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Abstract 

 

 A Dynamic relaxation (DR) program based on finite differences has been 

developed for small and large deflection analysis of rectangular laminated plates 

using first order shear deformation theory (FSDT). The displacements are assumed 

linear through the thickness of the plate. Dynamic Relaxation (DR) method is 

presented for the geometrically linear and nonlinear laterally loaded, rectangular 

laminated plates. The analysis uses the Mindlin plate theory with first order shear 

deformation theory (FSDT) which accounts for transverse shear deformation. A 

computer program has been compiled using a FORTRAN program. The convergence 

and accuracy of the DR solutions for elastic small and large deflection response are 

established by comparison with various exact and approximate solutions. New 

numerical results are generated for uniformly loaded square laminated plates which 

serve to quantify the effects of shear deformation, material anisotropy, fiber 

orientation, and coupling between bending and stretching. 

 It was found that linear analysis seriously over-predicts deflections of plates. 

The shear deflection depends greatly on a number of factors such as length/ thickness 

ratio, degree of anisotropy and number of layers. It was also found that coupling 

between bending and stretching can increase or decrease the bending stiffness of a 

laminate depending on whether it is positive or negative.  

          It was also found that: The convergence and accuracy of the DR solution is 

dependent on several factors including boundary conditions, mesh size and type, 

fictitious densities, damping coefficients, time increment and applied load. Also, the 

DR large deflection program using uniform finite differences meshes can be 

employed in the analysis of different thicknesses for isotropic, orthotropic or 

laminated plates under uniform loads. All the comparison results for simply 

supported (SS4) edge conditions showed that deflection is almost dependent on the 

direction of the applied load or the arrangement of the layers 
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Notations 

 
A Plate length. 

 6,2,1, jiAij  Plate in-plane stiffnesses. 

 5,4, jiAij  Plate transverse shear stiffnesses. 

B Plate breadth. 
 6,2,1, jiBij  Plate coupling stiffnesses. 

 6,2,1, jiDij  Plate flexural stiffnesses. 

E ,E ,G   Longitudinal, transverse, and in-plane shear moduli of 

a lamina. 

G  ,G   Transverse shear moduli in the x – z and y – z planes, 

respectively. 

Zk , Zk+1 Distance of upper and lower surfaces of the lamina 

from the plate mid-plane.  

H Plate thickness. 

K Lamina number. 
2

5

2

4 ,KK  Shear correction factors. 

621 ,, MMM  Stress couples. 

  62

41

2

2

11 ,, MMhEaMM   Dimensionless stress couples. 

N Number of layers. 

621 ,, NNN  Stress resultants. 

  62

31

2

2

11 ,, NNhEaNN   Dimensionless stress resultants. 

q  Transverse pressure. 

 41

2

2  hEqaq  Dimensionless Transverse pressure. 

21,QQ  Transverse shear resultants. 

u ,v In-plane displacements. 

W Deflections. 

 1 whw  Dimensionless deflections. 

x ,y ,z Cartesian co-ordinates. 

t   Time increment. 
ooo

621 ,,   Extensional and shear strain components of plate 

mid-plane. 
oo

45 ,  Transverse shear strain components of plate mid-

plane. 
 ,  Rotations of the original normal to the plate mid-

plane. 

12  Poisson's ratio. 

  ,,,, wvu  In-plane, out-of-plane and rotational fictitious 

densities. 
ooo

621 ,,   Curvature and twist components of plate mid-plane. 

Subscripts              Denote x, y, z, yz, xz, xy. 
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Preface 

The objective of this book is to present a complete and up to date treatment of 

rectangular laminated plates with uniform cross sections. Dynamic relaxation (DR) 

method coupled with finite differences procedures is used for solving governing 

equations of small and large deflection composite plates and their solutions using first 

order shear deformation (FSDT) theory.  Plates are common structural elements of 

most engineering structures, including aerospace, automotive, and civil engineering 

structures, and their study from theoretical and analysis points of view is fundamental 

to the understanding of the behavior of such structures. 

