = 3245.000 Total Count = 16

			TABL	E O F M	MEANS	
1	2	3	4	Unadjusted 5	Total 5	Adjusted 5
*	1 2	*	225.625 222.750	210.500 195.125	1684.000 1561.000	209.425 196.200
*	*	0 1	228.500 219.875	196.375 209.250	1571.000 1674.000	193.150 212.475
* * * *	1 1 2 2	0 1 0 1	241.500 209.750 215.500 230.000	206.500 214.500 186.250 204.000	826.000 858.000 745.000 816.000	193.555 225.295 192.746 199.654

The numbers in the "Unadjusted 5" column are the means based on the actual data in the file. The "Adjusted 5" column contains the means adjusted with the following formula: Adj Yj = Unadj Yj - b(Xj-X) where Adj Yj is the adjusted variable 5 mean, Unadj Yj is the unadjusted variable 5 mean, Xj is the variable 4 mean for that treatment combination, X is the variable 4 grand mean, and b is Exy/Exx (the slope of the data). b = Exy/Exx = 0.74773

	к			UN	A D)] Degr	JS ees	т E of	D	S	υM	S	0	F	ΡF	2 0	D	υC	Т	S			
	Value	e 	Sourc	ce		Fr	eedo	om	\	v4x	v4			V4>	×5				V5x	v5			
	2 4 6 -7	F F A E	actor actor B rror	r A r B			1 1 1 12		29 21 640	33.0 97.5 39.0	063 563 063 750		1 -4 4 47	76 44 50 92	813 188 938 000			94 66 9 457	5.5 3.0 5.0 6.7	63 63 63 50			
		 т	otal				 15		887	78.4	438		49	975.	563			6280	0.4	 38			
		AN	NAL	ΥS	IS	5 5	0 F	С	0 \	V A	R I	A N	ı c	E	т	АВ	L	E					
K Valu	e	Sour	ce	D	egre Fre	ees eedo	of m	Sun Squ	1 of Jare	f es		N Sc	lean Juar	n 'e		v	F alu	e		Prob			
2 4 6		Facto Facto AB Covar	or A or B riate			1 1 1 1		696 1427 462 3583	5.04 7.4 2.3 3.1	42 15 34 11		69 142 46 358	6.0 7.4 2.3 3.1)42 15 34 11		7 15 5 39	.70 .80 .11 .66	55 21 82 66	0 0 0	.0180 .0022 .0449)		
	Coet K Va	ffici alue	ent c Ef	of V	aria tive	atio e Er	 n: 4 ror	4.69% Mear	6 1 Sc	qua	 re 	S.	E.		Me	an		Numl	ber	of C)bs.		
	2	2 4 6				90 94 120	.796 .524 .480	58 19 07					3	3.36 3.43 5.48	589 574 582					8 8 4			
	ΝΟΤΙ	E: U s a I f	lse ap separa and or if the for ap	opro atio nly ese opro	pria n ir wher cono pria	ate n RA n tr diti ate	effe NGE eatm ons mean	ectiv or C ments are sep	ve e CONT 5 ha not 0ara	erro TRAS ave t me atic	or m ST w no et, on.	ean hen sigr cons	squ Err ifi ult	iare for car a	e fo df : nt e sta	r m >= ffe tis	ean 20 ct tic	on : ian	x.				
																					<u>د</u> :	i	لاحــ
		٥	تأثير	الة	ب إز	لوب	لمط	، و ا	در.	سا	المط	ير	متغ	JI (لمات	يسو	ىتو	تل ہ	يم	ابع	د الر	لعمو	•
فير	المت	أثير	لةت	إزا	نبل	بعق	التيا	ير	متغ	: لله	طية	لفا	ات	h	توس	الم	ل	يمڎ	ں	خامس	د الـ	لعمو	•
					U	na	dju	ste	d ·	ىود	الحه	هذا	ت	طاد	نوس	, مذ	ىلى	ن ء	لحلق	، ويد	احب	لمص	

 العمود السادس يمثل متوسطات المتغير التابع بعد إز الة تأثير المتغير المصاحب ويطلق علي متوسطات هذا العمود Adjusted و هذه المتوسطات المضبوطة محسوبة طبقا للصيغة التالية

Adj Yj = Unadj Yj - b(Xj-X)

حيث Adj Yj تمثل المتوسط المضبوط، Unadj Yj تمثل المتوسط الفعلي الغير مضبوط، Xj تمثل متوسط المتغير المصاحب ، X تمثل المتوسط العام للمتغير المصاحب، b تمثل ميل انحدار البيانات. والمثال التالي للتوضيح: إذا كان المتوسط الغير مضبوط ٢١٠٠، المتوسط للمتغير المصاحب ٢٢٤.٦٩، انحدار البيانات ٧٤٧٧٣. والمتوسط العام للمتغير المصاحب ٢٢٤.١٩ Adj Yj = 210.50 – 0.74773(225.625-224.19) = 209.43 تفسير النتيجة:

يتم تفسير النتيجة بنفس السياق الموضح في الأمثلة السابقة حيث نستخرج قيمة F الجدولية عند مستوي معنوية ٥٪، ١٪ ونقار نها بقيمة F المحسوبة فإذا كانت F المحسوبة أكبر من الجدولية عند ٥٪، ١٪ يكون هناك فرق معنوي جداً (**) بينما إذا كانت أكبر من F الجدولية عند ٥٪ وأقل عند ١٪ يكون هناك فرق معنوي (*) بينما إذا كانت أقل من الجدولية عند ٥٪ لا يكون هناك فرق معنوي (8). ويتم المقارنات العديدة بين متوسطات المعاملات من خلال الأمر RANGE كما سبق.

مثالىه: أقيمت در اسة لمعرفة تأثير إضافة معدل إضافة السماد المستخدم "تم إضافة معدلين" والمسافة المتروكة بين النباتات على كمية الناتج من محصول البطاطس فكانت البيانات التالية

Distance	Replicate	Ra	ate
(cm)	No.	1	2
	1	16.01	15.89
25	2	16.78	16.23
	3	16.44	16.18
	1	13.42	13.32
35	2	13.25	13.47
	3	13.32	13.26

 قم بإنشاء ملف بيانات باسم FACTOR4 وأدخل فيه النتائج بحيث تكون كما بالشكل التالي

		4 Y101
1 1.0 1.0 1	1.0	16.01
$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	1 0	16 78
3 3.0 1.0 1	1.0	16.44
4 1.0 1.0 2	2.0	15.89
5 2 0 1 0 2	2 0	16 23
6 3.0 1.0 2	2.0	16.18
7 1.0 2.0 1	1.0	13.42
8 2.0 2.0 1	1.0	13.25
9 3.0 2.0 1	1.0	13.32
10 1.0 2.0 2	2.0	13.32
11 2.0 2.0 2	2.0	13.47
12 3.0 2.0 2	2.0	13.26

اتبع نفس خطوات تحليل الأمثلة السابقة وعند اختيار تصميم التجربة اختر التصميم الأول (CRD 2 Factor (a) وستكون نتيجة التحليل كما يلي، Data file: FACTOR49 Title: FACTOR4 Function: FACTOR Experiment Model Number 1: Two Factor Completely Randomized Design Data case no. 1 to 12. Factorial ANOVA for the factors: Replication (Var 1: Replicates) with values from 1 to 3 Factor A (Var 2: Distance) with values from 1 to 2 Factor B (Var 3: Rate) with values from 1 to 2 Variable 4: yield Grand Mean = 14.798 Grand Sum = 177.570 Total Count = 12 TABLE 0 F MEANS 3 2 1 4 Total 16.255 97.530 80.040 1 2 * 13.340 * 1 2 14.870 89.220 ÷ * 14.725 88.350 49.230 48.300 16.410 1 1 2 1 16.100 39.990 40.050 22 1 2 13.330 13.350 ANALYSIS VARIANCE TABLE 0 F Degrees of Sum of к Value Mean . Value Prob Source Freedom Squares Square 25.492 0.063 0.0000 25.492 505.7870 1.2515 Factor A Factor B 2 4 6 1 0.063 0.2957 1 0.082 0.082 1.6205 1 AB -7 8 0.403 0.050 Error Total 11 26.040 Coefficient of Variation: 1.52% s_ for means group 2: 0.0917 Number of Observations: 6 s_ for means group 4: 0.0917 Number of Observations: 6 s_ for means group 6: 0.1002 Number of Observations: 3 مثال: أجريت تجربة عاملية لاختبار تأثير تفاعل عاملين، العامل الأول A هو عامل الحرارة بثلاثة مستويات -٥، -١٥، -٢٠ درجة مئوية و B العامل الثاني وهو مدة التخزين بالأسابيع ٦، ٤، ٦، ٨ على حامض الأسكوربيك في الفاصوليا الخضراء. ودونت النتائج في الجدول التالي

-	T		W	eeks			-
	Temp	2	4	6	8		
		15	17	15	14		
	-20	16	15	16	17		
		14	15	14	16		
		15	12	13	12		
	-15	15	15	15	13		
		16	15	14	11		
		11	11	8	6		
	-10	11	9	7	5		
		12	8	6	6		
لتالي	ما بالشكل اا	ث تکون که	بيانات بحي	أدخل فيه ال	لف بيانات و	قم بإنشاء ما	•
ة اختر التصميم	Case 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 	1 Reps 1 2 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 <	2 A 1 1 1 1 1 1 1 1 1 1 1 1 1	3 B 1 2 2 3 3 4 4 4 1 1 2 2 3 3 4 4 4 1 1 2 2 3 3 4 4 4 4 1 1 2 2 3 3 4 4 4 4 1 1 2 2 2 3 3 4 4 4 4 4 1 1 2 2 2 3 3 4 4 4 4 4 1 1 2 2 2 3 3 4 4 4 4 4 4 1 1 2 2 2 3 3 4 4 4 4 4 1 1 2 2 2 3 3 4 4 4 4 4 1 1 2 2 2 3 3 4 4 4 4 4 1 1 2 2 2 3 3 3 4 4 4 4 4 1 1 2 2 2 3 3 3 4 4 4 4 4 1 1 2 2 2 3 3 3 4 4 4 4 4 4 1 1 2 2 2 3 3 3 4 4 4 4 4 4 1 1 2 2 2 3 3 3 4 4 4 4 4 5 CRE CRE CRE CRE CRE CRE CRE CRE CRE CRE	4 DATA 15 16 14 17 15 15 16 14 14 17 16 15 15 16 12 15 15 15 15 14 12 15 15 14 12 15 15 16 12 15 15 16 12 15 15 16 12 15 15 16 12 15 15 16 12 15 15 16 12 15 15 16 12 15 15 16 12 15 15 16 12 15 15 16 12 15 15 16 12 15 15 16 12 15 15 16 12 15 15 16 12 15 15 16 12 15 15 16 12 15 15 16 12 15 15 16 12 15 15 16 15 15 16 12 15 15 16 12 15 15 16 12 15 15 16 12 15 15 16 12 15 15 16 12 15 16 12 15 15 16 12 15 16 12 15 15 16 12 15 15 16 12 15 15 16 12 15 15 16 12 15 16 12 15 16 12 15 16 12 15 16 16 12 15 16 12 15 13 15 14 12 11 9 8 8 7 6 6 5 5 16 2 2 7 6 6 5 5 6 7 6 5 5 6 6 5 5 2 2 Factor	اتبع نفس خ الأول (a) ٢	•
Function: F	ACTOR						

Experiment Model Number 1: Two Factor Completely Randomized Design

Data case no. 1 to 36.

Factorial ANOVA for the factors: Replication (Var 1: REPS) with values from 1 to 3 Factor A (Var 2: A) with values from 1 to 3 Factor B (Var 3: B) with values from 1 to 4 Variable 4: Data Grand Mean = 12.500Grand Sum = 450.000Total Count = 36 TABLE 0 F MEANS 1 2 3 4 Total * 1 * 15.333 184.000 * * 13.833 166.000 2 3 * * 8.333 100.000 - - -* * 125.000 1 13.889 ŵ * $13.000 \\ 12.000$ 117.000 108.000 * * 3 * * 4 100.000 11.111 - -* 1 1 15.000 45.000 * 15.667 47.000 45.000 1 2 3 4 * 1 15.667 47.000 1 2 2 2 46.000 1 2 14.000 ź 42.000 * 3 * 23 4 12.000 36.000 11.333 9.333 * 1 34.000 * 3 28.000 * 3 3 7.000 21.000 * 3 4 5.667 17.000 ANALYSIS 0 F VARIANCE TABLE Degrees of Sum of Mean к Value value Source Freedom Squares Square Prob 2 4 6 -7 Factor A Factor B 326.000 163.000 130.4000 0.0000 23 13.074 5.963 10.4593 4.7704 39.222 35.778 0.0001 6 AR 24 30.000 1.250 Error 431.000 Total 35 Coefficient of Variation: 8.94% s_ for means group 2:
 y Number of Observations: 12 0.3227 s_ for means group 4: Number of Observations: 9 0.3727 s_ for means group 6: Number of Observations: 3 0.6455 مثال»: أجريت تجربة لدر اسة تأثير ٩ مستويات من التسميد الفسفوري على محصول القمح فأخذت ٦ حقول يتكون كل منها من ٩ قطع وتم توزيع المعاملات التسع باستخدام تصميم القطاعات العشوائية الكاملة ثم قيس المحصول بالطن لكل هكتار وكانت النتائج كما يلى والمطلوب تحليل هذه البيانات تحليلا إحصائياً كاملاً

		القطاعات						
وري رتم	التسميد الغسة	1	2	3	4	-5	6	
1	0	4.80	4.63	3.98	4.05	4.51	4.32	
2	75	5.03	5.20	4.03	4,13	4.83	4.85	
3	150	5.12	5.23	4.28	4.60	5.63	5.28	
4	225	5.28	5.68	5.01	4.83	6.31	5.85	
5	300	5.29	5.53	5.36	5.18	6.21	6.20	
6	375	5.28	5.63	5.40	5.13	5.23	5.48	
7	450	5.13	5.48	5.33	5.11	5.43	5.43	
8	525	5.18	5.50	5.32	5.18	5.18	5.26	
9	600	5.13	5.33	5.26	5.01	5.08	5.10	

قم بإنشاء ملف بيانات وأدخل فيه البيانات بحيث تكون كما بالشكل التالي

case 2 3 4 5 6 7 8 9 10 11 23 4 4 5 6 7 8 9 10 11 23 24 5 6 7 8 9 10 11 23 24 5 23 24 5 26 7 8 9 10 11 23 14 5 16 17 8 19 20 21 2 23 24 5 26 7 8 9 30 1 2 3 3 3 4 5 6 7 8 9 4 4 4 4 4 4 4 4 4 4 4 5 5 1 2 3 3 3 3 3 5 6 7 8 9 0 1 2 3 3 3 3 5 6 7 8 9 10 11 2 3 14 5 7 8 10 11 11 11 11 11 11 11 11 11 11 11 11	1 REPS 2 3 4 5 6 1 1 2 3 4 5 6 1 1 2 3 4 5 6 1 1 2 3 4 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 TRT 11 11 11 12 22 22 22 23 33 33 34 44 44 45 55 55 56 66 66 66 67 77 77 77 88 88 88 88 89 99 99 99 99	3 YIELD 4.80 4.63 3.98 4.51 4.52 5.203 4.13 4.83 4.83 4.85 5.23 4.60 5.28 4.60 5.28 4.60 5.28 5.63 5.28 5.368 5.28 5.368 5.28 5.403 5.483 5.483 5.433 5.433 5.438 5.133 5.261 5.261 5.263 5.28 5.28 5.133 5.261 5.018 5.261 5.263 5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.433 5.28 5.28 5.28 5.28 5.433 5.261 5.263 5.28 5.26 5.28 5.26 5.28 5.26 5.28 5.26 5.28 5.26 5.28 5.26 5.28 5.26 5.28 5.26 5.208 5.26 5.208 5.26 5.018 5.26 5.018 5.
53	5	9	5.08
54	6		5.10

اتبع نفس خطوات تحليل الأمثلة السابقة وعند اختيار تصميم التجربة اختر التصميم الأول RCBD 1 Factor وستكون نتيجة التحليل كما يلى النتيجة ستكون كما يلي Function: FACTOR Experiment Model Number 7: One Factor Randomized Complete Block Design Data case no. 1 to 54. Factorial ANOVA for the factors: Replication (Var 1: REPS) with values from 1 to 6 Factor A (Var 2: TRT) with values from 1 to 9 Variable 3: YIELD Grand Sum = 277.820Grand Mean = 5.145 Total Count = 54 TABLE 0 F MEANS 1 2 3 Total 5.138 46.240 48.210 * 1 2 3 4 * * 4.886 43.970 43.220 48.410 47.770 * 4.802 5.379 5.308 * 5 6 * * 4.382 26.290 12 * 4.678 28.070 * 3 5.023 30.140 * 4 5.493 32.960 5 5.628 33.770 5.358 5.318 5.270 32.150 31.910 6 7 * * 31.620 8 * 9 5.152 30.910 ANALYSIS OF VARIANCE TABLE Degrees of Sum of к Value Mean F Source Freedom Squares Square value Prob --------____ 2.798 7.569 1 2 5 0.560 7.0500 0.0001 Replication 8 0.946 11.9198 0.0000 Factor A -3 Error 40 3.175 0.079 -----53 13.541 Total ____ Coefficient of Variation: 5.48% Number of Observations: 9 for means group 1: 0.0939 s_ v s_ for means group 2: 0.1150 Number of Observations: 6

الفصل النّاسع نشليل النَّجارب الطاعلية • أشكال جداول تحليل التباين المتاحة بالبرنامج:

فيما يلي سوف نستعرض أشكال جداول تحليل التباين (الأنوفا) الموجودة في قائمة التصميمات

1. CRD 2 Factor (a): Two Factor Completely Randomized Design

-	FACTOR:	ANOVA Table for this model		
_	к Value	Source	Degrees of Freedom	Is this what
	2 4 6 -7	Factor A Factor B AB Error	a-1 b-1 (a-1)(b-1) ab(r-1)	mind? Y/N

2. CRD 2 Factor (b): Completely Randomized Design for Factor A, Factor

B is a Split Plot

Г	FACTOR:	ANOVA Table for this model		
	к Value	Source	Degrees of Freedom	Is this what
	2 -3 4 6 -7	Factor A Error Factor B AB Error	a-1 a(r-1) b-1 (a-1)(b-1) a(r-1)(b-1)	mind? Y/N

3. CRD 3 Factor (a): Three Factor Completely Randomized Design

_	FACTOR:	ANOVA Table for this model		
		and the reacter that a model		
	к Value	Source	Degrees of Freedom	Is this what
	2 4 6 8 10 12 14	Factor A Factor B AB Factor C AC BC ABC	$\begin{array}{c} a-1 \\ b-1 \\ (a-1)(b-1) \\ c-1 \\ (a-1)(c-1) \\ (b-1)(c-1) \\ (a-1)(b-1)(c-1) \\ (a-1)(b-1)(c-1) \end{array}$	you nad in mind? Y/N
	-12	ELLOL		

4. CRD 3 Factor (b): Completely Randomized Design for Factor A, Factors

B and C are Split Plots on A

K Value Source D	Degrees of Freedom	Is this what
2 Factor A a -3 Error a 4 Factor B b 6 AB () 8 Factor C () 10 AC () 12 BC () 14 ABC () -15 Error a	a-1 a(r-1) b-1 (a-1)(b-1) c-1 (a-1)(c-1) (b-1)(c-1) (a-1)(b-1)(c-1) a(r-1)(bc-1)	mind? Y/N

5. CRD 3 Factor (c): Completely Randomized Design for Factors A and B, Factor C is a Split Plot on A and B

F	FACTOR: A	ANOVA Table for this mo	del	
	к Value	Source	Degrees of Freedom	Is this what
	2 4 6 -7 8 10 12 14 -15	Factor A Factor B AB Error Factor C AC BC ABC Error	a-1 b-1 (a-1)(b-1) ab(r-1) c-1 (a-1)(c-1) (b-1)(c-1) (a-1)(b-1)(c-1) ab(r-1)(c-1)	mind? Y/N

6. CRD 4 Factor: Four Factor Completely Randomized Design

_	FACTOR:	ANOVA Table for this model		
	K Value	Source	Degrees of Freedom	Is this what
	2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 -31	Factor A Factor B AB Factor C AC BC ABC Factor D AD BD ABD CD ACD BCD ABCD Error	$\begin{array}{c} a-1 \\ b-1 \\ (a-1) (b-1) \\ c-1 \\ (a-1) (c-1) \\ (b-1) (c-1) \\ (a-1) (b-1) (c-1) \\ d-1 \\ (a-1) (b-1) (c-1) \\ d-1 \\ (a-1) (d-1) \\ (a-1) (b-1) (d-1) \\ (c-1) (d-1) \\ (a-1) (c-1) (d-1) \\ (b-1) (c-1) (d-1) \\ (b-1) (c-1) (d-1) \\ (a-1) (b-1) (c-1) (d-1) \\ abcd (r-1) \end{array}$	mind? Y/N