The motivation that led to the writing of the present book has come from many 

years of studying first order shear deformation theory and its analysis by the finite 

differences and dynamic relaxation methods, and also from the fact that there does 

not exist a book that contains a detailed coverage of shear deformation plate theory, 

and finite differences mixed with dynamic relaxation model in one volume. The 

present book fulfills the need for a complete treatment of first order shear 

deformation theory of plates and its solution by a numerical method. 

The material presented is intended to serve as a basis for a critical study of the 

fundamental of elasticity and several branches of solid mechanics including advanced 

mechanics of materials, theories of plates, composite materials and numerical 

methods. Chapter one includes certain properties of laminated plates, and at the end 

of this chapter the most important objectives of the book are cited, this subject may 

be used either as a required reading or as a reference subject. The mathematical 

modeling of the plates for both linear and nonlinear theories is presented in chapter 

two. In chapter three a powerful numerical technique which could be applied for all 

types of analysis i.e. linear and nonlinear, various number and angle of plies, different 

boundary conditions and uniform transverse loading is presented. The present DR 

results are validated with similar results generated by DR and/or other numerical and 

approximate analytical solutions in chapter four. In chapter five, the effects of 

transverse shear deformation, material anisotropy, orientation, and coupling between 
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stretching and bending on the deflections of laminated plates are investigated. 

Chapter six is dedicated to the conclusions and suggestions for further research. 

The book is suitable as a textbook for a first course on theory of plates and 

dynamic relaxation technique in civil and mechanical engineering curricula. It can be 

used as a reference by engineers and scientists working in industry and academic 

institutions. 

 

 

 

 

 

 

 



 

 

  

 

CHAPTER     

Historical Background 

    Introduction   

Composites were first considered as structural materials a little more than half 

a century ago. And from that time to now, they have received increasing attention in 

all aspects of material science, manufacturing technology, and theoretical analysis. 

The term composite could mean almost anything if taken at face value, since 

all materials are composites of dissimilar subunits if examined at close enough 

details. But in modern materials engineering, the term usually refers to a matrix 

material that is reinforced with fibers. For instance, the term "FRP" which refers to 

Fiber Reinforced Plastic usually indicates a thermosetting polyester matrix containing 

glass fibers, and this particular composite has the lion's share of today commercial 

market. 

 Many composites used today are at the leading edge of materials technology, 

with performance and costs appropriate to ultra-demanding applications such as 

space craft. But heterogeneous materials combining the best aspects of dissimilar 

constituents have been used by nature for millions of years. Ancient societies, 

imitating nature, used this approach as well: The book of Exodus speaks of using 

straw to reinforce mud in brick making, without which the bricks would have almost 

no strength. Here in Sudan, people from ancient times dated back to Merowe 

civilization, and up to now used zibala mixed with mud as a strong building material. 

 As seen in Table 1.1 below, which is cited by David Roylance [54], the fibers 

used in modern composites have strengths and stiffnesses far above those of 

traditional structural materials. The high strengths of the glass fibers are due to 

processing that avoids the internal or surface flaws which normally weaken glass, and 

the strength and stiffness of polymeric aramid fiber is a consequence of the nearly 

perfect alignment of the molecular chains with the fiber axis.   



 

 

  

 

Table 1.1 Properties of composite reinforcing fibers  

Material 
E 

(GN/m
 
) 

b  

(GN/m
 
) 

b  

(%) 

  

(Mg/m
 
) 

/E  

(MN.m/kg) 

 /b  

(MN.m/kg) 

E-glass   .   .   .   .     .   .   

S-glass   .   .   .   .     .   .  

Aramid      .   .   .       .  

Boron      .   .   .        .   

H S 

graphite 
     .   .   .        .  

H M 

graphite 
     .   .   .        .  

 

Where E is Young's modulus, b  is the breaking stress, b   is the breaking strain, and 

  is the mass density. 