7. RCBD 1 Factor: One Factor Randomized Complete Block Design

-	FACTOR:	ANOVA Table for this model		
	к Value	Source	Degrees of Freedom	Is this what
-	1 2 -3	Replication Factor A Error	r-1 a-1 (r-1)(a-1)	mind? Y/N

8. RCBD 2 Factor (a): Two Factor Randomized Complete Block Design

-	FACTOR:	ANOVA Table for this model		
	к Value	Source	Degrees of Freedom	Is this what
-	1 2 4 6 -7	Replication Factor A Factor B AB Error	r-1 a-1 b-1 (a-1)(b-1) (ab-1)(r-1)	mind? Y/N

9. RCBD 2 Factor (b): Randomized Complete Block Design for Factor A,

with Factor B a Split Plot on A = FACTOR: ANOVA Table for this model :

FACTOR.	ANOVA TABLE TOT LITTS	s mouer	
к Value	Source	Degrees of Freedom	Is this what
1 2 -3 4 6 -7	Replication Factor A Error Factor B AB Error	r-1 a-1 (r-1)(a-1) b-1 (a-1)(b-1) a(r-1)(b-1)	mind? Y/N

10. RCBD 3 Factor (a): Three Factor Randomized Complete Block Design

K Value	Source	Degrees of Freedom	Is this what
1	Replication	r-1	mind? Y/N
2	Factor A	a-1	
4	Factor B	b-1	
6	AB	(a-1)(b-1)	
8	Factor C	c-1	
10	AC	(a-1)(c-1)	
12	BC	(b-1)(c-1)	
14	ABC	(a-1)(b-1)(c-1)	
-15	Error	(r-1)(abc-1)	

CTOR: ANOVA Table for this model =

11. RCBD 3 Factor (b): Randomized Complete Block Design for Factor A, with Factors B and C as Split Plots on A

FACTOR: ANOVA Table for this model =

к Value	Source	Degrees of Freedom	Is this what
1 2 -3 4 6 8 10 12 14 -15	Replication Factor A Error Factor B AB Factor C AC BC ABC Error	$ \begin{array}{c} r-1 \\ a-1 \\ (r-1)(a-1) \\ b-1 \\ (a-1)(b-1) \\ c-1 \\ (a-1)(c-1) \\ (b-1)(c-1) \\ (a-1)(b-1)(c-1) \\ a(r-1)(bc-1) \end{array} $	mind? Y/N

12. RCBD 3 Factor (c): Randomized Complete Block Design for Factors A and B with Factor C as a Split Plot on A and B

_	FACTOR:	ANOVA Table for this model		
	к Value	Source	Degrees of Freedom	Is this what
-	1 2 4 6 -7 8 10 12 14 -15	Replication Factor A Factor B AB Error Factor C AC BC ABC Error	$\begin{array}{c} r-1 \\ a-1 \\ b-1 \\ (a-1)(b-1) \\ (ab-1)(r-1) \\ c-1 \\ (a-1)(c-1) \\ (b-1)(c-1) \\ (a-1)(b-1)(c-1) \\ ab(r-1)(c-1) \end{array}$	you nad in mind? Y/N

13. RCBD 3 Factor (d): Randomized Complete Block Design for Factor A, with Factor B as a Split Plot on A and Factor C as a Split Plot on B = FACTOR: ANOVA Table for this model ==

к Value	Source	Degrees of Freedom	Is this what
1	Replication	r-1	mind? Y/N
2	Factor A	a-1	
-3	Error	(r-1)(a-1)	
4	Factor B	b-1	
6	AB	(a-1)(b-1)	
-7	Error	a(r-1)(b-1)	
8	Factor C	c-1	
10	AC	(a-1)(c-1)	
12	BC	(b-1)(c-1)	
14	ABC	(a-1)(b-1)(c-1)	
-15	Error	ab(r-1)(c-1)	

- 210 -

14. RCBD 4 Factor: Four Factor Randomized Complete Block Design

_	FACTOR:	ANOVA Table for this model		
	K Value	Source	Degrees of Freedom	Is this what
-	1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 -31	Replication Factor A Factor B AB Factor C AC BC ABC Factor D AD BD ABD CD ACD BCD ABCD Error	$ \begin{array}{c} r-1 \\ a-1 \\ b-1 \\ (a-1)(b-1) \\ c-1 \\ (a-1)(c-1) \\ (b-1)(c-1) \\ (a-1)(b-1)(c-1) \\ d-1 \\ (a-1)(d-1) \\ (b-1)(d-1) \\ (a-1)(b-1)(d-1) \\ (c-1)(d-1) \\ (a-1)(c-1)(d-1) \\ (a-1)(c-1)(d-1) \\ (b-1)(c-1)(d-1) \\ (b-1)(c-1)(d-1) \\ (a-1)(b-1)(c-1)(d-1) \\ By Subtraction \\ \end{array} $	mind? Y/N

15. RCBD 1 Factor combined (a): One Factor Randomized Complete Block Design Combined over Locations (or Combined over Years)

-	FACTOR:	ANOVA Table for this model		
	к Value	Source	Degrees of Freedom	Is this what
-	1 -3 4 5 -7	Location Error Factor A LA Error	$ \begin{array}{c} 1 - 1 \\ 1 (r - 1) \\ a - 1 \\ (1 - 1) (a - 1) \\ 1 (r - 1) (a - 1) \end{array} $	mind? Y/N

16. RCBD 1 Factor combined (b): One Factor Randomized Complete Block Design Combined over Locations and Years, with new Locations each

Year

FACTOR:	ANOVA Table for this model		
к Value	Source	Degrees of Freedom	Is this what
1 3 7 8 9 11 -15	Year L(Y) R(LY) Factor A YA LA(Y) Error	$\begin{array}{c} y-1 \\ y(1-1) \\ y1(r-1) \\ a-1 \\ (y-1)(a-1) \\ y(1-1)(a-1) \\ y(r-1)(a-1) \end{array}$	mind? Y/N

17. RCBD 1 Factor combined (c): Randomized Complete Block Design Combined over Locations and Years, with the same Locations each Year but Randomized

F	FACTOR:	ANOVA Table for this model		
	к Value	Source	Degrees of Freedom	Is this what
	1 2 3 7	Year Location YL R(LY)	y-1 l-1 (y-1)(l-1) yl(r-1)	mind? Y/N

8 Factor A a-1 9 YA (y-1)(a-1) 10 LA (1-1)(a-1) 11 YLA (y-1)(1-1)(a-1) -15 Error y1(r-1)(a-1)	
---	--

 RCBD 1 Factor combined (d): Randomized Complete Block Design Combined over Locations and Years, same Locations and Randomization each Year (Perennial Crops)

= FACTOR:	ANOVA Table	for this model		
к Value	Source		Degrees of Freedom	Is this what
1 3 4 5 7 8 9 12 13 -15	Location R(L) Year LY RY(L) Factor A LA YA LYA Error		$\begin{array}{c} 1 - 1 \\ 1 (r - 1) \\ y - 1 \\ (1 - 1) (y - 1) \\ 1 (r - 1) (y - 1) \\ a - 1 \\ (1 - 1) (a - 1) \\ (y - 1) (a - 1) \\ (1 - 1) (y - 1) (a - 1) \\ 1 y (r - 1) (a - 1) \end{array}$	mind? Y/N

19. RCBD 2 Factor combined (a): Two Factor Randomized Complete Block

Design Combined over Locations (or Combined over Years)

.

_	FACTOR.	ANOVA TABLE TOT LITTS MODEL		
	к Value	Source	Degrees of Freedom	Is this what
	1 3 4 5 8 9 12 13 -15	Location R(L) Factor A LA Factor B LB AB LAB Error	$ \begin{array}{c} 1-1 \\ 1(r-1) \\ a-1 \\ (1-1)(a-1) \\ b-1 \\ (1-1)(b-1) \\ (a-1)(b-1) \\ (1-1)(a-1)(b-1) \\ (1-1)(a-1)(b-1) \\ 1(r-1)(a-1)(b-1) \end{array} $	mind? Y/N

20. RCBD 2 Factor combined (b): Two Factor Randomized Complete Block

Design with Split Plot Combined over Locations

K ValueSourceDegrees of FreedomIs this what you had in mind? Y/N1Location1-1mind? Y/N3R(L)1(r-1)4Factor Aa-15LA(1-1)(a-1)-7Error1(r-1)(a-1)	_
$ \begin{array}{c cccc} 1 & Location & 1-1 & mind? Y/N \\ 3 & R(L) & 1(r-1) \\ 4 & Factor A & a-1 \\ 5 & LA & (1-1)(a-1) \\ -7 & Error & 1(r-1)(a-1) \\ \end{array} $	
17 $17(-1)(a-1)$ 8 Factor B $b-1$ 9 LB $(1-1)(b-1)$ 12 AB $(a-1)(b-1)$ 13 LAB $(1-1)(a-1)(b-1)$ -15 Error $1a(r-1)(b-1)$	

21. RCBD 2 Factor combined (c): Two Factor Randomized Complete Block Design Combined over Locations and Years, New Location each Year

ſ	= FACTOR:	ANOVA Table f	or this model			
	к Value	Source		Degrees of Freedo	m	Is this what
	1 3 7 8 9 11 16 17 19 24 25 27 -31	Year L(Y) R(LY) Factor A YA LA(Y) Factor B YB LB(Y) AB YAB LAB(Y) Error		$\begin{array}{c} y-1\\ y(1-1)\\ y(1-1)\\ a-1\\ (y-1)(a-1)\\ b-1\\ (y-1)(b-1)\\ y(1-1)(b-1)\\ (y-1)(b-1)\\ (a-1)(b-1)\\ (a-1)(b-1)\\ (y-1)(a-1)(b-1)\\ y(1-1)(a-1)(b-1)\\ y(1-1)(a-1)\end{array}$		you had in mind? Y/N
	51	2		J.()(u)		

22. RCBD 2 Factor combined (d): Two Factor Randomized Complete Block Design Combined over Locations and Years, same Location but Randomized each Year.

к Value	Source	Degrees of Freedom	Is this what
1 2 3 7 8 9 10 11 16 17 18 19 24 25 26 27 -31	Year Location YL R(LY) Factor A YA LA YLA Factor B YB LB YLB AB YAB LAB YLAB Error	$\begin{array}{c} y-1\\ 1-1\\ (y-1)(1-1)\\ y1(r-1)\\ a-1\\ (y-1)(a-1)\\ (1-1)(a-1)\\ (y-1)(1-1)(a-1)\\ b-1\\ (y-1)(b-1)\\ (1-1)(b-1)\\ (y-1)(1-1)(b-1)\\ (a-1)(b-1)\\ (y-1)(a-1)(b-1)\\ (1-1)(a-1)(b-1)\\ (y-1)(1-1)(a-1)(b-1)\\ (y-1)(1-1)(a-1)(b-1)\\ y1(r-1)(ab-1) \end{array}$	mind? Y/N

23. RCBD 2 Factor combined (e): Two Factor Randomized Complete Block Design Combined over Locations and Years, same Location and Randomization each Year.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_	FACTOR:	ANOVA Table	for this model		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		k Value	Source		Degrees of Freedom	Is this what
		1 3 4 5 7 8 9 12 13 16 17 20 21 24 25 28 29 -31	Location R(L) Year LY RY(L) Factor A LA YA LYA Factor B LB YB LYB AB LAB YAB LAB YAB LAB YAB LYAB Error		1-1 1(r-1) y-1 (1-1)(y-1) 1(r-1)(y-1) a-1 (1-1)(a-1) (y-1)(a-1) (1-1)(y-1)(a-1) b-1 (1-1)(y-1)(a-1) (y-1)(b-1) (y-1)(b-1) (1-1)(y-1)(b-1) (1-1)(y-1)(b-1) (y-1)(a-1)(b-1) (1-1)(y-1)(a-1)(b-1) By Subtraction	you had in mind? Y/N

FACTOR: ANOVA Table for this model =

24. RCBD 2 Factor combined (f): Two Factor Randomized Complete Block Design with Split, Combined over Locations and Years, New Location each Year

_	FACTOR:	ANOVA Table for this model		
	K Value	Source	Degrees of Freedom	Is this what
	1 3 7 9 11 -15 16 17 19 24 25 27 -31	Year L(Y) R(LY) Factor A YA LA(Y) Error Factor B YB LB(Y) AB YAB LAB(Y) Error	$\begin{array}{c} y-1\\ y(1-1)\\ y(1-1)\\ a-1\\ (y-1)(a-1)\\ y(1-1)(a-1)\\ y(r-1)(a-1)\\ b-1\\ (y-1)(b-1)\\ (y-1)(b-1)\\ (a-1)(b-1)\\ (y-1)(a-1)(b-1)\\ (y-1)(a-1)(b-1)\\ y(1-1)(a-1)(b-1)\\ y(r-1)(1ab-a-1) \end{array}$	you nad in mind? Y/N

25. RCBD 2 Factor combined (g): Two Factor Randomized Complete Block Design with Split, Combined over Locations and Years, same Location but Randomized each Year

	FACTOR .	ANOVA Table	for this model		
	K Value				
-	k value	Source		Degrees of Freedom	vou had in
	1	Year		y-1	mind? Y/N
	2	Location			
	3	YL		(y-1)(I-1)	
	7	R(LY)		y1(r-1)	
	8	Factor A		a-1	
	9	YA		(y-1)(a-1)	
	10	LA		(]-1)(a-1)	
	11	YLA		(y-1)(l-1)(a-1)	
	-15	Error		y](r-1)(a-1)	
	16	Factor B		b-1	
	17	YB		(y-1)(b-1)	
	18	LB		(1-1)(b-1)	
	19	YLB		(v-1)(1-1)(b-1)	
	24	AB		(a-1)(b-1)	
	25	YAB		(v-1)(a-1)(b-1)	
	26	LAB		(1-1)(a-1)(b-1)	
	27	YI AB		(v-1)(1-1)(a-1)(b-1)	
	-31	Frror		$v_1(r_{a-1})(h_{-1})$	
	31	21101			

26. RCBD 2 Factor combined (h): Two Factor Randomized Complete Block Design with Split, Combined over Locations and Years, same Location and Randomization each Year

_	FACTOR:	ANOVA Table fo	r this model			
	к Value	Source		Degrees of Freedom	Is this what	
	1 3 4 5 7 8 9 12	Location R(L) Year LY RY(L) Factor A LA YA		$\begin{array}{c} 1-1 \\ 1(r-1) \\ y-1 \\ (1-1)(y-1) \\ 1(r-1)(y-1) \\ a-1 \\ (1-1)(a-1) \\ (y-1)(a-1) \end{array}$	mind? Y/N	

13	LYA	(1-1)(y-1)(a-1)
-15	Error	1y(r-1)(a-1)
16	Factor B	b-1
17	LB	(1-1)(b-1)
20	YB	(y-1)(b-1)
21	LYB	(1-1)(y-1)(b-1)
24	AB	(a-1)(b-1)
25	LAB	(1-1)(a-1)(b-1)
28	YAB	(y-1)(a-1)(b-1)
29	LYAB	(1-1)(y-1)(a-1)(b-1)
-31	Error	By Subtraction

27. RCBD 3 Factor Combined (a): Three Factor Randomized Complete Block Design, Combined over Locations and Years, new Location each

Year

_	FACTOR:	ANOVA Table for this model		
	к Value	Source	Degrees of Freedom	Is this what
_	1 3 7 8 9 11 16 17 19 24 25 27 32 33 5 40 41 43 48 9 51 56 57 59 **	Y L(Y) R(LY) A YA LA(Y) B YB LB(Y) AB LAB(Y) C YC LC(Y) AC YAC LAC(Y) BC YBC LBC(Y) ABC YABC LABC(Y) Error	y-1 y(1-1) ly(r-1) (a-1) (y-1)(a-1) y(1-1)(y-1) (b-1) (y-1)(b-1) y(1-1)(b-1) y(1-1)(b-1) (y-1)(a-1)(b-1) (c-1)(y-1) (c-1)(y-1) (c-1)(y-1) (c-1)(y-1)(a-1) (c-1)(y-1)(b-1) (c-1)(y-1)(b-1) (c-1)(y-1)(b-1) (c-1)(y-1)(b-1) (c-1)(y-1)(b-1) (c-1)(y-1)(b-1) (c-1)(y-1)(b-1) (c-1)(y-1)(b-1) (c-1)(y-1)(b-1) (c-1)(y-1)(b-1) (c-1)(y-1)(b-1) (b-1)(b-1)(b-1) (b-1)(b-1)(b-1) (b-1)(b-1)(b-1) (b-1)(b-1)(b-1)(b-1) (b-1)(b-1)(b-1)(b-1) (b-1)(b-1)(b-1)(b-1)(b-1)(b-1)(b-1)(b-1)	you had in mind? Y/N

28. RCBD 3 Factor Combined (b): Three Factor Randomized Complete Block Design, Combined over Locations and Years, same Location but Randomized each Year

_	EACTOR .	ANOVA Table	for	this model		
	TACTOR:	ANOVA TUDIC	101	cirrs moder		
	к Value	Source			Degrees of Freedom	Is this what
	1	Y			y-1	mind? Y/N
	2	L			1-1	
	3	YL			(y-1)(1-1)	
	7	R(LY)			ly(r-1)	
	8	A			(a-1)	
	9	YA			(y-1)(a-1)	
	10	LA			(1-1) (a-1)	
	11	YLA			(y-1)(1-1)(a-1)	
	16	В			(b-1)	
	17	YB			(y-1)(b-1)	
	18	LB			(1-1)(b-1)	
	19	YLB			(y-1)(1-1) (b-1)	
	24	AB			(a-1)(b-1)	
	25	YAB			(y-1)(a-1)(b-1)	
	26	LAB			(1-1)y(a-1)(b-1)	
	27	YLAP			(y-1)(1-1)(a-1)(b-1)	
	32	С			(c-1)	
	33	YC			(c-1)(y-1)	

34 35 40 41 42 43 48 49 50 51 56 57 58 59 **	LC YLC AC YAC LAC YLAC YBC YBC YBC YLBC ABC YABC YLABC YLABC Error	
--	--	--

29.	RCBD 4 Factor Combined (a): Four Factor Randomized Complete Block
	Design, Combined over Locations and Years, new Location each Year

30. RCBD 4 Factor Combined (b): Four Factor Randomized Complete Block Design, Combined over Locations and Years, same Location but Randomized each Year

K Value	Source	Degrees of Freedom	Is this what
1	Y	v-1	you had in mind? Y/N
2	L L	(1-1)	
3 7	YL R(LY)	(y-1)(I-1) lv(r-1)	
8	A	(a-1)	
9 10		(y-1)(a-1) (1-1)(a-1)	
11	YLA	(y-1)(1-1)(a-1)	
16 17	B YB	(b-1) (y-1)(b-1)	
18	LB	(1-1) (b-1)	
19 24	YLB AB	(y-1)(1-1)(b-1) (a-1)(b-1)	
25	YAB	(y-1)(a-1)(b-1)	
26	LAB YLAB	(v-1)(1-1)(a-1)(b-1)	
32	C	(c-1)	
33 34	LC	(c-1)(y-1) (c-1)(1-1)	
35	YLC	(c-1)(y-1)(1-1)	
40 41	AV YAC	(c-1)(a-1) (c-1)(y-1)(a-1)	
42	LAC	(c-1)(1-1)(a-1)	
48	BC	(c-1)(b-1)	
49 50	YBC	(c-1)(y-1)(b-1)	
51	YLBC	(c-1)(y-1)(1-1)(b-1)	
56 57	ABC	(c-1)(a-1)(b-1) (c-1)(v-1)(a-1)(b-1)	
58	LABC	(c-1)(1-1)(a-1)(b-1)	
59 64	YLABC D	(c-1)(y-1)(1-1)(a-1)(b-1) (d-1))
65	YD	(d-1) (y-1)	
67	LD YLD	(d-1)(1-1) (d-1)(y-1)(1-1)	
72	AD	(d-1)(a-1)	
73	LAD	(d-1)(1-1)y(a-1)	
75 80	YLAD	(d-1)(y-1)(1-1)(a-1)	
81	YBD	(d-1)(y-1)y(b-1)	
82 83	LBD YLBD	(d-1)(l-1)(b-1) (d-1)(v-1)(l-1)(b-1)	
88	ABD	(d-1) (a-1) (b-1)	
89 90	YABD LABD	(d-1)(y-1)(a-1)(b-1) (d-1)(1-1)(a-1)(b-1)	
91	YLABD	(d-1)(y-1)(1-1)(a-1)(b-1))
96 97	CD YCD	(d-1)(c-1) (d-1)(c-1)(v-1)	
98	LCD	(d-1)(c-1)(1-1)	
104	ACD	(d-1)(c-1)(y-1)(1-) (d-1)(c-1)(a-1)	
105	YACD	(d-1)(c-1)(y-1)(a-1) (d-1)(c-1)(1-1)(a-1)	
107	YLACD	(d-1)(c-1)y(y-1)(1-1)(a-1)	L)
112 113	BCD	(d-1)(c-1)(b-1) (d-1)(c-1)(v-1)(b-1)	
114	LBCD	(d-1)(c-1)(1-1)(b-1)	
115 120	YLBCD ABCD	(d-1)(c-1)y(y-1)(1-1)(b-1)(d-1)(c-1)y(a-1)(b-1)	L)
121	YABCD	(d-1)(c-1)(y-1)(a-1)(b-1))
122 123	LABCD YLABCD	(d-1)(c-1)(1-1)(a-1)(b-1)(d-1)(c-1)(v-1)(1-1)(a-1)))(h-1)
**	Error	by subtraction	