Of course, these materials are not generally usable as fibers alone, and 

typically they are impregnated by a matrix material that acts to transfer loads to the 

fibers, and also to protect the fibers from abrasion and environmental attack. The 

matrix dilutes the properties to some degree, but even so very high specific (weight – 

adjusted) properties are available from these materials. Polymers are much more 

commonly used, with unsaturated Styrene – hardened polyesters having the majority 

of low – to – medium performance applications and Epoxy or more sophisticated 

thermosets having the higher end of the market. Thermoplastic matrix composites are 

increasingly attractive materials, with processing difficulties being perhaps their 

principal limitation. 

Composites possess two desirable features: the first one is high strength to 

weight ratio, and the second is their properties that can be tailored through variation 

of the fiber orientation and stacking sequence which gives the designers a wide 

spectrum of flexibility. The incorporation of high strength, high modulus and low-

density filaments in a low strength and a low modulus matrix material is known to 



 

 

  

 

result in a structural composite material with a high strength / weight ratio. Thus, the 

potential of a two-material composite for use in aerospace, under-water, and 

automotive structures has stimulated considerable research activities in the theoretical 

prediction of the behavior of these materials. One commonly used composite 

structure consists of many layers bonded one on top of another to form a high-

strength laminated composite plate. Each lamina is fiber- reinforced along a single 

direction, with adjacent layers usually having different filament orientations. For 

these reasons, composites are continuing to replace other materials used in structures 

such as those mentioned earlier. In fact composites are the potential structural 

materials of the future as their cost continues to decrease due to the continuous 

improvements in production techniques and the expanding rate of sales.    

    Macro and Micro Structure of Composites 

 There are many situations in engineering where no single material will be 

suitable to meet a particular design requirement. However, two materials in 

combination may possess the desired properties and provide a feasible solution to the 

materials selection problem. A composite can be defined as a material that is 

composed of two or more distinct phases, usually a reinforced material supported in a 

compatible matrix, assembled in prescribed amounts to achieve specific physical and 

chemical properties.   

In order to classify and characterize composite materials, distinction between 

the following two types is commonly accepted; see Vernon [1], Jan Stegmann and 

Erik Lund [5], and David Roylance [54]. 

 . Fibrous composite materials: Which consist of high strength fibers 

embedded in a matrix.  The functions of the matrix are to bond the fibers 

together to protect them from damage, and to transmit the load from one 

fiber to another. See Fig.1.1. 

 . Particulate composite materials: This composed of particles encased within a 

tough matrix, e.g. powders or particles in a matrix like ceramics. 



 

 

  

 

 

Fig. 1.1 Structure of a fibrous composite 

 

 In this thesis the focus will be on fiber-reinforced composite materials, as they 

are the basic building element of a rectangular laminated plate structure. Typically, 

such a material consists of stacks of bonded-together layers (i.e. laminas or plies) 

made from fiber-reinforced material. The layers will often be oriented in different 

directions to provide specific and directed strengths and stiffnesses of the laminate. 

Thus, the strengths and stiffnesses of the laminated fiber-reinforced composite 

material can be tailored to the specific design requirements of the structural element 

being built. 

   1.2.1 Mechanical Properties of a Fiber-Reinforced Lamina              

           Composite materials have many mechanical characteristics, which are 

different from those of conventional engineering materials such as metals. More 

precisely, composite materials are often both inhomogeneous and non-isotropic. 

Therefore, and due to the inherent heterogeneous nature of composite materials, they 

can be studied from a micromechanical or a macro-mechanical point of view. In 

micromechanics, the behavior of the inhomogeneous lamina is defined in terms of the 

constituent materials; whereas in macro-mechanics the material is presumed 

homogeneous and the effects of the constituent materials are detected only as 

averaged apparent macroscopic properties of the composite material. This approach is 

generally accepted when modeling gross response of composite structures. The 

micromechanics approach is more convenient for the analysis of the composite 

material because it studies the volumetric percentages of the constituent materials for 



 

 

  

 

the desired lamina stiffnesses and strengths, i.e. the aim of micromechanics is to 

determine the moduli of elasticity and strength of a lamina in terms of the moduli of 

elasticity, and volumetric percentage of the fibers and the matrix. To explain further, 

both the fibers and the matrix are assumed homogeneous, isotropic and linearly 

elastic. 