= FACTOR: ANOVA Table for this model

31. RCBD 2 Factor Strip Plots: Two Factor Randomized Complete Block Design using Strip Plots

= FACTOR: ANOVA Table for this model

к Value	Source	Degrees of Freedom	Is this what
1 2 -3 4 -5 6 -7	Replication Horizontal Factor A Error (a) Vertical Factor B Error (b) AB Error (c)	$\begin{array}{c} r-1 \\ a-1 \\ (r-1)(a-1) \\ b-1 \\ (r-1)(b-1) \\ (a-1)(b-1) \\ (r-1)(a-1)(b-1) \end{array}$	— you nau in mind? Y/N

32. RCBD 3 Factor Strip Plots: Three Factor Randomized Complete Block

Design with the Treatments Arranged in Strips

к Value	Source	Degrees of Freedom	Is this what
1 2 -3 4 -5 6 -7 8 10 12 14 -15	Replication Horizontal Factor A Error (a) Vertical Factor B Error (b) AB Error (c) Subplot Factor C AC BC ABC Error (d)	$ \begin{array}{c} r-1 \\ a-1 \\ (r-1)(a-1) \\ b-1 \\ (r-1)(b-1) \\ (a-1)(b-1) \\ (r-1)(a-1)(b-1) \\ c-1 \\ (a-1)(c-1) \\ (b-1)(c-1) \\ (a-1)(b-1)(c-1) \\ ab(r-1)(c-1) \end{array} $	mind? Y/N

FACTOR: ANOVA Table for this model =

33. RCBD 4 Factor Split Plots (a): Four Factor Randomized Complete Block

Design with Factors B, C, and D as Split Plots on Factor A

 FACTOR .	ANOVA Table for this model		
к Value	Source	Degrees of Freedom	Is this what
1 2 -3 4 6 8 10 12 14 16 18 20 22 24 26 28 30 -31	Replication Factor A Error Factor B AB Factor C AC BC ABC Factor D AD BD ABD CD ACD BCD ABCD Error	$ \begin{array}{c} r-1 \\ a-1 \\ (r-1)(a-1) \\ b-1 \\ (a-1)(b-1) \\ c-1 \\ (a-1)(c-1) \\ (b-1)(c-1) \\ (a-1)(b-1)(c-1) \\ (a-1)(b-1)(c-1) \\ (a-1)(d-1) \\ (b-1)(d-1) \\ (a-1)(b-1)(d-1) \\ (c-1)(d-1) \\ (a-1)(c-1)(d-1) \\ (b-1)(c-1)(d-1) \\ (b-1)(c-1)(d-1) \\ (a-1)(b-1)(c-1)(d-1) \\ By Subtraction \\ \end{array} $	you nad in mind? Y/N

34. RCBD 4 Factor Split Plots (b): Four Factor Randomized Complete Block Design with Factor B as a Split Plot on Factor A and Factors C and D as Split Plots on Factor B

- 222 -

	= FACTOR	$\Delta NOVA$ Table for	this model	
I				
	k value	Source	Degrees of Freedom	is this what
	1	Replication	r-1	you nad in mind? Y/N
l	2	Factor A	a-1	
	-3	Frror	(r-1)(a-1)	
l	4	Factor B	b-1	
l	6	AB	(a-1)(b-1)	
l	-7	Error	a(r-1)(b-1)	
	8	Factor C	c-1	
	10	AC	(a-1)(c-1)	
	12	BC	(b-1)(c-1)	
	14	ABC	(a-1)(b-1)(c-1)	
	16	Factor D	d-1	
	18	AD	(a-1)(d-1)	
	20	BD	(b-1)(d-1)	
	22	ABD	(a-1)(b-1)(d-1)	
	24	CD	(c-1)(d-1)	
	26	ACD	(a-1)(c-1)(d-1)	
	28	BCD	(b-1)(c-1)(d-1)	
	30	ABCD	(a-1)(b-1)(c-1)(d-1)	
	-31	Error	By Subtraction	

في حالة عدم وجود التصميم في قائمة التصميمات يتم اختيار الخيار رقم ٣٥ في القائمة Other Type of Design حيث من خلاله يتم تخصيص شكل لجدول الأنوفا، فعند الضغط على هذا الخيار تظهر نافذة بعنوان Number of Factors كما بالشكل التالي تحتوي على خانة نشطة نكتب فيها عدد عو امل التجربة وليكن ٤ عو امل مع ملاحظة أنها تشتمل على المكررات ثم نضغط مفتاح الإدخال Enter في لوحة المفاتيح

> FACTOR: Number of Factors ______ Please enter the number of Factors (including Replications) in the Analysis: 4

فتظهر نافذة بعنوان Enter Your K Values كما بالشكل التالي

— FACTOR: Enter Your K Values (Enter 0 to End) ————— K Value Source Degrees of Freedom

أكتب ١ ثم اضعط Enter في لوحة المفاتيح فيحدث تحديث للنافذة كما بالشكل التالي

Ir	- FACTOR.	Linter rour k	Values (Lincer	
	к Value	Source		Degrees of Freedom
	1	Factor A		a-1

أكتب ٢ ثم اضغط Enter في لوحة المفاتيح فيحدث تحديث للنافذة كما بالشكل التالي

F	= FACTOR:	Enter Your K	Values (Enter 0 to End) —————	_
	к Value	Source	Degrees of Freedom	
	1 2	Factor A Factor B	a-1 b-1	_
-				

لكل التالي	افذة كما بالش	فاتيح فيحدث تحديث للن	كتب ٤ ثم اضغط Enter في لوحة الم	Ĵ
1	FACTOR: En	ter Your K Values (Enter	0 to End)	
	к Value	Source	Degrees of Freedom	
	1 2 4	Factor A Factor B Factor C	a-1 b-1 c-1	
الشكل التالي	لنافذة كما با	فاتيح فيحدث تحديث ل	كتب ٦ ثم اضغط Enter في لوحة الم	Ţ
	الثالث C.	عامل الثاني B و العامل	لاحظ أن ٦ تمثل تأثير التداخل بين ال	و
	FACTOR: En	ter Your K Values (Enter	0 to End)	
	к Value	Source	Degrees of Freedom	
	1 2 4 6	Factor A Factor B Factor C BC	a-1 b-1 c-1 (b-1)(c-1)	
لكل التالي.	افذة كما بالش	فاتيح فيحدث تحديث للن	كتب ٨ ثم اضُّغط Enter في لوحة الم	Ĵ
[FACTOR: En	ter Your K Values (Enter	0 to End)	
	к Value	Source	Degrees of Freedom	
	1 2 4 6 8	Factor A Factor B Factor C BC Factor D	a-1 b-1 c-1 (b-1)(c-1) d-1	
الشكل التالي	لنافذة كما با	المفاتيح فيحدث تحديث ا	كتب ١٠ ثم اضغط Enter في لوحة ا	ļ
) الرابع D.	العامل الثاني B و العامل	لاحظ أن ١٠ تمثل تأثير التداخل بين	و
[FACTOR: En	ter Your K Values (Enter	0 to End)	
	к Value	Source	Degrees of Freedom	
	$\frac{1}{2}$	Factor A Factor B	a-1 b-1	
	4	Factor C BC	c-1 (b-1)(c-1)	
	8 10	Factor D BD	d-1 (b-1)(d-1)	
الشكل التالي	لنافذة كما با	المفاتيح فيحدث تحديث ا	كتب ١٢ ثم اضغط Enter في لوحة ا	ļ
	ں الر ابع D.	العامل الثالث C و العاما	لاحظ أن ١٢ تمثل تأثير التداخل بين	و
[FACTOR: En	ter Your K Values (Enter	0 to End)	
	к Value	Source	Degrees of Freedom	
	1 2	Factor A Factor B	a-1 b-1	
	4	Factor C BC	c-1 (b-1)(c-1)	
	8 10	Factor D BD	d-1 (b-1)(d-1)	
		CD	(C-1)(d-1)	

أكتب ١٤ ثم اضغط Enter في لوحة المفاتيح فيحدث تحديث للنافذة كما بالشكل التالي و لاحظ أن ١٤ تمثل تأثير التداخل بين العامل الثاني B و العامل الثالث C و العامل الرابع D.

_	FACTOR:	Enter Your K	Values (Ent	ter 0 to End)	
	к Value	Source		Degrees of Freedom	
	1 2 4 6 8 10 12 14	Factor A Factor B Factor C BC Factor D BD CD BCD		a-1 b-1 c-1 (b-1)(c-1) d-1 (b-1)(d-1) (c-1)(d-1) (b-1)(c-1)(d-1)	

أكتب سالب ٥١ ثم اضغط Enter في لوحة المفاتيح فيحدث تحديث للنافذة كما بالشكل التالي و لاحظ أن ١٥ تمثل تأثير الخطأ Error.

ſ	_	FACTOR:	Enter Your K	Values (Ent	ter 0 to End) —————	_
		к Value	Source		Degrees of Freedom	
		1	Factor A		a-1	
		2 4	Factor B Factor C		b-1 c-1	
		6	BC Factor D		(b-1)(c-1) d-1	
		10	BD		(b-1)(d-1)	
		12 14	CD BCD		(c-1)(d-1) (b-1)(c-1)(d-1)	
		-15	Error		(a-1)(bcd-1)	

لإنهاء هذه العملية اضبغط مفتاح الصفر (0) في لوحة المفاتيح ثم مفتاح الإدخال Enter وتابع التحليل كما سبق وذكرنا في الأمثلة السابقة وبالتالي سيكون شكل جدول الأنوفا في نهاية التحليل بهذا الشكل السابق.

ماذا نلاحظ من الكلام السابق:

قيمة K للتداخلات بين العوامل ما هي إلا مجموع قيم K لكل عامل رئيس فعلي سبيل المثال

$$AB = 3, BC = 6, ABC = 7, \dots, etc$$

قيم K لابد أن تكون مرتبة ترتيبا تنازليا كما يلي:

	А	В	AB	С	AC	BC	ABC	D	AD	BD
K-Value:	1	2	3	4	5	6	7	8	9	10
	ABD	CD	ACD	Е	F	ABC	CDEF			
K-Value:	11	12	13	16	32	6	53			

بنفس العليق لمدة	ed 3	Bre	ed 2	Bre	ed 1	Bre
شمرين فلختريت	Х	Y	X	Y	Х	Y
سے پن ف کیر ت	10	17	11	20	10	18
خمسة أغنام من كل	12	17	14	24	12	21
	13	21	11	19	12	20
صينف وكانيت	11	17	15	23	13	21
متعادة المعدية	8	16	14	22	16	25
متساويه فني العمار						

مثالم. : أجريت تجربة لمقارنة أوزان ٣ أصناف Breeds من الأغنام بعد تغذيتها

ولكن اختلف أوز انها في بداية التجربة لذلك سجلت هذه الأوز ان (X) إلي جانب الأوز ان في نهاية التجربة وكانت البيانات كما يلي و المطلوب تحليل البيانات إحصائيا بحيث يتم إز الة تأثير المتغير المصاحب (التصميم المستخدم العشوائي التام CRD 1 FACTOR)

 يتم إدخال البيانات بحيث تكون كما بالشكل التالي ونتبع نفس الخطوات الموجودة في المثال الرابع

Case 1 2 3 4 5 6 7 8 9 10	1 REPS 1.0 2.0 3.0 4.0 5.0 1.0 2.0 3.0 4.0 5.0 1.0	2 Breed 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0	3 X 10.0 12.0 13.0 16.0 11.0 14.0 11.0 15.0 14.0	4 Y 18.0 21.0 20.0 25.0 26.0 24.0 19.0 23.0 22.0 22.0
9 10 11	4.0 5.0	2.0 2.0	$15.0 \\ 14.0 \\ 10.0$	23.0 22.0 17.0
12 13 14 15	2.0 3.0 4.0 5.0	3.0 3.0 3.0 3.0	12.0 13.0 11.0 8.0	17.0 21.0 17.0 17.0

 لكن عند البحث في قائمة التصميمات لن نجد التصميم CRD 1 FACTOR لذا سوف نختار الخيار رقم ٣٥ في القائمة ونضغط مفتاح الإدخال Enter في لوحة المفاتيح فتظهر النافذة التالية وفيها يتم إدخال عدد عو امل الدر اسة مشتملة علي المكررات و هذا العدد يتر اوح بين ٢، ٧ عو امل

> FACTOR: Number of Factors _______ Please enter the number of Factors (including Replications) in the Analysis: 2

نسال Enter	. مفتاح الإدخ	رات اضمغط	ة على المكر) مشتملا	العوامل	ديد عدد	، بعد ت
[ثم أكتــب	مغط Enter	¥ (۱) ثم اظ	لمانية K value	ب في خ	الية، أكت	النافذة الت	فتظهر
		تتهاء	ثم Enter للا	: نم صفر	Enter	م اضغط [.]	(۳-)
	FACTOR: E	nter Your K V	/alues (Enter	0 to End)			
	к Value	Source	l	Degrees o	of Freedo	m	
	$\begin{bmatrix} 1\\ -3 \end{bmatrix}$	Factor A Error		a-1 a(b-1)			
	II				لما يلي	التّحليل ك	و اصل
	FACTOR:	First Variab	le (Factor A)				
	Enter th Enter th Enter th	e desired Van e lowest leve e highest lev	riable Number: el for this Va vel for this V	riable: ariable:	2 1 3		
			Enter 🛛				
	FACTOR:	Second Varial	ole (Factor B)				
	Enter th Enter th Enter th	e desired Van e lowest leve e highest lev	riable Number: al for this Va vel for this Va	riable: ariable:	1 1 5		
	L		Enter 1				
F/	ACTOR: Select	ed Variables					— ₁
N	umber of Fact	ors: 2					
	Variable D	escription	Anova Use		Lowest Level	Level	
	1 type 2 reps		Factor A Factor B		1 1	3 5	
		Is this	s correct? Y	/N			
L			Enter 1				<u> </u>
	FACTOR: COVAR	lace variabl	e number =====				-1

Enter ↓

Which variable do you wish to use as your covariate? 3

Enter ⊣

ملحق ١: أجراء تحليل التجارب العاملية باستخدام برنامج SAS مثال ١: صفحة (١٨٦) هذا المثال يشرح كيفية تحليل التجارب العاملية بتصميم القطاعات كاملة العشوائية RCBD

PROC ANOVA DATA=MOHAMEDKAMAL; CLASS REPS L SA SD; MODEL EC= REPS L SA SD L*SA SD L*SD SA*SD L*SA*SD; MEANS REPS L SA SD L*SA SD L*SD SA*SD L*SA*SD; MEANS REPS L SA SD L*SA SD L*SD SA*SD L*SA*SD/LSD;

run i

The ANOVA Procedure

Class Level Information

Class	Levels	Values
REPS	3	123
L	2	1 2
SA	2	1 2
SD	2	1 2

Number of observations 24

The ANOVA Procedure

Dependent Variable: EC

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	9	13.62541667	1.51393519	301.21	<.0001
Error	14	0.07036667	0.00502619		
Corrected Total	23	13.69578333			

	R-Square	Coe	ff Var	Root	MSE	EC M	lean	
	0.994862	2.	078543	0.0	70896	3.410	833	
Source		DF	Anova	SS	Mean a	Square	F Value	Pr > F
REPS		2	0.10703	333	0.05	351667	10.65	0.0015
L		1	7.95801	667	7.95	801667	1583.31	<.0001
SA		1	5.07840	000	5.07	840000	1010.39	<.0001
SD		1	0.27735	000	0.27	735000	55.18	<.0001
L*SA		1	0.06826	667	0.06	826667	13.58	0.0024
L*SD		1	0.04001	667	0.04	001667	7.96	0.0136

	Level REPS 1 2 3 Level L 2 Level SA 1 2	of of	The N 8 8 8 8 12 12 12	ANOVA :	Procedure <u>Mean</u> 1750000 7000000 4500000 <u>Mean</u> 8666667 3500000	EC Std 1 0.80272 0.78150 0.82833 EC Std 1 0.46669	Dev 304 039 741 Dev 697	
	Level REPS 1 2 3 Level L Level SA 1 2	of	N 8 8 8 12 12 12	3.3 3.4 3.4 3.9 2.8	Mean 1750000 7000000 4500000 	EC	 Dev 304 039 741 Dev 697	
	l 2 3 Level L 1 2 Level SA 1 2	of	N 8 8 8 8 12 12 12 N	3.3 3.4 3.4 3.9 2.8	Mean 1750000 7000000 4500000 Mean 8666667 3500000	0.80272 0.78150 0.82833 EC Std 1 0.46669	304 039 741 Dev 697	
	1 2 3 Level L 2 Level SA 1 2	of	8 8 8 12 12 12 N	3.3 3.4 3.4 3.9 2.8	1750000 700000 4500000 	0.80272 0.78150 0.82833 EC Std 1 0.46669	304 039 741 Dev 697	
	2 3 Level L Level SA 2	of	8 8 12 12 N	3.4 3.4 3.9 2.8	4500000 4500000 Mean 8666667 3500000	0.78150 0.82833 EC	 Dev 697	
	Level L 2 Level SA 1 2	of	N 12 12 N	3.9 2.8	Mean 8666667 3500000	EC Std 1	 Dev 697	
	Level L 2 Level SA 1 2	of of	N 12 12 N	3.9 2.8	Mean 8666667 3500000	EC Std 1	 Dev 697	
	L 1 2 Level SA 1 2	of	N 12 12 N	3.9 2.8	Mean 8666667 3500000	Std 1	Dev 697	
	1 2 Level SA 1 2	of	12 12 N	3.9 2.8	8666667 3500000	0.46669	697	
	2 Level SA 1 2	of	12 N	2.8	3500000			
	Level SA 1 2	of	N			0.55118	880	
	Level SA 1 2	of	N					
	1 2		N]	EC		
	1 2				Mean	Std .	Dev	
	2		12	2.9	5083333	0.66413	934	
			12	3.8	7083333	0.58507	899	
		-				_ ~		
	Level SD	UI	N		 Mean	Std 1	 Dev	
	1		10		0000000	0 80610	500	
	⊥ 2		12 12	3.3	ussssss 1833333	U.72641 0.83197	502 283	
Level	of	Level	of			EC		
L		SA		N	1	Mean	Std Dev	
1		1		6	3.5800	0000 0	.08671793	
1		2		6	4.3933	3333 0	.27339837	
2		1		6	2.3216	6667 0	.11321072	
2		2		0	3.3403	5555 0	.15210/42	
Level	of	Level	of			EC		
L		SD		N	1	Mean	Std Dev	
1		1		6	3.8383	3333 0	.35176223	
1		2		6	4.1350	0000 0	.55011817	
2		1		6	2.7683	3333 0 6667 0	.59179107	
2		2		0	2.9010			
Level	of	Level	of			EC		
SA	01	SD	01	N	1	Mean	Std Dev	
1		1		6	2,8800	0000 0	.70427267	
1		2		6	3.0216	6667 0	.67995343	
			The	ANOVA	Procedure			
	-		-					
Level SA	ot	Level SD	oi	N		EC Mean	Std Dev	
2		1		6	3 7760	6667 ^	19154700	
2		2		6	4.0150	0000 0	. 68441946	
vel of	Level	of	Level	L of			-EC	
	SA		SD		N	Mean		Std Dev
	1		1		3	3.52000000	0.0	5291503
	1		2		3	3.64000000	0.0	7211103
	∠ 2		⊥ 2		3	4 63000000	0.0	2767145
	⊿ 1		∠ 1		3	2 24000000	0.1	2,0,⊥±2 9165151
	1		2		3	2.403333333	0.0	6027714
	2		1		3	3.29666667	0.1	7243356
	2		2		3	3.40000000	0.1	4177447
	Level L Level L Level SA Level SA 1 Level SA 2 2 rel of	Level of L Level of L Level of SA Level of SA 1 Level of SA 2 2 rel of Level SA 1 1 Level of SA 2 2 2 rel of Level SA 2 2 2 rel of L 2 2 2 rel of L 2 2 rel of L 2 rel of Level of L 2 rel 1 rel 0 rel 0	Level of Level 1 1 2 1 2 1 2 2 Level of Level 1 1 2 2 Level of Level SA 1 1 2 Level of Level SA SD 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2	Level of Level of SA 1 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 1 1 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 <td>Level ofSAN116216216226Level ofSDN1126216216216216126Level ofSDN116126Level ofSDN116226VSDN216221216rel ofLevel ofN111216rel ofLevel ofN11121211121212212212212121122122122121211212212121212121212121212231<!--</td--><td>L SA N I 1 1 6 3.5800 1 2 6 4.3933 2 1 6 2.3216 2 2 2 6 3.3483 Level of Level of L SD N I 1 1 6 3.8383 1 2 6 4.1350 2 2 1 6 2.8800 2 2 2 6 2.9016 Level of Level of SD N I 1 1 6 2.8800 1 I I 2 2 6 3.0216 I</td><td>Level of SA N Mean 1 1 6 3.5800000 0 1 2 6 4.3933333 0 2 1 6 2.32166667 0 2 2 6 3.34833333 0 2 2 6 3.34833333 0 Level of Level of EC EC L SD N Mean 1 1 6 3.83833333 0 2 2 6 4.13500000 0 2 1 6 2.88833333 0 2 2 6 2.90166667 0 2 2 6 2.90166667 0 Level of EC EC EC SA SD N Mean 1 1 1 6 3.72666667 0 2 2 6 4.01500000 0 rel of Level of </td><td>Level of Jevel of N Mean Std Dev 1 1 6 3.58000000 0.08671793 1 2 6 4.39333333 0.27339837 2 1 6 2.32166667 0.11321072 2 2 2 6 3.34833333 0.15210742 Level of Level of EC EC </td></td>	Level ofSAN116216216226Level ofSDN1126216216216216126Level ofSDN116126Level ofSDN116226VSDN216221216rel ofLevel ofN111216rel ofLevel ofN11121211121212212212212121122122122121211212212121212121212121212231 </td <td>L SA N I 1 1 6 3.5800 1 2 6 4.3933 2 1 6 2.3216 2 2 2 6 3.3483 Level of Level of L SD N I 1 1 6 3.8383 1 2 6 4.1350 2 2 1 6 2.8800 2 2 2 6 2.9016 Level of Level of SD N I 1 1 6 2.8800 1 I I 2 2 6 3.0216 I</td> <td>Level of SA N Mean 1 1 6 3.5800000 0 1 2 6 4.3933333 0 2 1 6 2.32166667 0 2 2 6 3.34833333 0 2 2 6 3.34833333 0 Level of Level of EC EC L SD N Mean 1 1 6 3.83833333 0 2 2 6 4.13500000 0 2 1 6 2.88833333 0 2 2 6 2.90166667 0 2 2 6 2.90166667 0 Level of EC EC EC SA SD N Mean 1 1 1 6 3.72666667 0 2 2 6 4.01500000 0 rel of Level of </td> <td>Level of Jevel of N Mean Std Dev 1 1 6 3.58000000 0.08671793 1 2 6 4.39333333 0.27339837 2 1 6 2.32166667 0.11321072 2 2 2 6 3.34833333 0.15210742 Level of Level of EC EC </td>	L SA N I 1 1 6 3.5800 1 2 6 4.3933 2 1 6 2.3216 2 2 2 6 3.3483 Level of Level of L SD N I 1 1 6 3.8383 1 2 6 4.1350 2 2 1 6 2.8800 2 2 2 6 2.9016 Level of Level of SD N I 1 1 6 2.8800 1 I I 2 2 6 3.0216 I	Level of SA N Mean 1 1 6 3.5800000 0 1 2 6 4.3933333 0 2 1 6 2.32166667 0 2 2 6 3.34833333 0 2 2 6 3.34833333 0 Level of Level of EC EC L SD N Mean 1 1 6 3.83833333 0 2 2 6 4.13500000 0 2 1 6 2.88833333 0 2 2 6 2.90166667 0 2 2 6 2.90166667 0 Level of EC EC EC SA SD N Mean 1 1 1 6 3.72666667 0 2 2 6 4.01500000 0 rel of Level of	Level of Jevel of N Mean Std Dev 1 1 6 3.58000000 0.08671793 1 2 6 4.39333333 0.27339837 2 1 6 2.32166667 0.11321072 2 2 2 6 3.34833333 0.15210742 Level of Level of EC EC

NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate. Alpha 0.05 Error Degrees of Freedom 14 Error Mean Square 0.005026 Critical Value of t 2.14479 Least Significant Difference 0.076 Means with the same letter are not significantly different.

t Grouping	Mean	N	REPS
А	3.47000	8	2
A A	3.44500	8	3
В	3.31750	8	1
	The ANOVA Proc	edure	

t Tests (LSD) for EC

NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha	0.05
Error Degrees of Freedom	14
Error Mean Square 0.	005026
Critical Value of t 2	.14479
Least Significant Difference	0.0621

Means with the same letter are not significantly different.

t Grouping	Mean	N	L	
A	3.98667	12	1	
В	2.83500	12	2	
	The ANOVA Proc	edure		

t Tests (LSD) for EC

NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha	0.05
Error Degrees of Freedom	14
Error Mean Square	0.005026
Critical Value of t	2.14479
Least Significant Difference	0.0621

Means with the same letter are not significantly different.

t Grou	ping	Mean N	SA
	A	3.87083 12	2
	В	2.95083 12 The ANOVA Procedure	1
		t Tests (LSD) for EC	

NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha	0.05
Error Degrees of Freedom	14
Error Mean Square	0.005026
Critical Value of t	2.14479
Least Significant Difference	0.0621

Means with the same letter are not significantly different.

t Grouping Mean N SD A 3.51833 12 2 B 3.30333 12 1 The ANOVA Procedure

Level of	Level of	-	EC	
L	SA	N	Mean	Std Dev

		1		1		6	3.580	00000	0	08671793	
		2		1		6	2.321	66667	0	11321072	
		2		2		6	3.348	33333	0	15210742	
		Level	of	Level (of				EC		
		L		SD		Ν		Mean		Std Dev	
		1		1		6	3.838	33333	0	35176223	
		1		2		6	4.135	00000	0	.55011817	
		2		1		б	2.768	33333	0	.59179107	
		2		2		6	2.901	66667	0	55452382	
		Level	of	Level (of				EC		
		SA		SD		Ν		Mean		Std Dev	
		1		1		6	2.880	00000	0	.70427267	
		1		2		6	3.021	66667	0	.67995343	
		2		1		6	3.726	66667	0	.48454790	
		2		2		6	4.015	00000	0.	.68441946	
	Level	of	Level	of	Level	of				-EC	
	L		SA		SD		Ν		Mean	St	td Dev
	1		1		1		3	3.520	00000	0.052	291503
	1		1		2		3	3.640	00000	0.072	211103
	1		2		1		3	4.156	66667	0.050	033223
	1		2		2		3	4.630	00000	0.12	767145
	2		1		1		3	2.240	00000	0.09	165151
	2		1		2		3	2.403	33333	0.060	027714
	2		2		1		3	3.296	66667	0.172	243356
	2		2		2		3	3.400	00000	0.141	177447
5. Ā	state"	ti	1 - 11	.t.ta	. A .	i.< -		11 2. 11	110	(194)	ã s à .
	and the second		الخصاليس	هيني ا		(الملحميين			

مثال: صفحة (١٩٤) هذا المثال يشرح كيفية تحليل التجارب العاملية بتصميم العشوائي التام CRD

DATA MOHAMEDKAMAL; INPUT A B C Data;

۲

PROC ANOVA DATA=MOHAMEDKAMAL; CLASS A B C; MODEL DATA= A B C A*B C A*C B*C A*B*C; MEANS A B C A*B C A*C B*C A*B*C; MEANS A B C A*B C A*C B*C A*B*C/LSD; RUN;

The ANOVA Procedure

Class Level Information

Class	Levels	Values
A	2	1 2
в	3	123
С	3	123

Number of observations 54

The ANOVA Procedure

Dependent Variable: Data

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	17	73.6125926	4.3301525	2.08	0.0322
Error	36	75.0133333	2.0837037		
Corrected Total	53	148.6259259			

 R-Square
 Coeff Var
 Root MSE
 Data Mean

 0.495288
 13.04808
 1.443504
 11.06296

Source	DF	Anova SS	Mean Square	F Value	Pr > F
A	1	5.35185185	5.35185185	2.57	0.1178
В	2	4.81592593	2.40796296	1.16	0.3263
C	2	23.11592593	11.55796296	5.55	0.0079
A*B	2	10.74703704	5.37351852	2.58	0.0898
A*C	2	7.16703704	3.58351852	1.72	0.1935
B*C	4	12.04074074	3.01018519	1.44	0.2394
A*B*C	4	10.37407407	2.59351852	1.24	0.3096

The ANOVA Procedure

Level of		Dat	a
A	Ν	Mean	Std Dev
1	27	11.3777778	1.11918010
2	27	10.7481481	2.06348666
Level of	N	Dat	a
B		Mean	Std Dev
1	18	11.1055556	0.63936754
2	18	10.6777778	1.07241100
3	18	11.4055556	2.62689085
Level of	N	Dat	a
C		Mean	Std Dev

		1 2 3		18 18 18		11.7388889 10.177778 11.2722222	1.24953586 2.32873496 0.63134362	
	Torrol	of	Torrol	of			Data	
	A	01	B	01	Ν	Mean	Std	Dev
	1		1		9	10.9555556	0.61055	530
	1		2		9	10.8555556	0.58547	227
	1		3		9	12.3222222	1.35810	1325
	2		2		9	10 5000000	0.00/29	2069
	2		3		9	10.4888889	3.30584	1499
	Level	of	Level	of			Data	
	A		C		Ν	Mean	Std	Dev
	1		1		9	12.1888889	1.46496	5113
	1		2		9	10.8555556	0.68027	772
	1		3		9	11.0888889	0.56666	667
	2		1		9	11.2888889	0.84623	348
	2		2		9	9.5000000	3.16662	281
	2		3		9	11.4555556	0.67102	2740
	Level	of	Level	of			Data	
	В		С		Ν	Mean	Std	Dev
	1		1		6	11.2166667	0.53072	278
	1		2		6	10.4833333	0.32506	5410
	1		3		6	11.6166667	0.45789	373
	2		1		6	11.1166667	0.70828	3431
				The .	ANC	OVA Procedure		
	Level	of	Level	of			Data	
	В		C		Ν	Mean	Std	Dev
	2		2		6	10.2666667	1.65489	174
	2		3		6	10.6500000	0.48476	5799
	3		1		6	12.8833333	1.47026	5075
	3		2		6	9.7833333	3.90968	882
	3		3		6	11.5500000	0.45934	1736
Level	of	Level	of	Level	ot		Data	
A		В		C		N	Mean	Std Dev
1		1		1		3 10.9	333333	0.32145503
1		1		2		3 10.3	333333	0.15275252
1		1		3		3 11.6	5000000	0.4000000
1		2		1		3 11.5	666667	0.20816660
1		2		2		3 10.5	12222222	0.35116840
1		2		1		3 14.0	666667	0.25100115
1		3		2		3 11 5	1000000	0.26457513
1		3		3		3 11.2	2000000	0.26457513
2		1		1		3 11.5	000000	0.60000000
2		1		2		3 10.6	333333	0.41633320
2		1		3		3 11.6	5333333	0.60277138
2		2		1		3 10.6	666667	0.77674535
2		2		2		3 10.0	000000	2.55147016
2		2		3		3 10.8	333333	0.65064071
2		3		1		3 11.7	000000	1.00000000
2		3		2		3 7.8	8666667	5.20800666
2		د		د		5 LLS	000000	0.300000000

The ANOVA Procedure

t Tests (LSD) for Data

NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha	0.05
Error Degrees of Freedom	36
Error Mean Square	2.083704
Critical Value of t	2.02809
Least Significant Difference	0.7968

Means with the same letter are not significantly different.

t Grouping	Mean	N	A		
А	11.3778	27	1		
A	10.7481 27				
	The ANOVA Proce	edure			
	t Tests (LSD) fo	or Data	a		

NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha	0.05
Error Degrees of Freedom	36
Error Mean Square	2.083704
Critical Value of t	2.02809
Least Significant Difference	0.9759

Means with the same letter are not significantly different.

t Grouping		Mean	Ν	В
А		11.4056	18	3
A		18	1	
A		18	2	
	The	ANOVA Proce	dure	

t Tests (LSD) for Data

NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha	0.05
Error Degrees of Freedom	36
Error Mean Square	2.083704
Critical Value of t	2.02809
Least Significant Difference	0.9759

Means with the same letter are not significantly different.

t Grouping	Mean	Ν	С	
A A	11.7389	18	1	
A	11.2722	18	3	
В	10.1778	18	2	

The ANOVA Procedure

Level of	Level of	DataD			
А	В	Ν	Mean	Std Dev	
1	1	9	10.9555556	0.61055530	
1	2	9	10.8555556	0.58547227	
1	3	9	12.3222222	1.35810325	
2	1	9	11.2555556	0.66729137	
2	2	9	10.5000000	1.42478068	
2	3	9	10.4888889	3.30584499	
Level of A	Level of C	N	Data Mean	a Std Dev	
1	1	9	12.1888889	1.46496113	
1	2	9	10.8555556	0.68027772	
1	3	9	11.0888889	0.56666667	
2	1	9	11.2888889	0.84623348	
2	2	9	9.5000000	3.16662281	
2	3	9	11.4555556	0.67102740	
Level of B	Level of C	N	Data Mean	a Std Dev	
1	1	6	11.2166667	0.53072278	

1 2 2 3 3 3 3	2 3 1 2 3 1 2 3	6 6 6 6 6 6 6 6	10. 11. 11. 10. 10. 12. 9. 11.	4833333 6166667 1166667 2666667 650000 8833333 7833333 5500000	0.32506410 0.45789373 0.70828431 1.65489174 0.48476799 1.47026075 3.90968882 0.45934736
Level of	Level of	Level of			Data
A	B	C	N	Mea	n Std Dev
1 1 1 1 1 1 1 1 2 2 2 2	1 1 2 2 3 3 3 1 1 1	1 2 3 1 2 3 1 2 3 1 2 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	10.93333 10.33333 11.600000 11.56666 10.533333 10.466666 14.066666 11.700000 11.200000 11.500000 10.633333 11.633333	3 0.32145503 3 0.15275252 0 0.4000000 7 0.2081660 3 0.35118846 7 0.25166115 7 0.45092498 0 0.26457513 0 0.66000000 3 0.4163320 3 0.60277138
		The ANOVA	Proced	ure	
Level of A	Level of B	Level of C	N	Mea	Data n Std Dev
2 2 2 2 2 2 2 2	2 2 3 3 3	1 2 3 1 2 3	3 3 3 3 3 3	10.666666 10.000000 10.833333 11.700000 7.866666 11.900000	7 0.77674535 0 2.55147016 3 0.65064071 0 1.0000000 7 5.20800666 0 0.3000000
-0

متخدام	ة المنشقة باس	لعشوائيا	القطع ال	، بتصميم	العاملية	تجارب	تحليل ال	ن ۲: إجراء	ملحق
								سج SAS	برناه
							(۱۹۸)	_۳: صفحة	مثال
DATA MOHI	AMEDKAMAL; DCK W \$ N \$ P Y;								
CARDS; 1 W1 N1	13.80 3.80								
2 W1 N1 3 3 W1 N1 3	12.70 2.70 13.70 3.70								
1 W1 N2 2 2 W1 N2 2	13.40 3.40 13.80 3.80								
3 W1 N2 3 1 W2 N1 3	13.60 2.50 12.50 2.50								
2 W2 N1 3 3 W2 N1 3	13.70 3.70 12.55 3.90								
1 W2 N2 2 2 W2 N2 2	13.10 3.10 12.50 2.50								
3 W2 N2 1 W3 N1	14.00 2.50 12.80 2.80								
2 W3 N1 3 3 W3 N1 3	13.30 3.30 12.50 2.40								
1 W3 N2 : 2 W3 N2 :	12.50 2.40 12.80 2.80								
3 W3 N2 3 1 W4 N1 3	12.40 3.20 11.90 1.90								
2 W4 N1 3 3 W4 N1 3	11.70 1.70 11.75 1.25								
1 W4 N2 3 2 W4 N2 3	11.70 1.80 11.65 1.65								
3 W4 N2 : ;	11.25 1.75								
PROC ANO	VA DATA=MOHAMEDKA ASS BLOCK W N;	MAL;							
MOI TEST H = MEANS BLO MEANS BLO	DEL PY = BLOCKW WE = W*BLOCK; DCKWBLOCK*WNW DCKWBLOCK*WNW	BLOCK*W N *N; *N/LSD;	J W*N;						
RUN ;			The	ANOVA Proc	edure				
			Class	Level Info	rmation				
		Cl	lass	Levels	Values				
		BI	LOCK	3	123				
		W		4	W1 W2 W3	W4			
		N		2	N1 N2				
			Number	of observat:	ions 24				
			The	ANOVA Proc	edure				
Dependen	t Variable: P								
	_			Sum of		_			
	Source		DF	Squares	Mean	Square	F Value	Pr > F	
	Model		15	12.39000000	0.82	016667	2.59	0.0886	
	Corrected Total		23	14 94333333	0.31	910007			
			23	11.91999999					
		R-Square	Coeff	Var R	oot MSE	P Me	ean		
		0.829132	4.43	6767 0	.564948	12.733	333		
	Source		DF	Anova SS	Mean	Square	F Value	Pr > F	
	BLOCK		2	0.01520833	0.00	760417	0.02	0.9765	
	W BLOCK*W		3 6	0.86979167	3.69	496528	0.45	0.8240	
	N W*N		1 3	0.40750000	0.00	100067 583333	0.01	0.9442	

		Test	s of	Hypotheses	Using t	he Anova	MS for	BLOCH	K*W as an	Error Te	erm	
	Source				DF	Anova	SS	Mean	Square	F Value	e Pr > F	
	W				3 The	11.09583 ANOVA P	333 rocedui	3.69	9861111	25.53	L 0.0008	
pendeni	Variab	le: Y			1110	1110 111 1	roocaa					
penden	- variab	10.1				-						
	Source				DF	Squa	res	Mean	Square	F Value	e Pr > F	
	Model				15	10.82406	250	0.72	2160417	1.80	0.2030	
	Error				8	3.21083	333	0.40	0135417			
	Correct	ed Tot	al		23	14.03489	583					
				R-Square	Coeff	Var	Root	MSE	Y M	ean		
				0.771225	23.3	7372	0.633	3525	2.710	417		
	Source				DF	Anova	SS	Mean	Square	F Value	e Pr>F	
	BLOCK				2	0.05645	833	0.02	2822917	0.0	7 0.9327	
	W				3	9.33114	583	3.1	1038194	7.7	5 0.0094	
	BLOCK^W				6 1	0.21093	167 750	0.1	1093750	0.2	9 0.9239 3 0.4891	
	W*N				3	0.51947	917	0.1	7315972	0.43	0.7363	
		Test	s of	Hypotheses	Using t	he Anova	MS for	BLOCH	K*W as an	Error Te	erm	
	Source				DF	Anova	SS	Mean	Square	F Value	e Pr > F	
	W				3	9.33114	583	3.1	1038194	26.43	3 0.0007	
					The	ANOVA F	rocedui	e				
	Level	of			P					Y		
	BLOCK		Ν		Mean	S	td Dev		Mea	an	Std Dev	
	1		8	12.71	25000	0.71	601576		2.712500	00	0.70191066	
	2 3		8 8	12.76 12.71	87500 87500	0.81 0.97	807156 502289		2.768750	00 00	0.81807156 0.91378334	
		-			_							
	W	OI	N		Mean	s	td Dev		Mea	¥ an	Std Dev	
	Wl		6	13.50	00000	0.41	952354		3.316666	57	0.57763887	
	W2		6	13.05	83333	0.66	061840		3.0333333	33	0.64083279	
	W4		6	11.65	83333	0.33	775368		1.675000	0	0.22527761	
Level	of	Level	of	-		P					Ү	
BLOCK	1	W		Ν	М	ean	St	d Dev		Mean	St	d Dev
1	1	W1		2	13.6000	000	0.282	284271	3.	50000000	0.282	284271
1		W2 W3		2	12.8000	000	0.424	126407	2.	500000000	0.424	126407 284271
1	1	W4		2	11.8000	000	0.141	L42136	1.	35000000	0.070	071068
2		W1		2	13.2500	000	0.77	781746	3.	25000000	0.775	781746
2		W2 W3		2	13.1000	000	0.848	352814	3.	100000000	0.848	352814
2	1	W4		2	11.6750	000	0.035	535534	1.	57500000	0.035	535534
3		W1		2	13.6500	000	0.070	071068	3.	10000000	0.848	352814
3	1	w⊿ w3		2	12.4500	000	1.02:	071068	3.	200000000	0.985	94949 68542
3	1	W4		2	11.5000	000	0.353	355339	1.	50000000	0.353	355339
	Level o	f			P					Y		
	N		N		Mean	S	td Dev		Mea	an 	Std Dev	
	Nl N2		12 12	12.74 12.72	16667 50000	0.75 0.89	124530 124530		2.804166	57 57	U.89250881 0.67834469	
Level W	of	Level N	of	- N	 м	P ean		d Dev		Mean	Y	d Dev
W1	1	N1		3	13.4000	000	0 603	327625	3	40000000	0 605	327625
		-		-			2.000		5.		0.000	

Wl	N2	3	13.6000000	0.2000000	3.23333333	0.66583281
W2	Nl	3	12.9166667	0.67884706	3.36666667	0.75718778
W2	N2	3	13.2000000	0.75498344	2.7000000	0.34641016
W3	N1	3	12.8666667	0.40414519	2.83333333	0.45092498
W3	N2	3	12.5666667	0.20816660	2.8000000	0.4000000
W4	N1	3	11.7833333	0.10408330	1.61666667	0.33291641
W4	N2	3	11.5333333	0.24664414	1.73333333	0.07637626

The ANOVA Procedure

t Tests (LSD) for P

NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha	0.05
Error Degrees of Freedom	8
Error Mean Square	0.319167
Critical Value of t	2.30600
Least Significant Difference	0.6514

Means with the same letter are not significantly different.

t Grouping	Mean	Ν	BLOCK
A	12.7688	8	2
A	12.7188	8	3
A A	12.7125	8	1
	The ANOVA Pro	cedur	e
	t Tests (LSD)	for	Y

NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha	0.05
Error Degrees of Freedom	8
Error Mean Square	0.401354
Critical Value of t	2.30600
Least Significant Difference	0.7305

Means with the same letter are not significantly different.

t	Grouping	Mean	N	BLOCK
	A	2.7688	8	2
	A	2.7125	8	1
	A	2.6500	8	3
		The ANOVA	Procedure	

t Tests (LSD) for P

NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha	0.05
Error Degrees of Freedom	8
Error Mean Square	0.319167
Critical Value of t	2.30600
Least Significant Difference	0.7522

Means with the same letter are not significantly different.

t Group	ing	Mean	N	W
	A	13.5000	6	Wl
В	A	13.0583	6	₩2
В		12.7167	6	₩3
	С	11.6583	6	W4

The ANOVA Procedure

t Tests (LSD) for Y

NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha	0.05
Error Degrees of Freedom	8
Error Mean Square	0.401354
Critical Value of t	2.30600
Least Significant Difference	0.8435

Means with the same letter are not significantly different.