The fibers may be oriented randomly within the material, but it is also possible 

to arrange for them to be oriented preferentially in the direction expected to have the 

highest stresses. Such a material is said to be anisotropic (i.e. different properties in 

different directions), and control of the anisotropy is an important means of 

optimizing the material for specific applications. At a microscopic level, the 

properties of these composites are determined by the orientation and distribution of 

the fibers, as well as by the properties of the fiber and matrix materials. 

Consider a typical region of material of unit dimensions, containing a volume 

fraction, Vf of fibers all oriented in a single direction. The matrix volume fraction is 

then, fm VV 1  . This region can be idealized by gathering all the fibers together, 

leaving the matrix to occupy the remaining volume. If a stress l  is applied along the 

fiber direction, the fiber and matrix phases act in parallel to support the load. In these 

parallel connections the strains in each phase must be the same, so the strain 
l  in 

the fiber direction can be written as: 

                                          mfl                                                                              .    

Where the subscripts L, f and m denote the lamina, fibers and matrix respectively. 

The forces in each phase must add to balance the total load on the material. Since the 

forces in each phase are the phase stresses times the area (here numerically equal to 

the volume fraction), we have  

                                mlmflfmmffl VEVEVV                                          .   

The stiffness in the fiber direction is found by dividing the strain: 

                                mmff

l

l
l VEVEE 




                                                                     .   



 

 

  

 

(Where E is the longitudinal Young's modulus)  

This relation is known as a rule of mixtures prediction of the overall modulus in 

terms of the moduli of the constituent phases and their volume fractions. 

 Rule of    mixtures estimates for strength proceed along lines similar to those for 

stiffness. For instance consider a unidirectional reinforced composite that is strained 

up to the value at which the fiber begins to fracture. If the matrix is more ductile than 

the fibers, then the ultimate tensile strength of the lamina in Eqn. (1.2) will be 

transformed to: 

                                     f

f

mf

u

f

u

l VV  1                                                                     .   

Where the superscript u denotes an ultimate value, and f

m  is the matrix stress when 

the fibers fracture as shown in fig.1.2. 

 

 

Fig .1.2 Stress-strain relationships for fiber and matrix 

 

It is clear that if the fiber volume fraction is very small, the behavior of the lamina is 

controlled by the matrix.  

This can be expressed mathematically as follows: 

                                      f

u

m

u

l V 1                                                                                  .   



 

 

  

 

minf VV 0

If the lamina is assumed to be useful in practical applications, then there is a 

minimum fiber volume fraction that must be added to the matrix. This value is 

obtained by equating equations (1.4) and (1.5) i.e. 

                              
f

m

u

m

u

f

f

m

u

m

minV 







                                                                               .   

The variation of the strength of the lamina with the fiber volume fraction is 

illustrated in Fig.1.3. It is obvious that when                               the strength of the 

lamina is dominated by the matrix deformation which is less than the matrix strength. 

But when the fiber volume fraction exceeds a critical value (i.e. Vf > VCritical ), Then 

The lamina gains some strength due to the fiber reinforcement. 

 

Fig. 1.3 Variation of unidirectional lamina strength with the fiber volume 

fraction 
 

 The micromechanical approach is not responsible for the many defects which 

may arise in fibers, matrix, or lamina due to their manufacturing. These defects, if 

they exist include misalignment of fibers, cracks in matrix, non-uniform distribution 

of the fibers in the matrix, voids in fibers and matrix, delaminated regions, and initial 

stresses in the lamina as a result of its manufacture and further treatment.  The above 

mentioned defects tend to propagate as the lamina is loaded causing an accelerated 

rate of failure. The experimental and theoretical results in this case tend to differ. 



 

 

  

 

Hence, due to the limitations necessary in the idealization of the lamina components, 

the properties estimated on the basis of micromechanics should be proved 

experimentally. The proof includes a very simple physical test in which the lamina is 

considered homogeneous and orthotropic. In this test, the ultimate strength and 

modulus of elasticity in a direction parallel to the fiber direction can be determined 

experimentally by loading the lamina longitudinally. When the test results are plotted, 

as in Fig.1.4 below, the required properties may be evaluated as follows: - 

1212111 /    ;    /   ;   /    APE uu  

 

Fig.1.4 Unidirectional lamina loaded in the fiber-direction 

 

Similarly, the properties of the lamina in a direction perpendicular to the fiber-

direction can be evaluated in the same procedure. 