Mean	Ν	W
3.3167	6	Wl
3.0333	6	W2
2.8167	6	W3
1.6750	6	W4
	Mean 3.3167 3.0333 2.8167 1.6750	Mean N 3.3167 6 3.0333 6 2.8167 6 1.6750 6

The ANOVA Procedure

Level of	Level of		P-		У-	
BLOCK	W	N	Mean	Std Dev	Mean	Std Dev
1	W1	2	13.6000000	0.28284271	3.6000000	0.28284271
1	W2	2	12.8000000	0.42426407	2.8000000	0.42426407
1	W3	2	12.6500000	0.21213203	2.6000000	0.28284271
1	W4	2	11.8000000	0.14142136	1.85000000	0.07071068
2	W1	2	13.2500000	0.77781746	3.25000000	0.77781746
2	W2	2	13.1000000	0.84852814	3.10000000	0.84852814
2	W3	2	13.0500000	0.35355339	3.05000000	0.35355339
2	W4	2	11.6750000	0.03535534	1.67500000	0.03535534
3	W1	2	13.6500000	0.07071068	3.10000000	0.84852814
3	W2	2	13.2750000	1.02530483	3.2000000	0.98994949
3	W3	2	12.4500000	0.07071068	2.8000000	0.56568542
3	W4	2	11.5000000	0.35355339	1.5000000	0.35355339

The ANOVA Procedure

t Tests (LSD) for P

NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha 0.05 Error Degrees of Freedom 8 Error Mean Square 0.319167 Critical Value of t 2.30600 Least Significant Difference 0.5319 Means with the same letter are not significantly different.

t	Grouping		Mean	Ν	N
	A		12.7417	12	Nl
	A		12.7250	12	N2
		The	ANOVA Proce	edure	

t Tests (LSD) for Y

NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha	0.05
Error Degrees of Freedom	8
Error Mean Square	0.401354
Critical Value of t	2.30600
Least Significant Difference	0.5964

Means with the same letter are not significantly different.

t Grouping	Mean	N	N
А	2.8042	12	N1
A	2.6167	12	N2

The ANOVA Procedure

Level of	Level of		P-		Y	
W	N	Ν	Mean	Std Dev	Mean	Std Dev
Wl	Nl	3	13.4000000	0.60827625	3.40000000	0.60827625
Wl	N2	3	13.6000000	0.2000000	3.23333333	0.66583281
W2	Nl	3	12.9166667	0.67884706	3.36666667	0.75718778
W2	N2	3	13.2000000	0.75498344	2.70000000	0.34641016
W3	N1	3	12.8666667	0.40414519	2.83333333	0.45092498
W3	N2	3	12.5666667	0.20816660	2.80000000	0.4000000
W4	N1	3	11.7833333	0.10408330	1.61666667	0.33291641
W4	N2	3	11.5333333	0.24664414	1.73333333	0.07637626

۲ ٤٣ _

ملحق ٣: إجراء تحليل التغاير باستخدام برنامج SAS مثالع: صفحة (٢٠٣)

DATA MOHAMEDKAMAL; INPUT REPS A B X Y; CARDS; 1 1 1 206.0 226.0

 1
 1
 200.0
 220.0

 2
 1
 1
 239.0
 229.0

 3
 1
 1
 217.0
 215.0

 4
 1
 1
 177.0
 188.0

 1
 1
 0
 252.0
 226.0

 1
 1
 0
 252.0
 226.0
 196.0

 2
 1
 0
 228.0
 198.0

 4
 1
 0
 246.0
 2198.0

 2
 1
 248.0
 209.0
 22

 2
 1
 208.0
 190.0
 2
 2
 229.0
 195.0

 4
 2
 1
 229.0
 195.0
 4
 2
 1
 239.0
 202.0

 1
 2
 0
 190.0
 177.0
 2
 2
 261.0
 225.0

 3
 2
 0
 261.0
 225.0
 3
 2
 0
 167.0

 4
 2
 0
 217.0
 176.0
 ;
 177.0
 176.0

PROC GLM DATA=MOHAMEDKAMAL; CLASS REPS A B; MODEL Y = A B A*B X/SOLUTION; LSMEANS A B A*B/E STDERR PDIFF; RUN; PROC REG; MODEL Y=X/SS2; RUN;

The GLM Procedure

Class Level Information

Class	Levels	Values
REPS	4	1234
A	2	1 2
В	2	0 1

Number of observations 16

The GLM Procedure

Dependent Variable: Y

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	5286.798715	1321.699679	14.63	0.0002
Error	11	993.638785	90.330799		
Corrected Total	15	6280.437500			

R-Square Coeff Var Root MSE 0.841788 4.686226

9.504252 202.8125

Y Mean

Source	DF	Type I SS	Mean Square	F Value	Pr > F
A	1	945.562500	945.562500	10.47	0.0079
В	1	663.062500	663.062500	7.34	0.0203
A*B	1	95.062500	95.062500	1.05	0.3270
х	1	3583.111215	3583.111215	39.67	<.0001
Source	DF	Type III SS	Mean Square	F Value	Pr > F
A	1	696.041570	696.041570	7.71	0.0180
В	1	1427.415488	1427.415488	15.80	0.0022
A*B	1	462.334150	462.334150	5.12	0.0449
х	1	3583.111215	3583.111215	39.67	<.0001

			Standard		
Paramet	er	Estimate	Error	t Value	Pr > t
Interce	pt	32.02262532 B	27.71648973	1.16	0.2724
A	1	25.64148625 B	7.13759036	3.59	0.0042
A	2	0.0000000 B			
в	0	-6.90794812 B	6.93749635	-1.00	0.3408
в	1	0.0000000 B			
A*B	1 0	-24.83240687 B	10.97637038	-2.26	0.0449
A*B	1 1	0.0000000 B			
A*B	2 0	0.0000000 B			
A*B	2 1	0.0000000 B			
х		0.74772772	0.11872202	6.30	<.0001

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

The GLM Procedure

Least Squares Means

Coefficients for A Least Square Means

		A Level	
Effect		1	2
Intercep	t	1	1
A	1	1	0
A	2	0	1
В	0	0.5	0.5
В	1	0.5	0.5
A*B	1 0	0.5	0
A*B	1 1	0.5	0
A*B	2 0	0	0.5
A*B	2 1	0	0.5
Х		224.1875	224.1875

A	Y LSMEAN	Standard Error	H0:LSMEAN=0 Pr > t	H0:LSMean1= LSMean2 Pr > t
1	209.425141	3.364591	<.0001	0.0180
2	196.199859	3.364591	<.0001	

Coefficients for B Least Square Means

		B Level	
Effect		0	1
Interce	pt	1	1
A	1	0.5	0.5
A	2	0.5	0.5
в	0	1	0
в	1	0	1
A*B	1 0	0.5	0
A*B	1 1	0	0.5
A*B	2 0	0.5	0
A*B	2 1	0	0.5
х		224.1875	224.1875

в	Y LSMEAN	Standard Error	H0:LSMEAN=0 Pr > t	H0:LSMean1= LSMean2 Pr > t
0	193.150424	3.399041	<.0001	0.0022
1	212.474576	3.399041	<.0001	

The GLM Procedure Least Squares Means

Coefficients for A*B Least Square Means

2 1

		A*B Level			
		1	1	2	
Effect		0	1	0	
Interger	+	1	1	1	
Turerceb		1	T	Ŧ	
A	1	1	1	0	
A	2	0	0	1	
в	0	1	0	1	
В	1	0	1	0	
A*B	1 0	1	0	0	
A*B	1 1	0	1	0	

1 1 2	A*B K	2 0 2 1				0 0 224.1875	0 0 224.1875	1 0 224.1875	0 1 224.1875
		A	в	Y	LSMEAN	Standard Error	Pr > t	LSMEAN Number	
		1	0	193.	554964	5.177573	<.0001	1	
		1	1	225.	295319	5.051798	<.0001	2	
		2	0	192.	745885	4.862765	<.0001	3	
		2	1	199.	653833	4.801968	<.0001	4	
				Le Pr	ast Squares > t for H Depende	Means for e: 0: LSMean(i): nt Variable:	ffect A*B =LSMean(j) Y		

i/j	1	2	3	4
1		0.0017	0.9149	0.3929
2	0.0017		0.0005	0.0042
3	0.9149	0.0005		0.3408
4	0.3929	0.0042	0.3408	

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

The REG Procedure Model: MODEL1 Dependent Variable: Y

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	2788.35349	2788.35349	11.18	0.0048
Error	14	3492.08401	249.43457		
Corrected Total	15	6280.43750			

Root MSE	15.79350	R-Square	0.4440
Dependent Mean	202.81250	Adj R-Sq	0.4043
Coeff Var	7.78724		

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Type II SS
Intercept	1	77.17565	37.78381	2.04	0.0604	1040.65252
X	1	0.56041	0.16761	3.34		2788.35349

الملاحق

جدول A-1 : جدول الأرقام العشوائية

	0004	0509	10-14	15-19	2024	2529	3034	3539	40-44	45-49
00	.54463	22662	65905	70639	79365	67382	29085	69831	47058	08186
01	12389	85205	18850	39226	42249	90669	90,525	25248	00933	26927
02	61140	40730	02414	82015	13626	10030	52867	67773	33451	15545
04	05219	81619	10651	67079	92511	59888	84502	72095	83463	75577
04	41 417	00276	97710	01204	A661 A	50049	64006	20002	07245	20076
06	28357	96320	20652	35774	16749	75010	21145	05217	47286	76305
07	17783	00015	10806	83091	91530	36466	39981	62481	49177	75779
08	40950	84820	29881	85966	62800	70326	84740	62660	77379	90279
09	82995	64157	66164	41180	10089	41757	78258	96488	88629	37231
10	96754	17676	55659	44105	47361	34833	86679	23930	53249	27083
11	34357	88040	53364	71726	45690	66334	60332	22554	90600	71113
12	06318	37403	49927	57715	50423	67372	63116	48888	21505	80182
13	02111	52820	0/243	79931	89292	84/0/	82693	13941	222/8	11001
14	4/334	09243	0/8/9	00344	23410	12/40	02540	54440	32949	13491
15	98614	75993	84460	62846	59844	14922	48730	73443	48167	34770
16	24856	03648	44898	09351	98795	18644	39765	71058	90368	44104
17	9688/	124/9	80621	00223	86083	18283	52615	22141	42840	94//1
10	55165	77317	92666	36028	27270	70700	81360	41043	47366	41067
	55105	11312	0000	50020	20720	10215	01505	41242	47500	11007
20	75884	12952	84318	95108	72305	64620	91318	89872	45375	85436
21	16777	37116	58550	42958	21460	43910	01175	87894	81378	10620
22	40230	438//	80207	01422	89380	32992	20422	60127	60600	12110
23	92902	00092	40134	28030	10154	05475	20423	10774	31782	49037
24	01007	00555	37073	20033	10134	JJ72J	57220	17/14	51702	45057
25	68089	01122	51111	72373	06902	74373	96199	97017	41273	21546
26	20411	67081	89950	16944	93054	8/68/	96693	8/230	1/054	33848 63700
27	70577	13100	24960	61210	76046	67600	42054	12696	93758	03283
29	94522	74358	71659	62038	79643	79169	44741	05437	39038	13163
30	42626	86810	85651	88678	17401	03252	99547	32404	17918	62880
31	16051	33763	57194	16752	54450	19031	58580	47629	54132	60631
32	08244	27647	33851	44705	94211	46716	11738	55784	95374	72655
33	59497	04392	09419	89964	51211	04894	72882	17805	21896	83864
34	97155	13428	40293	09985	58434	01412	69124	82171	59058	82859
35	98409	66162	95763	47420	20792	61527	20441	39435	11859	41567
36	45476	84882	65109	96597	25930	66790	65706	61203	53634	22557
37	89300	69700	50741	30329	11658	23166	05400	66669	48708	03887
38	50051	95137	91631	66315	91428	12275	24816	00600	/1/10	33238
39	31/23	821/8	21210	89042	98304	02300	24017	09009	0.3742	22710
40	79152	53829	77250	20190	56535	18760	69942	77448	33278	48805
41	44560	38750	83635	20240	64900 20564	42912	13923	19149	18/10	65747
42 42	08328	83378 18680	58675	11381	30450	85862	70781	04339	26333	91777
44	83544	86141	15707	96256	23068	13782	08467	89469	93842	55349
45	01621	00881	04900	54774	46177	55300	17852	27491	89415	23466
46	91896	67126	04151	03795	59077	11848	12630	98375	52068	60142
47	55751	62515	21108	80830	02263	29303	37204	96926	30506	09808
48	85156	87689	95493	88842	00664	55017	55539	17771	69448	87530
49	07521	56898	12236	60277	39102	62315	12239	07105	11844	01117

جدول A-1 : جدول الأرقام العشوائية (تابع)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
00 59391 58030 52098 82718 87024 82848 04190 96574 90464 29065 01 99567 76364 77204 04615 27062 96621 43918 01806 83991 51141 03 86859 19558 64432 16706 99612 59798 32803 67708 15297 281612 04 11258 24591 36865 55368 31721 94335 34936 31855 34334 6485 05 95068 88628 35911 14530 33020 80428 39936 31855 34334 6485 06 94464 62377 77307 8100 17217 74073 74073 11 15669 5668 3562 40844 52267 67104 39495 39100 7217 74073 11 15669 160703 65178 9637 63110 15725 53887 10878 636720 <th></th> <th>5054</th> <th>5559</th> <th>60-64</th> <th>65-69</th> <th>7074</th> <th>75-79</th> <th>8084</th> <th>85-89</th> <th>90-94</th> <th>95-99</th>		5054	5559	60-64	65-69	7074	75-79	8084	85-89	90-94	95-99
01 99567 76364 77204 94621 43918 01896 83919 91141 02 10338 97518 51400 25607 98342 61891 27101 37855 60235 33316 04 11258 24591 36863 53368 31721 94335 34936 02566 80972 08188 05 95068 88628 35911 14530 33020 80428 39936 31855 34334 64855 05 44430 47237 73600 91017 36239 71824 83671 39892 60518 37092 07 16874 62677 57412 13215 31389 62233 80827 73917 82402 44421 08 92444 6157 76307 61101 17265 9888 70487 4448 16470 11 15696 51269 67620 03388 13699 34434 14141 16712 53988 <td>00</td> <td>59391</td> <td>58030</td> <td>52098</td> <td>82718</td> <td>87024</td> <td>82848</td> <td>04190</td> <td>96574</td> <td>90464</td> <td>29065</td>	00	59391	58030	52098	82718	87024	82848	04190	96574	90464	29065
02 10363 97518 51400 25670 98342 61891 27101 37855 06233 33310 04 11258 24591 36863 55368 31721 94335 34936 02566 80972 08188 05 95068 86283 35911 14530 33020 80428 39936 31855 34334 64865 06 54463 47237 73800 91017 36239 71824 83671 39892 660518 37092 07 16474 62677 57412 13215 31380 62233 80827 73917 82480 24476 52267 67104 39495 39100 17217 74073 11 15669 10703 65178 90637 63110 17622 53988 71087 84148 1670 34295 56270 13 11666 13841 1681 90603 39797 81189 64364 64533 44965 <td< td=""><td>01</td><td>99567</td><td>76364</td><td>77204</td><td>04615</td><td>27062</td><td>96621</td><td>43918</td><td>01896</td><td>83991</td><td>51141</td></td<>	01	99567	76364	77204	04615	27062	96621	43918	01896	83991	51141
03 86859 19558 64432 16706 99612 59798 32803 67708 15297 28812 04 11258 24591 36863 53368 31721 94333 34936 02566 80972 08185 05 95068 88628 35911 14530 33020 80428 39936 31855 34334 64865 06 54463 47237 73800 91017 36239 71824 83671 39822 60187 82802 8442 08 92494 63157 71631 01316 05305 72389 96363 52887 01087 66091 09 1166 05648 93562 40844 53256 81872 35213 09840 34414 1617 11 15669 56689 31629 67143 14995 89100 17217 74073 11 15669 51269 65178 90627 93181 199074 9178 <td>02</td> <td>10363</td> <td>97518</td> <td>51400</td> <td>25670</td> <td>98342</td> <td>61891</td> <td>27101</td> <td>37855</td> <td>06235</td> <td>33310</td>	02	10363	97518	51400	25670	98342	61891	27101	37855	06235	33310
04 11258 24591 36863 53368 31721 94333 34936 02366 80972 08188 05 95068 88628 35911 14530 33020 80428 39936 31855 3433 64865 06 54463 47237 73800 91017 36239 96363 52887 01087 66091 09 15669 56689 35682 40844 53255 81872 35213 09840 34471 74473 11 15696 10703 65128 90637 63110 17622 53988 71087 84148 1670 12 97720 15369 51269 69620 03388 16399 33423 64333 43269 59741 14 11666 13841 71681 98000 35979 39719 81899 7431 87078 84389 69944 15 40501 51089 99943 91843 19958 86211 <td>03</td> <td>86859</td> <td>19558</td> <td>64432</td> <td>16706</td> <td>99612</td> <td>59798</td> <td>32803</td> <td>67708</td> <td>15297</td> <td>28612</td>	03	86859	19558	64432	16706	99612	59798	32803	67708	15297	28612
05 95068 88628 35911 14530 33020 80028 39936 31855 31344 64857 06 54463 47237 73800 91107 36239 71824 83671 39892 60518 37092 07 16874 62677 75142 131215 31389 62233 80827 73117 82802 84420 09 15669 56689 35682 40844 53256 81872 35213 09840 34471 74073 11 15696 10703 65178 996320 63188 13699 31423 67453 33269 56720 13 11666 13841 71681 89000 35797 93719 81899 74449 47985 46957 14 71628 73130 78783 75691 41632 09847 61547 18707 85489 69944 15 40501 51089 99143 91843 41995 889	04	11258	24591	36863	55368	31721	94335	34936	02566	80972	08188
06 54463 4/237 7/800 9/10/7 5623 7/1624 83671 39892 60318 37092 07 16874 622677 57412 13215 31389 62233 80827 731917 82802 84420 09 15669 56689 35682 40844 53256 81872 35213 09840 34471 74411 10 99116 75486 84989 23476 52967 67104 39495 39100 17217 74073 11 15666 16061 13841 71651 90637 63110 17622 53988 71087 84148 11670 12 97720 15369 51269 69620 03388 13699 31423 64749 47985 46967 13 11666 138417 17618 8000 35979 35719 8173 35375 15417 14 71628 73130 78783 75691 41632 09847 61547 18707 85489 69444 15 40501 <t< td=""><td>05</td><td>95068</td><td>88628</td><td>35911</td><td>14530</td><td>33020</td><td>80428</td><td>39936</td><td>·31855</td><td>34334</td><td>64865</td></t<>	05	95068	88628	35911	14530	33020	80428	39936	·31855	34334	64865
07 16874 62677 57412 15215 31389 62233 80827 71917 8202 8442.0 08 92444 63157 76593 91316 03505 72389 96363 52887 1087 66091 09 15669 56689 35682 40844 53256 81872 35213 09840 34471 74441 10 99116 75486 84989 23476 52967 67104 39495 39100 17217 74073 11 15696 10703 65178 90637 53110 17622 53988 71087 84481 11610 12 97720 15369 51269 69620 03388 13693 3423 67433 43269 56720 13 11666 13841 71681 88000 35979 39719 81899 67449 47985 496849 15 40501 51089 99943 91433 49268 8931 73631 69364 15478 40054 60169373 40054 60171	06	54463	47237	73800	91017	36239	71824	83671	39892	60218	3/092
08 92494 63157 76593 9136 03305 72389 96363 5287 01087 6089 09 15669 56689 35682 40844 53256 81872 35213 09840 34471 74741 10 99116 75486 84989 23476 52967 67104 39495 39100 17217 74073 11 15696 10703 65178 90637 63110 17622 53288 71087 84148 11670 13 11666 13841 71681 8000 35979 39719 81899 74449 47985 46967 14 71628 73130 78783 75691 41632 09847 61547 18707 85489 69944 15 40501 51089 9943 91843 41995 88931 7631 69361 05375 15417 16 22518 55576 98219 84342 90813 49268	07	16874	62677	57412	13215	31389	62233	80827	/391/	82802	84420
09 15669 36682 40844 51256 818/2 3213 09840 34471 74441 10 99116 75486 84989 23476 52967 67104 39495 39100 17217 74073 11 15696 10703 65178 90637 63110 17622 53988 71087 84148 14163 12 97720 15369 51269 69620 03388 13699 31423 67453 43269 56720 13 11666 13841 71681 98000 35979 39719 81899 07449 47985 46994 14 71628 73130 78783 75691 41632 92879 22811 16783 86320 00371 40054 17 75112 30445 62173 02132 14478 92879 22811 16783 86320 00744 47474 343132 14414 7949 85193 22599 63306 <td< td=""><td>08</td><td>92494</td><td>63157</td><td>/6593</td><td>91316</td><td>03505</td><td>72389</td><td>96363</td><td>52887</td><td>01087</td><td>00091</td></td<>	08	92494	63157	/6593	91316	03505	72389	96363	52887	01087	00091
	09	15669	56689	35682	40844	53256	81872	35213	09840	34471	/4-141
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	99116	75486	84989	23476	52967	67104	39495	39100	17217	74073
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	15696	10703	65178	90637	63110	17622	53988	71087	84148	11670
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	97720	15369	51269	69620	03388	13699	33423	67453	43269	56720
14 71628 73130 78783 75691 41632 09847 61547 18707 85489 69944 15 40501 51089 99943 91843 41995 88931 73631 69361 05375 15417 16 22518 55576 98215 82068 10798 86211 36584 67466 69373 40054 17 5112 30485 62173 02132 14878 92879 22281 16783 86352 000217 19 60251 45548 02146 05597 48228 81366 34598 72856 66762 17002 20 57430 82270 10421 00540 43648 75888 66049 21511 47767 3444 13 328259 34434 8896 57480 63244 84342 99313 33434 42057 74739 24 12477 09965 96657 57994 98393 7330 24596 77515 09577 91877 9177 9183 34744 <td< td=""><td>13</td><td>11666</td><td>13841</td><td>71681</td><td>98000</td><td>35979</td><td>39719</td><td>81899</td><td>0/449</td><td>4/985</td><td>40907</td></td<>	13	11666	13841	71681	98000	35979	39719	81899	0/449	4/985	40907
15 40501 51089 99943 91843 41995 88931 73631 69361 05375 15417 16 22518 55576 98215 82068 10798 86211 36584 67466 69373 40054 17 75112 30485 62173 20132 14878 92879 22281 16783 86352 00077 18 80327 02671 98191 84342 90813 49268 95441 15496 20168 09271 19 60251 45548 02146 05597 48228 81366 34598 72856 66762 17002 20 57430 82270 10421 00540 43648 73888 66049 21511 47676 34444 21 73528 39559 70769 64721 86413 33475 42740 06175 82758 66248 23 78388 16638 09134 59990 63306 48472	14	71628	73130	/8/83	/2091	41632	09847	01247	. 18/07	80489	09944
16 22518 55576 98215 82068 10798 86211 36584 67466 69373 40054 17 75112 30485 62173 20132 14878 92879 22281 16783 86352 00077 19 60251 45548 02146 05597 48228 81366 34598 72856 66762 17002 20 57430 82270 10421 00540 43648 75888 66049 21511 47676 33444 21 73528 39559 70769 64721 86413 33475 42740 06175 82758 66248 23 78388 16638 09134 59980 63806 48472 39318 35434 24057 74739 24 12477 09965 96657 57994 59439 76330 24596 77515 09577 91871 25 83266 32883 42451 15579 38155 29793	15	40501	51089	99943	91843	41995	88931	73631	69361	05375	15417
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	22518	55576	98215	82068	10798	86211	36584	67466	69373	40054
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17	75112	30485	62173	02132	14878	92879	22281	16783	86352	00077
19 60251 43548 02146 03597 48228 81366 34398 72856 6672 17002 20 57430 82270 10421 00540 43648 75888 66049 21511 47676 33444 21 73528 39559 34434 88596 54086 71693 43132 14414 79949 85193 22 25991 65959 70769 64721 86413 33475 42740 06175 82758 66248 23 78388 16638 09134 59980 63806 48472 39318 35434 24057 74739 24 12477 09965 96657 57994 59439 76330 24596 77515 09577 91871 25 83266 32883 42451 15579 38155 29793 40914 65990 16255 17777 26 76970 80876 10237 39515 79152 74798<	18	80327	02671	98191	84342	90813	49268	95441	15496	20168	09271
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	60251	45548	02146	05597	48228	81366	34598	72856	66762	17002
21 73528 39559 34434 88596 54086 71693 43132 14414 79949 85193 22 25991 65559 70769 64721 86413 33475 42740 06175 82758 66248 23 78388 16638 09134 59980 63806 48472 39318 35434 24057 74739 24 12477 09965 96657 57994 59439 76330 24596 77515 09577 91871 25 83266 32883 42451 15579 38155 29793 40914 65990 16255 17777 26 76970 80876 10237 39515 79152 74798 39357 09054 73579 92355 27 37074 65198 44785 68624 9836 84481 97610 78735 46703 98265 28 83712 06514 30101 78295 54656 85417 43189 60048 72781 72606 29 20287 5	20	57430	82270	10421	00540	43648	75888	66049	21511	47676	33444
22 25991 65959 70769 64721 86413 33475 42740 06175 82758 66248 23 78388 16638 09134 59980 63806 48472 39318 35434 24057 74739 24 12477 09965 96657 57994 59439 76330 24596 77515 09577 91871 25 83266 32883 42451 15579 38155 29793 40914 65990 16255 17777 26 76970 80876 10237 39515 79152 74798 39357 09054 73579 92359 28 83712 Q6514 30101 78295 54656 85417 43189 60048 72781 72606 29 20287 56862 69727 94443 64936 08366 27227 05158 50326 59566 30 74261 32592 86538 27041 65172 85532	21	73528	39559	34434	88596	54086	71693	43132	14414	79949	85193
23 78388 16638 09134 59980 63806 48472 39318 35434 24057 74739 24 12477 09965 96657 57994 59439 76330 24596 77515 09577 91871 25 83266 32883 42451 15579 38155 29793 40914 65990 16255 17777 26 76970 80876 10237 39515 79152 74798 39357 09054 73579 92359 27 37074 65198 44785 68624 98336 84481 97610 78735 46703 98265 28 83712 06514 30101 78295 54656 85417 43189 60048 72781 72606 30 74261 32592 86538 27041 65172 85532 07571 80609 39285 65340 31 64081 49863 08478 96001 18888 14810 70545 89755 59064 07210 32 05617	22	25991	65959	70769	64721	86413	33475	42740	06175	82758	66248
24 12477 09965 96657 57994 59439 76330 24596 77515 09577 91871 25 83266 32883 42451 15579 38155 29793 40914 65990 16255 17777 26 76970 80876 10237 39515 79152 74798 39357 09054 73579 92359 27 37074 65198 44785 68624 98336 84481 97610 78735 46703 98265 28 83712 06514 30101 78295 54656 85417 43189 60048 72781 72606 29 20287 56862 69727 94443 64936 08366 27227 05158 50326 59566 30 74261 32592 86538 27041 65172 85532 07571 80609 39285 65340 31 64081 49863 08478 96001 1888 14810 70545 89755 59064 07210 32 05177 7	23	78388	16638	09134	59980	63806	48472	39318	35434	24057	74739
25 83266 32883 42451 15579 38155 29793 40914 65990 16255 17777 26 76970 80876 10237 39515 79152 74798 39357 09054 73579 92359 27 37074 65198 44785 68624 98336 84481 97610 78735 46703 98265 28 83712 06514 30101 78295 54656 85417 43189 60048 72781 72606 29 20287 56862 69727 94443 64936 08366 27227 05158 50326 59566 30 74261 32592 86538 27041 65172 85532 07571 80609 39285 65340 31 64081 49863 08478 96001 18888 14810 70545 89755 59064 07210 32 05617 75818 47750 67814 29575 10526	24	12477	09965	96657	57994	59439	76330	24596	77515	09577	91871
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	83266	32883	42451	15579	38155	29793	40914	65990	16255	17777
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	76970	80876	10237	39515	79152	74798	39357	09054	73579	92359
28 83712 06514 30101 78295 54656 85417 43189 60048 72781 72606 29 20287 56862 69727 94443 64936 08366 27227 05158 50326 59566 30 74261 32592 86538 27041 65172 85532 07571 80609 39285 65340 31 64081 49863 08478 96001 18888 14810 70545 89755 59064 07210 32 05617 75818 47750 67814 29575 10526 66192 44464 27058 40467 33 26793 74951 95466 74307 13330 42664 85515 20632 05497 33625 34 65988 72850 48737 54719 52056 01596 03845 35067 03134 70322 35 27366 42271 44300 73399 21105 03280	27	37074	65198	44785	68624	98336	84481	97610	78735	46703	98265
29 20287 56862 69727 94443 64936 08366 27227 05158 50326 59566 30 74261 32592 86538 27041 65172 85532 07571 80609 39285 65340 31 64081 49863 08478 96001 18888 14810 70545 89755 59064 07210 32 05617 75818 47750 67814 29575 10526 66192 44464 27058 40467 33 26793 74951 95466 74307 13330 42664 85515 20632 05497 33625 34 65988 72850 48737 54719 52056 01596 03845 35067 03134 70322 35 27366 42271 44300 73399 21105 03280 73457 43093 05192 48657 36 56760 10909 98147 34736 33863 95256	28	83712	06514	30101	78295	54656	85417	43189	60048	72781	72606
30 74261 32592 86538 27041 65172 85532 07571 80609 39285 65340 31 64081 49863 08478 96001 18888 14810 70545 89755 59064 07210 32 05617 75818 47750 67814 29575 10526 66192 44464 27058 40467 33 26793 74951 95466 74307 13330 42664 85515 20632 05497 33623 34 65988 72850 48737 54719 52056 01596 03845 35067 03134 70322 35 27366 42271 44300 73399 21105 03280 73457 43093 05192 48657 36 56760 10909 98147 34736 33863 95256 12731 66598 50771 83665 37 72880 43338 93643 58904 47961 83841	29	20287	56862	69727	94443	64936	08366	27227	05158	50326	59566
31 64081 49863 08478 96001 18888 14810 70545 89755 59064 07210 32 05617 75818 47750 67814 29575 10526 66192 44464 27058 40467 33 26793 74951 95466 74307 13330 42664 85515 20632 05497 33625 34 65988 72850 48737 54719 52056 01596 03845 35067 03134 70322 35 27366 42271 44300 73399 21105 03280 73457 43093 05192 48657 36 56760 10909 98147 34736 33863 95266 12731 66598 50771 83665 37 72880 43338 93643 58904 59543 23943 11231 83268 655.38 81581 38 77888 38100 03062 58103 47961 8384	30	74261	32592	86538	27041	65172	85532	07571	80609	39285	65340
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	64081	49863	08478	96001	18888	14810	70545	89755	59064	07210
33 26793 74951 95466 74307 13330 42664 85515 20632 05497 33625 34 65988 72850 48737 54719 52056 01596 03845 35067 03134 70322 35 27366 42271 44300 73399 21105 03280 73457 43093 05192 48657 36 56760 10909 98147 34736 33863 95256 12731 66598 50771 83665 37 72880 43338 93643 58904 59543 23943 11231 83268 655,38 81581 38 77888 38100 03062 58103 47961 83841 25878 23746 55903 44115 39 28440 07819 21580 51459 47971 29882 13990 29226 23608 15873 40 63525 94441 77033 12147 51054 4995	32	05617	75818	47750	6/814	29575	10526	66192	44464	27058	40467
34 63988 72830 48737 54719 52036 01396 03845 33067 03134 70322 35 27366 42271 44300 73399 21105 03280 73457 43093 05192 48657 36 56760 10909 98147 34736 33863 95256 12731 66598 50771 83665 37 72880 43338 93643 58904 59543 23943 11231 83268 655.38 81581 38 77888 38100 03062 58103 47961 83841 25878 23746 55903 44115 39 28440 07819 21580 51459 47971 29882 13990 29226 23608 15873 40 63525 94441 77033 12147 51054 49955 58312 76923 96071 05813 41 47606 93410 16359 89033 89696 47231 64498 31776 05383 39902 42 52669 <td< td=""><td>33</td><td>26/93</td><td>74951</td><td>90460</td><td>/430/</td><td>13330</td><td>42004</td><td>82212</td><td>20632</td><td>03497</td><td>33623</td></td<>	33	26/93	74951	90460	/430/	13330	42004	82212	20632	03497	33623
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	02988	72850	48737	24719	52050	01200	03845	32067	03134	/0322
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	27366	42271	44300	73399	21105	03280	73457	43093	05192	48657
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	56760	10909	98147	34736	33863	95256	12731	66598	50771	83665
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	72880	43338	93643	58904	59543	23943	11231	83268	65538	81581
39 28440 07819 21580 51459 47971 29822 13990 29226 23608 15873 40 63525 94441 77033 12147 51054 49955 58312 76923 96071 05813 41 47606 93410 16359 89033 89696 47231 64498 31776 05383 39902 42 52669 45030 96279 14709 52372 87832 02735 50803 72744 88208 43 16738 60159 07425 62369 07515 82721 37875 71153 21315 00132 44 59348 11695 45751 15865 74739 05572 32688 20271 65128 14551 45 12900 71775 29845 60774 94924 21810 38636 33717 67598 82521 46 75086 23537 49939 33595 13484 97588	38	77888	38100	03062	58103	47961	83841	25878	23746	55903	44115
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	28440	07819	21580	51459	47971	29882	13990	29226	23608	15873
41 47606 93410 16359 89033 89696 47231 64498 31776 05383 39902 42 52669 45030 96279 14709 52372 87832 02735 50803 72744 88208 43 16738 60159 07425 62369 07515 82721 37875 71153 21315 00132 44 59348 11695 45751 15865 74739 05572 32688 20271 65128 14551 45 12900 71775 29845 60774 94924 21810 38636 33717 67598 82521 46 75086 23537 49939 33595 13484 97588 28617 17979 70749 35234 47 99495 51434 29181 09993 38190 42553 68922 52125 91077 40197 48 26075 31671 45386 36583 93459 48599 52022 41330 60651 91321 49 13636	40	63525	94441	77033	12147	51054	49955	58312	76923	96071	05813
42 52669 45030 96279 14709 52372 87832 02735 50803 72744 88208 43 16738 60159 07425 62369 07515 82721 37875 71153 21315 00132 44 59348 11695 45751 15865 74739 05572 32688 20271 65128 14551 45 12900 71775 29845 60774 94924 21810 38636 33717 67598 82521 46 75086 23537 49939 33595 13484 97588 28617 17979 70749 35234 47 99495 51434 29181 09993 38190 42553 68922 52125 91077 40197 48 26075 31671 45386 36583 93459 48599 52022 41330 60651 91321 49 13636 93596 23377 51133 95126 61496	41	47606	93410	16359	89033	89696	47231	64498	31776	05383	39902
43 16738 60159 07425 62369 07515 82721 37875 71153 21315 00132 44 59348 11695 45751 15865 74739 05572 32688 20271 65128 14551 45 12900 71775 29845 60774 94924 21810 38636 33717 67598 82521 46 75086 23537 49939 33595 13484 97588 28617 17979 70749 35234 47 99495 51434 29181 09993 38190 42553 68922 52125 91077 40197 48 26075 31671 45386 36583 93459 48599 52022 41330 60651 91321 49 13636 93596 23377 51133 95126 61496 42474 45141 46660 42338	42	52669	45030	96279	14709	52372	87832	02735	50803	72744	88208
44 59348 11695 45751 15865 74739 05572 32688 20271 65128 14551 45 12900 71775 29845 60774 94924 21810 38636 33717 67598 82521 46 75086 23537 49939 33595 13484 97588 28617 17979 70749 35234 47 99495 51434 29181 09993 38190 42553 68922 52125 91077 40197 48 26075 31671 45386 36583 93459 48599 52022 41330 60651 91321 49 13636 93596 23377 51133 95126 61496 42474 45141 46660 42338	43	16738	60159	07425	62369	07515	82721	37875	71153	21315	00132
45129007177529845607749492421810386363371767598825214675086235374993933595134849758828617179797074935234479949551434291810999338190425536892252125910774019748260753167145386365839345948599520224133060651913214913636935962337751133951266149642474451414666042338	44	59348	11695	45751	15865	74739	05572	32688	20271	65128	14551
46 75086 23537 49939 33595 13484 97588 28617 17979 70749 35234 47 99495 51434 29181 09993 38190 42553 68922 52125 91077 40197 48 26075 31671 45386 36583 93459 48599 52022 41330 60651 91321 49 13636 93596 23377 51133 95126 61496 42474 45141 46660 42338	45	12900	71775	29845	60774	94924	21810	38636	33717	67598	82521
47 99495 51434 29181 09993 38190 42553 68922 52125 91077 40197 48 26075 31671 45386 36583 93459 48599 52022 41330 60651 91321 49 13636 93596 23377 51133 95126 61496 42474 45141 46660 42338	46	75086	23537	49939	33595	13484	97588	28617	17979	70749	35234
48 26075 31671 45386 36583 93459 48599 52022 41330 60651 91321 49 13636 93596 23377 51133 95126 61496 42474 45141 46660 42338	47	99495	51434	29181	09993	38190	42553	68922	52125	91077	40197
49 13636 93596 23377 51133 95126 61496 42474 45141 46660 42338	48	26075	31671	45386	36583	93459	48 599	52022	41330	60651	91321
	49	13636	93596	23377	51133	95126	61496	42474	45141	46660	42338

t (A-2) : مئويات توزيع t : (A-2) جدول (A-2) ، مئويات توزيع

$p\{t_{(v)} \le t_{(A,v)}\} = A$

				A			
ν	.60	.70	.80	.85	.90	.95	.975
1	0.325	0.727	1.376	1.963	3.078	6.314	12.706
2	0.289	0.617	1.061	1.386	1.886	2.920	4.303
3	0.277	0.584	0.978	1.250	1,638	2.353	3.182
4	0.271	0.569	0.941	1.190	1.533	2.132	2.776
5	0.267	0.559	0.920	1.156	1.476	2.015	2.571
6	0.265	0.553	0.906	1.134	1.440	1.943	2.447
7	0.263	0.549	0.896	1.119	1.415	1.895	2.365
8	0.262	0.546	0.889	1.108	1.397	1.860	2.306
9	0.261	0.543	0.883	1.100	1.383	1.833	2.262
10	0.260	0.542	0.879	1.093	1.372	1.812	2.228
11	0.260	0.540	0.876	1.088	ì.363	1.796	2.201
12	0.259	0.539	0.873	1.083	1.356	1.782	2.179
13	0.259	0.537	0,870	1.079	1.350	1.771	2.160
14	0.258	0.537	0.868	1.076	1.345	1.761	2.145
15	0.258	0.536	0.866	1.074	1.341	1.753	2.131
16	0.258	0.535	0.865	1.071	1.337	1.746	2.120
17	0.257	0.534	0.863	1.069	1,333	1.740	2.110
18	0.257	0.534	0.862	1.067	1.330	1.734	2.101
19	0.257	0.533	0.861	1.066	1.328	1,729	2.093
20	0.257	0.533	0.860	1.064	1.325	1.725	2.086
21	0.257	0.532	0.859	1.063	1.323	1.721	2.080
22	0.256	0.532	0.858	1.061	1.321	1.717	2.074
23	0.256	0.532	0.858	1.060	1.319	1.714	2.069
24	0.256	0.531	0.857	1.059	1.318	1.711	2.064
25	0.256	0.531	0.856	1.058	1.316	1.708	2.060
26	0.256	0.531	0.856	1.058	1.315	1,706	2.056
27	0.256	0.531	0.855	1.057	1.314	1.703	2.052
28	0.256	0.530	0.855	1.056	1.313	1.701	2.048
29	0.256	0.530	0.854	1.055	1.311	1.699	2.045
30	0.256	0.530	0.854	1.055	1.310	1.697	2.042
40	0.255	0.529	0.851	1.050	1.303	1.684	2.021
60	0.254	0.527	0.848	1.045	1,296	1.671	2.000
120	0.254	0.526	0.845	1.041	1.289	1.658	1,980
œ	0.253	0.524	0.842	1.036	1.282	1.645	1,960

جدول (A-2) : مئويات توزيع t (تابع)