      Analytical Modeling of Composite Laminates 

 

 The properties of a composite laminate depend on the geometrical arrangement 

and the properties of its constituents. The exact analysis of such structure – property 

relationship is rather complex because of many variables involved. Therefore, a few 



 

 

  

 

simplifying assumptions regarding the structural details and the state of stress within 

the composite have been introduced. 

  It has been observed, that the concept of representative volume element and 

the selection of appropriate boundary conditions are very important in the discussion 

of micromechanics. The composite stress and strain are defined as the volume 

averages of the stress and strain fields, respectively, within the representative volume 

element. By finding relations between the composite stresses and the composite 

strains in terms of the constituent properties expressions for the composite moduli 

could be derived. In addition, it has been shown that, the results of advanced methods 

can be put in a form similar to the rule of mixtures equations. 

 Prediction of composite strengths is rather difficult because there are many 

unknown variables and also because failure critically depends on defects. However, 

the effects of constituents including fiber – matrix interface on composite strengths 

can be qualitatively explained. Certainly, failure modes can change depending on the 

material combinations.  Thus, an analytical model developed for one material 

combination cannot be expected to work for a different one. Ideally a truly analytical 

model will be applicable to material combination. However, such an analytical model 

is not available at present. Therefore, it has been chosen to provide models each of 

which is applicable only to a known failure mode. Yet, they can explain many of the 

effects of the constituents. (refer to Ref. [2]). 

    Literature Review in the Theories of Laminated Plates  

   From the point of view of solid mechanics, the deformation of a plate 

subjected to transverse loading consists of two components: flexural deformation due 

to rotation of cross-sections, and shear deformation due to sliding of sections or 

layers. The resulting deformation depends on two parameters: the thickness to length 

ratio and the ratio of elastic to shear moduli. When the thickness to length ratio is 

small, the plate is considered thin, and it deforms mainly by flexure or bending; 

whereas when the thickness to length and the modular ratios are both large, the plate 



 

 

   

 

deforms mainly through shear. Due to the high ratio of in-plane modulus to 

transverse shear modulus, the shear deformation effects are more pronounced in the 

composite laminates subjected to transverse loads than in the isotropic plates under 

similar loading conditions. 

 The three-dimensional theories of laminates in which each layer is treated as 

homogeneous anisotropic medium (see Reddy [17]) are intractable as the number of 

layers becomes moderately large. Thus, a simple two-dimensional theory of plates 

that accurately describes the global behavior of laminated plates seems to be a 

compromise between accuracy and ease of analysis. 

 Putcha and Reddy [10] classified the two-dimensional analyses of laminated 

composite plates into two categories: (1) the classical lamination theory, and (2) shear 

deformation theories. In both theories it is assumed that the laminate is in a state of 

plane stress, the individual lamina is linearly elastic, and there is perfect bonding 

between layers. The classical laminate theory (CLPT), which is an extension of the 

classical plate theory (CPT) applied to laminated plates was the first theory 

formulated for the analysis of laminated plates by Reissner and Stavsky [37] in 1961, 

in which the Kirchhoff-Love assumption that normal to the mid-surface before 

deformation remain straight and normal to the mid-surface after deformation is used 

(see Fig. 1.5), but it is not adequate for the flexural analysis of moderately thick 

laminates. However, it gives reasonably accurate results for many engineering 

problems i.e. thin composite plates, as stated by Srinivas and Rao [11] and Reissner 

and Stavsky [37].  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

   

 

 
 

 

Fig. 1.5    Assumed deformation of the transverse normal in various 

displacement base plate theories. 

 



 

 

   

 

This theory ignores the transverse shear stress components and models a laminate as 

an equivalent single layer. The classical laminated plate theory (CLPT) under-

predicts deflections as proved by Turvey and Osman [6], [  ] and [   , Reddy [17], 

Osman and Osama [61] – [  ] due to the neglect of transverse shear strain. The errors 

in deflections are even higher for plates made of advanced  filamentary composite 

materials like graphite -epoxy and boron-epoxy, whose elastic modulus to shear 

modulus ratios are  very large (i.e. of the order of    to   , instead of  .  for typical 

isotropic materials). However, these composites are susceptible to thickness effects 

because their effective transverse shear moduli are significantly smaller than the 

effective elastic modulus along the fiber direction. This effect has been confirmed by 

Pagano [40] who obtained analytical solutions of laminated plates in bending based 

on the three-dimensional theory of elasticity. He proved that classical laminated plate 

theory (CLPT) becomes of less accuracy as the side to thickness ratio decreases. In 

particular, the deflection of a plate predicted by CLPT is considerably smaller than 

the analytical value for side to thickness ratio less than 10. These high ratios of elastic 

modulus to shear modulus render classical laminate theory as inadequate for the 

analysis of composite plates. 

 Many theories which account for the transverse shear and normal stresses are 

available in the literature (see, for example Mindlin [43]) .These are too numerous to 

review here. Only some classical papers and those which constitute a background for 

the present thesis will be considered. These theories are classified according to Phan 

and Reddy [9] into two major classes on the basis of the assumed fields as :( 1) stress 

based theories, and (2) displacement based theories. The stress-based theories are 

derived from stress fields, which are assumed to vary linearly over the thickness of 

the plate: 
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(Where Mi   is the stress couples, h is the plate thickness, and z is the distance of the 

lamina from the plate mid-plane) 



 

 

   

 

The displacement-based theories are derived from an assumed displacement field as: 
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Where uo , vo and wo are the displacements of the middle plane of the plate. 

The governing equations are derived using the principle of minimum total potential 

energy. The theory used in the present work comes under the class of displacement-

based theories. Extensions of these theories which include the linear terms in z in u 

and v and only the constant term in w, to account for higher -order variations and to 

laminated plates, can be found in the work of Yang, Norris and Stavsky [38], 

Whitney and Pagano [44] and Phan and Reddy [9]. In this theory which is called 

first-order shear deformation theory (FSDT), the transverse planes, which are 

originally normal and straight to the mid-plane of the plate, are assumed to remain 

straight but not necessarily normal after deformation, and consequently shear 

correction factor are employed in this theory to adjust the transverse shear stress, 

which is constant through thickness (see Fig. 1.5). Recently Reddy [17] and Phan and 

Reddy [9] presented refined plate theories that use the idea of expanding 

displacements in the powers of thickness co-ordinate. The main novelty of these 

works is to expand the in-plane displacements as cubic functions of the thickness co-

ordinate, treat the transverse deflection as a function of the x and y co-ordinates, and 

eliminate the functions u  ,u  ,v  and v  from equation (1.8) by requiring that the 

transverse shear stresses be zero on the bounding planes of the plate. Numerous 

studies involving the application of the first-order theory to bending analysis can be 

found in the works of Reddy [22], and Reddy and Chao [23]. 

 In order to include the curvature of the normal after deformation, a number of 

theories known as Higher-order Shear Deformation Theories  (HSDT) have been 

devised in which the displacements are assumed quadratic or cubic through the 

thickness of the plate. In this aspect, a variationally consistent higher-order theory 

which not only accounts for the transverse shear deformation but also satisfies the 



 

 

   

 

zero transverse shear stress conditions on the top and bottom faces of the plate and 

does not require shear correction factors was suggested by Reddy [17]. Reddy's 

modifications consist of a more systematic derivation of displacement field and 

variationally consistent derivation of the equilibrium equations. The refined laminate 

plate theory predicts a parabolic distribution of the transverse shear stresses through 

the thickness, and requires no shear correction coefficients. 