			·	A		··· <u></u> · <u>_</u> · <u>_</u> ·	
ν	.98	.985	.99	.9925	.995	.9975	.9995
1	15.895	21.205	31.821	42.434	63.657	127.322	636.590
2	4.849	5.643	6.965	8.073	9.925	14.089	31.598
3	3.482	3.896	4.541	5.047	5.841	7.453	12.924
4	2.999	3.298	3.747	4.088	4.604	5.598	8.610
5	2.757	3.003	3.365	3.634	4.032	4.773	6.869
6	2.612	2.829	3,143	3.372	3.707	4.317	5.959
7	2.517	2,715	2.998	3.203	3.499	4.029	5.408
8	2.449	2.634	2.896	3.085	3.355	3.833	5.041
9	2.398	2.574	2.821	2.998	3.250	3.690	4.781
10	2.359	2.527	2.764	2.932	3.169	3.581	4.587
11	2.328	2.491	2,718	2.879	3.106	3.497	4.437
12	2.303	2.461	2.681	2.836	3.055	3.428	4.318
13	2.282	2.436	2.650	2.801	3.012	3.372	4.221
14	2.264	2.415	2.624	2.771	2.977	3.326	4,140
15	2.249	2.397	2.602	2.746	2.947	3.286	4.073
16	2.235	2.382	2.583	2.724	2.921	3.252	4.015
17	2.224	2.368	2.567	2.706	2.898	3.222	3,965
18	2.214	2.356	2.552	2.689	2.878	3.197	3.922
19	2.205	2.346	2.539	2.674	2.861	3.174	3.883
20	2.197	2.336	2.528	2.661	2.845	3.153	3.849
21	2.189	2.328	2.518	2.649	2.831	3.135	3.819
22	2.183	2.320	2.508	2.639	2.819	3.119	3.792
23	2.177	2.313	2.500	2.629	2.807	3.104	3.768
24	2.172	2.307	2.492	2.620	2.797	3.091	3.745
25	2.167	2.301	2.485	2.612	2.787	3.078	3.725
26	2.162	2.296	2.479	2.605	2.779	3.067	3.707
27	2.158	2.291	2.473	2.598	2.771	3.057	3.690
28	2.154	2.286	2.467	2.592	2.763	3.047	3.674
29	2.150	2.282	2.462	2.586	2.756	3.038	3.659
30	2.147	2.278	2.457	2.581	2.750	3.030	3.646
40	2.123	2.250	2.423	2.542	2.704	2.971	3.551
60	2.099	2.223	2.390	2,504	2.660	2.915	3.460
120	2.076	2.196	2.358	2.468	2.617	2.860	3.373
30	2.054	2.170	2.326	2.432	2.576	2.807	3.291

$\chi^{2}_{(A,v)}$: مئويات توزيع کاي A-3 جدول A-3 جدول

				-	A	·	-			
ν	.005	.010	.025	.050	.100	.900	.950	.975	.990	.995
1	0.0+393	0.0 ³ 157	0.03982	0.0²393	0,0158	2.71	3.84	5.02	6.63	7.88
2	0.0100	0.0201	0.0506	0.103	0.211	4.61	5.99	7.38	9.21	10.60
3	0.072	0.115	0.216	0.352	0.584	6.25	7.81	9.35	11.34	12.84
4	0.207	0.297	0.484	0.711	1.064	7.78	9.49	11.14	13.28	14.86
5	0.412	0.554	0.831	1.145	1.61	9.24	11.07	12.83	15.09	16.75
6	0.676	0.872	1.24	1.64	2.20	10.64	12.59	14.45	16.81	18.55
7	0.989	1.24	1.69	2.17	2.83	12.02	14.07	16.01	18.48	20.28
8	1.34	1.65	2.18	2.73	3.49	13.36	15.51	17.53	20.09	21.96
9	1.73	2.09	2.70	3,33	4.17	14.68	16.92	19.02	21.67	23.59
10	2.16	2.56	3.25	3.94	4.87	15.99	18.31	20.48	23.21	25.19
11	2.60	3.05	3.82	4.57	5.58	17.28	19.68	21.92	24.73	26.76
12	3.07	3.57	4.40	5.23	6.30	18.55	21.03	23.34	26.22	28.30
13	3.57	4.11	5.01	5.89	7.04	19.81	22.36	24.74	27.69	29.82
14	4.07	4.66	5.63	6.57	7.79	21.06	23.68	26.12	29.14	31.32
15	4.60	5,23	6.26	7.26	8.55	22.31	25.00	27.49	30.58	32.80
16	5.14	5.81	6.91	7.96	9.31	23.54	26.30	28.85	32.00	34.27
17	5.70	6.41	7.56	8.67	10.09	24.77	27.59	30.19	33.41	35.72
18	6.26	7.01	8.23	9.39	10.86	25.99	28,87	31.53	34.81	37.16
19	6.84	7.63	8,91	10.12	11.65	27.20	30.14	32.85	36.19	38.58
20	7.43	8.26	9.59	10.85	12.44	28.41	31.41	34.17	37.57	40.00
21	8.03	8,90	10.28	11.59	13.24	29.62	32.67	35.48	38.93	41.40
22	8.64	9.54	10.98	12.34	14.04	30.81	33.92	36.78	40,29	42.80
23	9.26	10.20	11.69	13.09	14.85	32.01	35.17	38.08	41.64	44.18
24	9.89	10.86	12.40	13.85	15.66	33.20	36.42	39.36	42.98	45.56
25	10.52	11.52	13.12	14.61	16.47	34,38	37.65	40.65	44.31	46.93
26	11.16	12.20	13.84	15.38	17.29	35.56	38.89	41.92	45.64	48.29
27	11.81	12.88	14.57	16.15	18.11	36.74	40.11	43.19	46.96	49.64
28	12.46	13.56	15.31	16.93	18.94	37.92	41,34	44.46	48.28	50,99
29	13.12	14.26	16.05	17.71	19.77	39,09	42.56	45.72	49.59	52.34
30	13.79	14.95	16.79	18.49	20.60	40.26	43.77	46.98	50,89	53.67
40	20.71	22.16	24.43	26.51	29.05	51.81	55.76	59.34	63.69	66.77
50	27.99	29.71	32.36	34.76	37.69	63.17	67.50	71.42	76.15	79.49
60	35.53	37.48	40.48	43.19	46.46	74.40	79.08	83.30	88.38	91.95
70	43.28	45.44	48.76	51.74	55.33	85.53	90,53	95.02	100.4	104,2
80	51.17	53.54	57.15	60.39	64.28	96.58	101.9	106.6	112.3	116.3
90	59.20	61.75	65.65	69.13	73.29	107.6	113.1	118.1	124.1	128.3
100	67.33	70.06	74.22	77.93	82,36	118.5	124.3	129.6	135.8	140.2

جدول A-4 : منويات توزيع F د : A-4 جدول

				Numerator df											
	Den. df	A	1	2	3	4	5	6	7	8	9				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	.50	1.00	1.50	1.71	1.82	1.89	1.94	1.98	2.00	2.03				
161 200 216 223 210 224 237 239 244 975 648 800 864 900 922 937 948 957 963 995 16,211 20,000 5,403 5,625 5,764 5,839 5,928 5,981 6,022 999 405,280 500,000 540,380 562,500 576,400 585,940 592,870 598,140 602,286 2 50 0.667 1.00 1.13 1.21 1.25 1.28 1.30 1.32 1.33 90 8,33 9.00 9.16 9.22 99.3 39.3 39.4 194. 194	•	.90	39.9	49.5	53.6	55.8	57.2	58.2	58.9	59.4	59.9				
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$.95	161	200	216	225	230	234	237	239	241				
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$.975	648	800	864	900	922	937	948	957	963				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.99	4,052	5,000	5,403	5.625	5.764	5.859	5.928	5.981	6.022				
.999 405,280 500,000 540,380 562,500 576,400 582,970 598,140 602,280 2 .50 0.667 1.00 1.13 1.21 1.25 1.28 1.30 1.32 1.33 90 8.33 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.33 975 38.5 39.0 39.2 39.2 39.3 39.4 <td< td=""><td></td><td>.995</td><td>16,211</td><td>20,000</td><td>21,615</td><td>22,500</td><td>23,056</td><td>23,437</td><td>23.715</td><td>23,925</td><td>24,091</td></td<>		.995	16,211	20,000	21,615	22,500	23,056	23,437	23.715	23,925	24,091				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.999	405,280	500,000	540,380	562,500	576,400	585,940	592,870	598,140	602,280				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	.50	0.667	1.00	1.13	1.21	1.25	1.28	1.30	1,32	1.33				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.90	8.53	9.00	9.16	9.24	9.29	9.33	9,35	9.37	9.38				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.95	18.5	19.0	19.2	19.2	19.3	19,3	19.4	19.4	19.4				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.975	38.5	39.0	39,2	39.2	39.3	39.3	39,4	39.4	39,4				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.99	98.5	99 .0	99.2	99.2	99,3	99,3	99.4	99.4	99,4				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.995	199	199	199	199	199	199	199	199	199				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.999	998.5	999.0	999.2	999.2	999.3	999.3	999.4	999.4	999,4				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	.50	0.585	0.881	1.00	1.06	1.10	1.13	1.15	1.16	117				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.90	5.54	5.46	5,39	5,34	5.31	5,28	5,27	5.25	5.24				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.95	10.1	9.55	9.28	9,12	9.01	8.94	8.89	8.85	8.81				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.975	17.4	16,0	15.4	15.1	14.9	14.7	14.6	14.5	14,5				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.99	34.1	30,8	29.5	28.7	28.2	27.9	27.7	27.5	27,3				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.995	55.6	49.8	47.5	46.2	45.4	44.8	44,4	44.1	43,9				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.999	167.0	148.5	141.1	137.1	134.6	132.8	131,6	130.6	129,9				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	.50	0.549	0.828	0.941	1.00	1.04	1.06	1.08	1.09	1.10				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.90	4.54	4.32	4,19	4.11	4.05	4.01	3,98	3.95	3.94				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.95	7.71	6,94	6,59	6.39	6.26	6.16	6.09	6.04	6.00				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.975	12.2	10.6	9,98	9.60	9.36	9.20	9,07	8,98	8,90				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.99	21.2	18.0	16.7	16.0	15.5	15.2	15,0	14,8	14,7				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,995	31.3	26.3	24.3	23.2	22.5	22.0	21.6	21,4	21,1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.999	74.1	61.2	56.2	53,4	51.7	50,5	49.7	49.0	48.5				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	.50	0.528	0.799	0.907	0.965	1.00	1.02	1.04	1.05	1.06				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.90	4.00	3,78	3.02	3,52	3.43	3.40	3.37	3,34	3.32				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.95	0.01	3,79	3,41	5.19	5,05	4.95	4,88	4.82	4.77				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.975	10.0	8,43	7,76	7.39	7.15	6.98	6.85	6,76	6.68				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.99	10.3	13.3	12.1	11.4	11.0	10,7	10.5	10.3	10.2				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.995	22.8	18.3	16.5	15.6	14.9	14.5	14.2	14.0	13.8				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.999	4/.2	۱.۱د	33,2	31.1	29.8	28,8	28.2	27.6	27.2				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	.50	0.515	0.780	0.886	0.942	0,977	1.00	1.02	1.03	1.04				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,90	3.78	3.40	3,29	3,18	3.11	3.05	3.01	2,98	2.96				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.95	5.99	5,14	4.76	4.53	4.39	4.28	4.21	4.15	4.10				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.975	8.81	7.26	6,60	6,23	5.99	5,82	5.70	5.60	5.52				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.99	13.7	10,9	9,78	9.15	8.75	8.47	8.26	8,10	7.98				
.999 35.5 27.0 23.7 21.9 20.8 20.0 19.5 19.0 18.7 7 .50 0.506 0.767 0.871 0.926 0.960 0.983 1.00 1.01 1.02 .90 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 .95 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 .975 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 .99 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 .995 16.2 12.4 10.9 10.1 9.52 9.16 8.88 8.68 8.51 .999 29.2 21.7 18.8 17.2 16.2 15.5 15.0 14.6 14.3		.995	18.6	i 14.5	12.9	12,0	11.5	11.1	10.8	10.6	10.4				
7 .50 0.506 0.767 0.871 0.926 0.960 0.983 1.00 1.01 1.02 .90 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 .95 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 .975 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 .99 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 .995 16.2 12.4 10.9 10.1 9.52 9.16 8.89 8.68 8.51 .999 29.2 21.7 18.8 17.2 16.2 15.5 15.0 14.6 14.3		.999	35.5	27.0	23.7	21.9	20.8	20.0	19.5	19.0	18.7				
.90 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 .95 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 .975 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 .99 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 .995 16.2 12.4 10.9 10.1 9.52 9.16 8.89 8.68 8.51 .999 29.2 21.7 18.8 17.2 16.2 15.5 15.0 14.6 14.3	7	.50	0.506	0.767	0.871	0.926	0.960	0,983	1.00	1.01	1.02				
.95 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 .975 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 .99 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 .995 16.2 12.4 10.9 10.1 9.52 9.16 8.89 8.68 8.51 .999 29.2 21.7 18.8 17.2 16.2 15.5 15.0 14.6 14.3		.90	3.59	3.26	3.07	2,96	2,88	2.83	2,78	2.75	2.72				
.975 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 .99 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 .995 16.2 12.4 10.9 10.1 9.52 9.16 8.89 8.68 8.51 .999 29.2 21.7 18.8 17.2 16.2 15.5 15.0 14.6 14.3		.95	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3,68				
.99 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 .995 16.2 12.4 10.9 10.1 9.52 9.16 8.89 8.68 8.51 .999 29.2 21.7 18.8 17.2 16.2 15.5 15.0 14.6 14.3		.975	8.07	6.54	5,89	5.52	5.29	5,12	4.99	4.90	4.82				
.995 16.2 12.4 10.9 10.1 9.52 9.16 8.89 8.68 8.51 .999 29.2 21.7 18.8 17.2 16.2 15.5 15.0 14.6 14.3		.99	12,2	9.55	8,45	7,85	7.46	7.19	6.99	6,84	6.72				
.999 29.2 21.7 18.8 17.2 16.2 15.5 15.0 14.6 14.3		.995	16.2	12.4	10.9	10,1	9,52	9.16	8.89	8.68	8,51				
		.999	29,2	21.7	18.8	17.2	16.2	15.5	15.0	14.6	14.3				

جدول A-4 : مئويات توزيع F (تابع)

_		Numerator df												
Den. df	A	10	12	15	20	24	30	60	120					
1	.50	2.04	2.07	2.09	2.12	2.13	2.15	2.17	2.18	2.20				
	.90	60,2	60.7	61.2	61.7	62.0	62.3	62,8	63.1	63.3				
	.95	242	244	246	248	249	250	252	253	254				
	.975	909	9//	985	5 20D	99/ 4 315	6 761	6 212	6 2 2 0	1,018				
	.99	0,030	0,100	74 620	24 916	24 040	75 044	5,253 1,25,25	2,339	75 464				
	.995	605,620	24,420 610,670	615,760	620,910	623,500	626,100	631,340	633,970	636,620				
2	.50	1.34	1.36	1.38	1.39	1.40	1.41	1.43	1.43	1.44				
-	.90	9.39	9,41	9.42	9,44	9.45	9.46	9.47	9.48	9.49				
	.95	19.4	19.4	19.4	19.4	19,5	19.5	19.5	19.5	19.5				
	.975	39.4	39.4	39.4	39.4	39.5	39.5	39,5	39,5	39.5				
	.99	99.4	99.4	99.4	99.4	99.5	99,5	99.5	99.5	99.5				
	.995	199	199	199	199	199	199	199	199	200				
	.999	999.4	999.4	999.4	999.4	999.5	999.5	999.5	999.5	999.5				
3	. 50	1.18	1.20	1.21	1.23	1.23	1.24	1.25	1.26	1.27				
	.90	5.23	5.22	5.20	5.18	5.18	5.17	5.15	5.14	5.13				
	.95	8.79	8.74	8,70	8.66	8.64	8,62	8.5/	8.55	8.53				
	.975	14.4	14.3	14.3	14.2	14.1	14.1	14.0	13.9	13,9				
	.99	27.2	27.1	26.9	26,7	26.0	20.0	26.3	20.2	20.1				
	.995	43.7	43.4	43.1	42.8	42.0	42.5	42.1	42.0	41.8				
	.999	129,2	128.3	127.4	126,4	125.9	125.4	124.5	124.0	123.5				
4	.50	1.11	1.13	1.14	1.15	1.16	1.16	1,18	⁻ 1.18	1.19				
	.90	3.92	3,90	3.87	3.84	1.83	3.82	3.79	3.78	3.70				
	.95	5.96	5.91	5.80	5.80	3.//	2./2	2.09	2.00	2.03				
	.975	8.84	8./2	5.00	0.30	ונ,ס סיבו	0.40	117	17.6	11 0.20				
	,99	14.3	20.7	20.4	70.7	20.0	100	19.6	19.5	19.3				
	.999	48.1	47.4	46.8	46,1	45.8	45.4	44.7	44.4	44.1				
5	.50	1.07	1.09	1.10	1.11	1.12	1.12	1.14	1.14	1.15				
•	.90	3.30	3.27	3.24	3.21	3.19	3.17	3.14	3.12	3.11				
	.95	4.74	4.68	4.62	4.56	4.53	4.50	4.43	4.40	4.37				
	,975	6.62	6.52	6,43	6.33	6.28	6.23	6.12	6.07	6.02				
	.99	10,1	9,89	9.72	9.55	9.47	9.38	9.20	9.11	9.02				
	.995	[13.6	13.4	13,1	12,9	12.8	12.7	12,4	. 12.3	12.1				
	.999	26.9	26.4	25.9	25,4	25.1	24.9	24.3	24.1	23.8				
6	.50	1.05	1.06	1.07	1.08	1.09	1.10	1.11	1.12	1.12				
	.90	2.94	2.90	2.87	2.84	2.82	2,80	2.76	2.74	2.72				
	,95	4.06	4.00	3.94	3.87	3.84	3.81	3.74	3.70	3.67				
	.975	5.46	5.37	5.27	5.17	5.12	5.07	4.90	4.90	4.83				
	.99	7.87	7.72	7.50	7,40	1.51	1.23	7.00	0.7/	0,60				
	.995 .999	10,2	2 JO.U 18.0) 9.81) 17.6	9.59	9.47	9.30	9.12	9.00 16.0	15.7				
-	60	1.01	1 104	1 105	107	107	1 08	1.09) 1.10	1.14				
1	.30	1,02	ער ג <u>ו</u> האיר ה	גט.ו א ראר ק	7 50	7759	7.00	2.51	2 49	2.4				
	.90	2.10	· 2,0/	1 2.0J	2.37	2.30	, 7.70 7.75	7 30	1 2 27	3.2				
	.92	3.04	, J.J. , A.A.	, J.J. 1 A <7	J.44 4 47		2.30	4.29	4 20) 4.1				
	.772	4.10) 4.07) K.A	, 1 .57 7 6.21	6 16	6.07	S 00	5.87	5.74	5.6				
	.77	1 9 19	2 R 11	, 0.51 , 7.07	7.75	7.61	7.53	7.3	7.19	7.0				
	,77J	1 0.00			170	122	1 12 9	12	110	· · · ·				

جدول A-4 : مئويات توزيع F (تابع)

					Nur	nerator di	r			
Den df	А	1	2	3	4	5	6	7	8	9
8	.50	0.499	0.757	0.860	0.915	0.948	0.971	0.988	1.00	1.01
	.90	3.46	3.11	2.92	2,81	2.73	2.67	2,62	2.59	2.56
	.95	5.32	4.46	4.07	3,84	3.69	3.58	3.50	3.44	3.39
	.975	7.57	6.06	5.42	5,05	4.82	4.65	4.53	4.43	4.36
	.99	11.3	8.03	7.39	7.01	0.03	0.3/	0.18	0.03	2.91
	.999	25.4	18.5	15.8	14.4	13.5	12.9	12.4	12.0	11.8
9	.50	0.494	0.749	0,852	0,906	0.939	0.962	0.978	0.990	1,00
	.90	3.36	3.01	2.81	2.69	2.61	2.55	2.51	2,47	2,44
	.95	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18
	.973	7.21	2.71	5.08	4.72	4.48	4.32	4.20	4.10	4.03
	.99	10.0	101	עלי. מיד פ	0,44	0,00	2.60	2.01	J.4/ 6.60	5,33
	.999	22.9	16.4	13.9	12.6	11.7	11.1	10,7	10,4	10.1
10	.50	0.490	0.743	0.845	0,899	0.932	0,954	0.971	0,983	0.992
	.90	3.29	2.92	2.73	2,61	2,52	2.46	2.41	2.38	2.35
	.95	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02
	.975	0,94	2.40	4.83	4,4/	4.24	4.07	3.93	3.85	3,78
	,77	12.0	9 43	8 08	7 74	5.87	5.39	5.20 6 10	5.00	4,74
	.999	21.0	14.9	12.6	11.3	10.5	9,93	9,52	9.20	8,5 J
12	.50	0.484	0,735	0,835	0.888	0.921	0.943	0.959	0.972	0.981
	.90	3,18	2.81	2.61	2.48	2.39	2.33	2.28	2.24	2.21
	.95	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80
	.975	6.55	5.10	4.47	4.12	3.89	3,73	3.61	3.51	3.44
	.99	9.33	0.93	2,92	5,41	5.06	4,82	4.64	4.30	4.39
	.993 ,999	18.6	13.0	10.8	0,52 9,63	8.89	8,38	8.00	5.55 7.71	5.20 7.48
15	.50	0.478	0,726	0.826	0.878	0.911	0.933	0.949	0.960	0.970
	.90	3.07	2.70	2,49	2.36	2.27	2.21	2.16	2.12	2.09
	.95	4.04	3.08	3.29	3,00	2,90	2.79	2./1	2.64	2,59
	.975	8.68	4.77	4.15	7.90	3.30 1.56	J.41 1 32	3.29 A 14	3.20	2.00
	.995	10.8	7.70	·6 48	5.80	5 37	5 07	4.14	4.00	J.03 4 54
	.999	16.6	11.3	9.34	8.25	7.57	7.09	6.74	6.47	6.26
20	.50	0.472	0.718	0.816	0.868	0,900	0.922	0.938	0.950	0.959
	.90	2.97	2.59	2,38	2,25	2.16	2,09	2.04	2.00	1.96
	.95	4.55	3.49	3.10	2.87	2,71	2,60	2.51	2.45	2.39
	.9/3	2.87	4.40	3.80	3.31	3,29	3,13	3.01	2,91	2.84
	.77	0.10	2,02	4,74	4,43	4.10	3.87	3.70	3,30	3.40
	.999	14.8	9,95	8,10	7.10	4.70 6.46	6.02	4.20 5,69	4.09 5,44	5.24
24	.50	0.469	0.714	0.812	0.863	0.895	0.917	0.932	0.944	0.953
	.90	2.93	2,54	2,33	2.19	2.10	2.04	1.98	1.94	1.91
	.95	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30
	.973	3.72	4.32	3,72	3.38	3.15	2.99	2.87	2.78	2,70
	,99 004	1.82	2,01	4./2	4.22	3.90	5.67	3.50	3.36	3.26
	.990 600	14 0	0.00	3.34	4.87	4.49	4.20	۶,99 د م	5.83	3.69
	.777	14.0	3.14	7,55	0.37	2.98	, 2.22	2.23	4.99	4.80