 In the non-linear analysis of plates considering higher-order theory (HSDT), 

shear deformation has received considerably less attention compared with linear 

analysis. This is due to the geometric non-linearity which arises from finite 

deformations of an elastic body and which causes more complications in the analysis 

of composite plates. Therefore fiber-reinforced material properties and lamination 

geometry have to be taken into account. In the case of anti-symmetric and 

unsymmetrical laminates, the existence of coupling between bending and stretching 

complicates the problem further.  

 Non-linear solutions of laminated plates using higher-order theories have been 

obtained through several techniques, i.e. perturbation method as in Ref. [45], finite 

element method as in Ref. [10], the increment of lateral displacement method as in 

Ref. [18], and the small parameter method as in Ref.     . 

 In the present work, a numerical method known as Dynamic Relaxation (DR) 

coupled with finite differences is used. The DR method was first proposed in 1960s; 

see Rushton [13], Cassell and Hobbs [52], Day [53]. In this method, the equations of 

equilibrium are converted to dynamic equation by adding damping and inertia terms. 

These are then expressed in finite difference form and the solution is obtained 

through iterations. The optimum damping coefficient  and time increment used to 

stabilize the solution depend on a number of factors including the stiffness matrix of 

the structure, the applied load, the boundary conditions and the size of the mesh used, 

etc… 

 Numerical techniques other than the DR include finite element method, which 

is widely used in the literature. In a comparison between the DR and the finite 



 

 

   

 

element method, Aalami [56] found that the computer time required for finite element 

method is eight times greater than for DR analysis, whereas the storage capacity for 

finite element analysis is ten times or more than that for DR analysis. This fact is 

supported by Putcha and Reddy [10] who noted that some of the finite element 

formulations require large storage capacity and computer time. Hence, due to less 

computations and computer time involved in the present study, the DR method is 

considered more efficient than the finite element method. In another comparison 

Aalami [56] found that the difference in accuracy between one version of finite 

element and another may reach a value of 10% or more, whereas a comparison 

between one version of finite element method and DR showed a difference of more 

than 15%. Therefore, the DR method can be considered of acceptable accuracy. The 

only apparent limitation of DR method is that it can only be applied to limited 

geometries. However, this limitation is irrelevant to rectangular plates which are 

widely used in engineering applications. 

     The Objectives  of the Present Study 

 The present work involves a comprehensive study of the following objectives, 

which have been achieved over a period of three years: 

 . A survey of various plate theories and techniques used to predict the response of 

composite plates to static lateral loading. 

 . The development of a theoretical model capable of predicting stresses and 

deformations in a laminated plate in which the shear deformation is considered for 

both linear and non-linear deflections. 

 . The development and application of the dynamic relaxation technique for the 

analysis of rectangular laminated plates subjected to uniform lateral loading. 

 . Investigation of the accuracy of the theoretical model through a wide range of 

theoretical comparisons. 

 . Generation of   results based on first order shear deformation theory (FSDT) for 

the comparison between linear and non-linear analyses. 

 . Study the factors affecting the deflection of a laminated plate. 



 

 

   

 

CHAPTER     

Mathematical Formulation of Plates  
 

There are two main theories of laminated plates depending on the magnitude of 

deformation resulting from loading a plate and these are known as the linear and 

nonlinear theories of plates. The difference between the two theories is that the 

deformations are small in the linear theory, whereas they are finite or large in the 

nonlinear theory.  

2.1 Linear Theory 

 2.1.1 Assumptions  

 - The plate shown in Fig 2.1 is constructed of an arbitrary number of orthotropic 

layers bonded together as in Fig 2.2.  However, the orthotropic axes of material 

symmetry of an individual layer need not coincide with the axes of the plate. 

 - The displacements u, v, and w are small compared to the plate thickness. 

 - In-plane displacements u and v are linear functions of the z-coordinate. 

 - Each ply obeys Hook’s law. 

 - The plate is flat and has constant thickness. 

 - There are no body forces such as gravity force. 

 - The transverse normal stress is small compared with the other stresses and is 

therefore neglected. 