ول A-4 : منويات توزيع F (تابع)

		Numerator df												
Den df	. 1	10	12	15	20	24	30	60	120	8				
8	.50	1.02	1.03	1.04	1.05	1.06	1.07	1.08	1.08	1.09				
	.90	2.54	2.50	2.46	Z.42	2.40	2,38	2.34	2.32	2.29				
	.93	3.33	3.28	3.22	3.12	2.05	5.US	3.01	2.91	2.93				
	.975	4.50	4.20	5 57	5 36	5.75	5 20	5.70	3.73 A 95	J.07 A 26				
	.995	7.21	7.01	6 81	6.61	6 50	6.40	6.18	-6.06	5 95				
	.999	11.5	11.2	10.8	10.5	10,3	10,1	9.73	9.53	9.33				
9	.50	1.01	1.02	1.03	1.04	1.05	1.05	1.07	1.07	1.08				
	.90	2.42	2.38	2.34	2.30	2,28	2.25	2.21	2.18	2.16				
	.95	3.14	3.07	3.01	2,94	2,90	2.80	2.19	2.75	2.71				
	.975	5.26	5.11	4.96	4 81	4.73	4.65	4.48	4.40	4.31				
	.995	6.42	6.23	6.03	5,83	5.73	5.62	5.41	5.30	5.19				
	.999	9,89	9.57	9.24	8,90	8.72	8.55	8,19	8.00	7.81				
10	.50	1,00	1.01	1.02	1.03	1.04	1.05	1.06	1.06	1.07				
	.90	2,32	2.28	2.24	2.20	2.18	2.10	2.11	2,08	2,00				
	.92	2,98	2.91	2.84	2.11	2,/4	2.70	2,02	2,20	2.54				
	.975	485	4 71	J.JZ 1 56	441	4 33	4.25	4 08	4.00	3.00				
	995	5 85	5.66	5 47	5 27	5.17	5.07	4.86	4.75	4.64				
	.999	8.75	8.45	8.13	7.80	7.64	7.47	7.12	6.94	6.76				
12	.50	0.989	1.00	1.01	1.02	1.03	1.03	1.05	1.05	1.06				
	.90	2.19	2.15-	2.10	2,06	2,04	2.01	1.96	1.93	1.90				
	.95	2,75	2.69	2.62	2.54	2.51	2.4/	2,38	2,34	2.30				
	.9/5	3,37	3,28	3.18	3.07	3,02	2,70	2.05	3 45	2.72				
	995	5.09	4.10	4.72	4.53	4.43	4.33	4.12	4.01	3.90				
	.999	7.29	7.00	6.71	6,40	6,25	6,09	5,76	5.59	5.42				
15	.50	0.977	0.989	1.00	1.01	1.02	1.02	1.03	1.04	1.05				
	.90	2.06	2.02	1,97	1,92	1.90	1,8/	1,84	1./9	1./0				
	.93	2,54	2.48	2,40	2,33	2.29	2,23	2,10	2.11	2.07				
	.975	3,00	2.90	2.00	2.70	3 29	3.21	3.05	2.96	2.87				
	.995	4 42	4.25	4.07	3.88	3.79	3.69	3.48	3.37	3.26				
	.999	6.08	5.81	5,54	5,25	5.10	4,95	4.64	4.48	4.31				
20	.50	0.966	0,977	0.989	1.00	1.01	1.01	1.02	1.03	1.03				
	.90	1.94	1,89	1.84	1.79	1.77	1./4	1,68	1.04	1.01				
	.95	2.35	2.28	2,20	2.12	2.08	2.04	1.92	2.16	1.04				
	.975	2.77	2.68	2,57	2.40	2.41	2,33	2.22	2.10	2.05				
	.99	3.3/	3.23	3.09	2,54	2.00	2./0	2 97	2.32	2.42				
	.995	5,08	4.82	4,56	4.29	4.15	4.00	3.70	3.54	3.38				
24	.50	0,961	0,972	0.983	0,994	1.00	1.01	1.02	1.02	1.03				
	.90	1.88	1.83	1.78	1.73	1.70	1.67	1.61	1.57	1.53				
	.95	2.25	2.18	2.11	2.03	1.98	1.94	1.84	1./9 2.01	1.75				
	.975	2.64	·2.54	2.44	2.33	2.21	2.21	2.00 2.40	2,01	2.21				
	.99	3.17	2.03	2.87	2.14 3.06	2.00	2.87	2.66	2.55	2.43				
	,777 000	2.57 A 64	4 19	4.14	3.87	3.74	3.59	3.29	3,14	2,97				
		1.07	-1100											

جدول A-4 : مئويات توزيع F (تابع)

Dee					Nu	merator d	ſ			
dſ	А	1	2	3	4	5	6	7	8	9
30	.50	0.466	0.709	0.807	0.858	0.890	0.912	0.927	0.939	0,948
	.90	2.88	2.49	2.28	2.14	2.05	1.98	1.93	1.88	1.85
	.95	4.17	3,32	2.92	2.69	2.53	2.42	2.33	2.27	2.21
	.975	5.57	4.18	3.59	3.25	3.03	2.87	2.75	2.65	2.57
	.99	7.56	5.39	4.51	4.02	3.70	3.47	3,30	3.17	3.07
	,995	9,18	6.35	5.24	4.62	4.23	3.95	3.74	3.58	3.45
	.999	1,3.3	8.77	7.05	6.12	5.53	5.12	4.82	4.58	4.39
60	.50	0.461	0.701	0.798	0.849	0.880	0.901	0.917	0.928	0.937
	.90	2.79	2.39	2.18	2.04	1,95	1.87	1.82	1.77	1.74
	.95	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04
	.975	5,29	3.93	3.34	3.01	2.79	2.63	2.51	2.41	2,33
	.99	7.08	4.98	4.13	3.65	3.34	3.12	2,95	2.82	2.72
	.995	8.49	5,80	4.73	4.14	3.76	3.49	3.29	3.13	3.01
	,999	12.0	7.77	6.17	5.31	4.76	4.37	4.09	3.86	3,69
120	.50	0.458	0.697	0,793	0.844	0.875	0.896	0.912	0,923	0,932
	.90	2.75	2.35	2.13	1.99	1,90	1.82	1.77	1.72	1,68
	.95	3.92	3.07	2.68	2.45	2.29	2,18	2.09	2,02	1.96
	.975	5.15	3.80	3,23	2.89	2.67	2.52	2.39	2.30	2.22
	.99	6.85	4.79	3,95	3.48	3.17	2.96	2.79	2.66	2.56
	.995	8.18	5.54	4.50	3,92	3.55	3,28	3.09	2.93	2.81
	.999	11.4	7.32	5,78	4.95	4.42	4.04	3.77	3.55	3,38
ø	.50	0.455	0.693	0.789	0.839	0.870	0.891	0.907	0.918	0.927
	.90	2.71	2,30	2,08	1.94	1,85	1.77	1.72	1.67	1.63
	.95	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1,88
	.975	5.02	3.69	3.12	2,79	2.57	2.41	2.29	2.19	2.11
	.99	6.63	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2,41
	.995	7.88	5.30	4.28	3.72	3.35	3.09	2.90	2.74	2,62
	,999	10.8	6.91	5.42	4.62	4.10	3.74	3.47	3.27	3.10

جدول A-4 : منويات توزيع F (تابع)

Den			Numerator df												
df	. 1	10	12	15	20	24	30	60	120	ø					
30	.50	0,955	0.966	0.978	0.989	0.994	1.00	1,01	1.02	1.02					
	,90	1,82	1.77	1.72	1.67	1.64	1.61	1,54	1.50	1.46					
	.95	2.16	2.09	2.01	1.93	1.89	1.84	1.74	1,68	1.62					
	.975	2.51	2.41	2.31	2.20	2.14	2.07	1.94	1.87	1.79					
	.99	2.98	2.84	2,70	2,55	2.47	2,39	2.21	2,11	2.01					
	.995	3,34	3.18	3.01	2.82	2,73	2.63	2.42	2.30	2.18					
	.999	4.24	4.00	3.75	3.49	3.36	3.22	2,92	2.76	2.59					
60	.50	0.945	0.956	0.967	0.978	0.983	0.989	1.00	1.01	1.01					
	.90	1.71	1.66	1,60	1.54	1.51	1.48	1.40	1.35	1.29					
	.95	1.99	1.92	1.84	1.75	1.70	1.65	1.53	1.47	1.39					
	.975	2.27	2.17	2.06	1.94	1.88	1.82	1.67	1.58	1.48					
	.99	2.63	2.50	2.35	2.20	2.12	2.03	1,84	1.73	1.60					
	.995	2.90	2.74	2.57	2,39	2.29	2.19	1,96	1,83	1.69					
	.999	3.54	3.32	′3.08	2.83	2.69	2.55	2.25	2.08	1,89					
120	.50	0.939	0.950	0.961	0.972	0.978	0.983	0,994	1.00	1.01					
	.90	1.65	1.60	1.55	1,48	1.45	1.41	1.32	1.26	1.19					
	.95	1.91	1.83	1.75	1.66	1.61	1.55	1.43	1,35	1.25					
	.975	2.16	2.05	1.95	1.82	1.76	1.69	1.53	1.43	1.31					
	.99	2.47	2,34	2.19	2.03	1.95	1.86	1.66	1.53	1.38					
	.995	2.71	2.54	2,37	2.19	2.09	1.98	1.75	1.61	1.43					
	.999	3.24	3.02	2.78	2.53	2.40	2.26	1.95	• 1,77	1,54					
æ	.50	0.934	0.945	0.956	0.967	0.972	0.978	0.989	0.994	1.00					
	.90	1.60	1.55	1.49	1.42	1.38	1.34	1.24	1.17	1.00					
	.95	1.83	1.75	1.67	1.57	1.52	1.46	1.32	1.22	1.00					
	.975	2.05	1.94	1.83	1.71	1.64	1.57	1.39	1.27	1.00					
	.99	2.32	2.18	2.04	1.88	1.79	1.70	1.47	1.32	1.00					
	.995	2.52	2,36	2.19	2.00	1.90	1.79	1.53	1.36	1.00					
	.999	2.96	2.74	2.51	2.27	2.13	1.99	1.66	1.45	1.00					

α = (
α = .05
و منع
8
(k
بہ
S
معنوي
54
Ē
••
A-5
ول م

ı															1	_
15	4	13	12	7	10	9	°	7	б 		4	ω.	N		9	Error
.0.0 20:	.0.0	.0 <u>.0</u>		200	. <u>0.</u> 0	.0.05	.05 105	. <u>.</u>	.0.0		2. G	.0.0	.0.05	.0.G	level	Significance
3.01 4.17	3.03 4.21	3,06 4,26	3.08 4.32	3.11 4.39	3.15 4.48	3.20 4.60	3.26 4.74	3.35 4.95	3.46 5.24	3.64 5.70	3.93 6.51	4 .50 8.26	6.09 14.0	18.0 90.0	2	
3.16 4.37	3.18 4.42	3.21 4.48	4.55	3.27 4.63	3.30 4.73	3.34 4.86	3.39 5.00	3,47 5.22	3.58 5,51	3.74 5.96	4.01 6.8	4 .50 8.5	6.09 14.0	18.0 90.0	ف	
3.25 4.50	3,27 4,55	3,30 4,62	4.68	3.35 4.77	3.37 4.88	3.41 4.99	3,47 5,14	3.54 5,37	3.64 5.65	3.79 6.11	4.02 6.9	4.50 8.6	6.0 9 14.0	18.0 90.0	4	
3.31 4.58	3,33 4,63	3.35 4,69	3.36 4.76	3.39 4.86	3.43 4.96	3.47 5.08	3.52 5.23	3.58 5.45	3.68 5.73	3.83 6.18	4.02 7.0	4.50 8.7	6.09 14.0	18.0 90.0	5	
3.36 4.64	3.37 4.70	3.38 4.74	3.40 4.84	9.43 4,94	3.46 5.06	3.50 5.17	3.55 5,32	3.60 5.53	3.68 5.81	3.83 6.26	4.02 7.1	4.50 8.8	6.09 14.0	18.0 90.0	6	
3.38 4.72	3.39 4.78	3.41 4.84	3.42 4.92	3.44 5.01	3,47 5,13	3.52 5.25	3.56 5.40	3.61 5.61	5,88	3.83 6.33	4.02 7.1	4.50 8.9	6.09 14.0	18.0 90.0	7	(= numb
4.75 4.75	3,41 4,83	3.42 4.88	3.44 4.96	3,45 5,06	3,47 5,20	3,52 5,32	5,47	3,61 5,69	3.68 5.95	3.83 6.40	4.02 7.2	4.50 8.9	6.09 14.0	18.0 90.0	8	er of means
3.42 4.81	3,42 4.87	3.44 4.94	3.44 5.02	3.46 5.12	3.47 5.24	9.52 5.36	3.56 5.51	3.61 5.73	5.68 6.00	3,83 6.44	4.02 7.2	4.50 9.0	6.09 14.0	18.0 90.0	9	for range
3.43 4.84	- 3.44 4.91	3.45 4.98	3.46 5.07	4.46 5,15	3.47 5.28	3.52 5.4	5.56	3.61 5.8	3.68 6.0	5.5 5.5	4.02 7.3	4.50 9.0	6.09 14.0	18.0 90.0	0I	being testee
3.44 4.90	3.45 4.96	3.45 5.04	3.46 5.13	3.46 5.24	3.47 5.36	3.52 5.5	3.5C	3.61 5.8	3.68 6.1	5.6 6.6	4.02 7.3	4.50 9.0	6.09 14.0	18.0 90.0	12	-
3.45 4.94	3.46 5.00	3.46 5.08	3.46 5.17	3.46 5.28	3.47 5.42	3.52	3.56	3.61 5.9	3,68 6.2	6.83 6.63	4.02 7.4	4.50 9.1	6.09 14.0	18.0 90.0	14	
3.46 4.97	3.46 5.04	3.46 5.13	3.46 5.22	5.34 5.34	3.47 5.48	3. <u>52</u> 5,6	3.56 5.7	3.61 5.9	3.68 6.2	3.83 6.7	4.02 7.4	4.50 9.2	6.09 14.0	18.0 90.0	16	1
3.47 4.99	3.47 5.06	3.47 5.14	3.47 5.24	3.47 5.38	3.47 5.54	3.52 5.7	3.56 5.8	3.61 6.0	3.68 6.3	3.83 6.7	4.02 7.5	4.50 9.3	6.09 14.0	18.0 90.0	8[
3,47 5.00	3.47 5.07	3.47 5.15	3,48 5.26	3.48 5.39	3,48 5.55	3.52 5.7	5.86 5.8	3.61 6,0	6.3 6.3	5.83 6.8	4.02 7.5	9.3 9.3	6.09 14.0	18.0 90.0	20	

\sim
ц Г
$\alpha = 0.1$
α = .05
ţ.
ିନ
S.
ਤ
أقل مدى معذوي
••
A-5
<u>م</u> دول

8	100	8	\$	30	28	26	24	22	20	19	18	17	16	4	Error
.0.05	.0.0	20.0	.0.0 20	.0.0 20	. <u></u>	20.20	:0:03	.0.2 20.	.0 <u>.</u> 05	.0.0	.05	.0. 10	.0.0 20,	level	Significance
2.77 3.64	2.80 3.71	2.83 3.76	2.86 3.82	2.89 3.89	2.90 3.91	2.91 3.93	2.92 3.96	2.93 3.99	2.95 4.02	2.96 4.05	2.97 4.07	2.98 4.10	3.00 4.13	N	
2.92 3.80	2.95 3.86	2.98 3.92	3.01 3.99	3.04 4.06	3.04 4.08	3.06 4.11	3.07 4.14	3.08 4.17	3.10 4.22	3.11 4.24	3.12 4.27	3.13 4.30	3.15 4.34	4	
3.02 3.90	3.05 3.98	3.08 4.03	3.10 4.10	3.12 4.16	3.13 4.18	3.14 4.21	3.15 4.24	3.17 4.28	3.18 4.33	3.19 4.35	3.21 4.38	3.22 4.41	3.23 4.45	*	
3.09 3.98	3.12 4.06	3.14 4.12	3.17 4.17	3.20 4.22	3.20 4.28	3.21 4.30	3.22 4.33	3.24 4.36	3.25 4.40	3.26 4.43	3.27 4.46	3 28 4.50	3.30 4.54	5	
3.15 4.04	3.18 4.11	3.20 4.17	3.22 4.24	3.25 4.32	3.26 4.34	3.27 4.36	3.28 4.39	3.29 4.42	3.30 4.47	3.31 4.50	3.32 4.53	4.56	3.34 4.60	6	*
3.19 4.09	3.22 4.17	3.24 4.23	3.27 4.30	3,29 4,36	3.30 4.39	3.30 4.41	3.31 4. 44	3.32 4.48	3.34 4.53	3.35 4.56	3.35 4.59	3.36 4.63	3.37 4.67	7	- numb
3.23 4.14	3.26 4.21	3.28 4.27	3.30 4.34	3.32 4.41	4.43	3.34 4.46	3.34 4.49	3.35 4.53	3.36 4.58	3.37 4.61	3.37 4.64	3.38 4.68	3.39 4.72	8	er of mean
3.26 4.17	3.29 4.25	3.31 4.31	3.33 4.37	3.35 4.45	3.35 4.47	3.36 4.50	3.37 4.53	3.37 4.57	3.38 4.61	3.39 4.64	3.3 9 4.68	3.40 4.72	3.41 4.76	9	s for range
3.29 4.20	3.32 4.29	3.33 4.34	3.35 4.41	3.37 4.48	3.37 4.51	3.38 4.53	3.38 4.57	3.39 4.60	3.40 4.65	3.41 4.67	3.41 4.71	3.42 4.75	3.43 4.79	10	being tested
3.34 4.26	3.36 4.35	3.37 4.39	3.39 4.46	3.40 4.54	3.40 4.56	3.41 4.58	3.41 4.62	3.42 4.65	3.43 4.69	3.43 4.72	3.43 4.76	3.44 4.80	3.44 4.84	12	
3.38 4.31	3.40 4.38	, 4.40	3.42 4.51	3.43 4.58	4.60	3.43 4.62	4.64 4.64	3.44 4.68	3.44 4.73	3,44 4.76	3.45 4.79	3.45 4.83	4,3, 4,88	Ŧ	
3.41 4.34	3.42 4.42	3.43 4.47	3. 14 4.54	3,44 4.61	3.45 4.62	4.65 4.65	3.45 4.67	3.45 4.71	3.46 4.76	3,46 4,79	3.46 4.82	3.46 4.86	3.46 4.91	6	
3,44 4,38	4.45 4.45	3.45 4.50	3.46 4.57	3.46 4.63	3.46 4.65	3.46 4.67	3.46 4.70	3.46 4.74	3.46 4.78	3.47 4.81	3.47 4.84	3.47 4.88	3.47 4.93	18	
3.47 4.41	3.47 4.48	3.47 4.53	3.47 4.59	3.47 4.65	3.47 4.67	3.47 4.69	3.47 4.72	3.47 4.75	3.47 4.79	3.47 4.82	3,47 4.85	3.47 4.89	3.47 4.94	20	

۲٥٨

تم جمد الله