 
 Fig. 2.1 A plate showing dimensions and deformations 

 



 

 

   

 

 
Fig. 2.2 Geometry of an n-Layered laminate 

 

      Equations of Equilibrium 

The stresses within a body vary from point to point. The equations governing 

the distribution of the stresses are known as the equations of equilibrium. Consider 

the static equilibrium state of an infinitesimal parallel piped with surfaces parallel to 

the co-ordinate planes. The resultants stresses acting on the various surfaces are 

shown in Fig. 2.3. Equilibrium of the body requires the vanishing of the resultant 

forces and moments.  

 
 

Fig.2.3 Stresses acting on an infinitesimal element 



 

 

   

 

Where the dash indicates a small increment of stress e.g.   dx
x


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The forces in the direction of x are shown in Fig.2.4. The sum of these forces gives 

the following equation.  
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By summing forces in the directions y and z, the following two equations are 

obtained: 
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Fig.2.4 Stresses acting in the x–direction. 

 

In order to facilitate the analysis of a multi-layered plate as a single layer plate, stress 

resultants and stress couples are introduced and defined as follows: 
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Where zk
 
and zk+1 are the distances of top and bottom surfaces of the k

th 
ply 

from the middle plane of the plate as shown in Fig. 2.2. The stress resultants and 

stress couples are clearly shown in Fig. 2.5 and 2.6 respectively. 

When integrating Eqn. (2.1) term by term across each ply, and summing over the 

plate thickness, it will be converted to: 
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Fig. 2.5 Nomenclature for stress resultants 

 
Fig. 2.6 Nomenclature for stress couples 

 



 

 

   

 

In order to introduce the stress resultants given in Eqn. (2.4), summation can be 

interchanged with differentiation in the first two terms. 
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The first and second bracketed terms, according to Eqn. (2.4), are N  and N  

receptively. The last term must vanish because between all plies the inter-laminar 

shear stresses cancel each other out, and the top and bottom surfaces of the plate are 

assumed shear stress free. 

The first integrated equation of equilibrium can then be written in the following form: 
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Similarly, Eqn. (2.2) and (2.3) can be integrated to give:  
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The equations of moment equilibrium can be obtained by multiplying Eqn.(2.1) by z 

and integrating with respect to z over plate thickness which  yields the following 

equation: 
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When integration and summation are interchanged with differentiation and the stress 

couples given in Eqn. (2.4) are introduced, the first two terms become                           
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     
 

  





















n

k

Z

z

n

k

Z

z

Z

z

Z

Z

k

k

k

k

k

k

k

k
dzzzdz

z
1 1

55
5

1 1 1

1 


 

The first term on the right hand side of the above equation represents the moments of 

all inter-lamina stresses between plies which again must cancel each other out. The 

last term, according to Eqn. (2.5), is – Q . Hence the integrated moment equilibrium 

equation is: 
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When Eqn. (2. ) is treated similarly, it yields the following equation: 
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Hence, the equilibrium equations of the plate are the five equations, i.e. Eqns. (2.6) to 

  .   . 

      The Strain-Displacement Equations 

Fig.2.7 shows a small element ABCD in the Cartesian co-ordinates x, y which 

deforms to DCBA   . The deformations can be described in terms of extensions of 

lines and distortion of angles between lines. From Fig.2.7, it is possible to write 

expressions for linear and shear strains as follows: 
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x

v
xx




  tan  

                     
y

u
yy




  tan  

Hence  the shear strain which is the change in the right angle ∟ BAD is:  
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For a three-dimensional problem, the following strains may be added: 
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The displacements, which comply with assumption (3), are: - 
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Where u
o
 ,v

o
 ,and w

o
 are the displacements of the middle surface of the plate. 

When Eqn. (2.1 ) is differentiated and substituted in Eqns (2.11 – 2.16), the 

following strain displacement relations are obtained. 

 
 

Fig.2.7 Small deformation of an elastic element 
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2.1.4 The Constitutive Equations 

 The constitutive equations of an individual lamina, k, are of the form:  
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Then Eqn.(2.19) becomes:- 
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Substitute Eqn. (2.20) in Eqn. (2.4) to give: 
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Eqn. (2.21) can be written in the form:- 
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Similarly using Eqn. (2.20) in Eqn. (2. 4) gives: -  
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Eqn. (2.23) can be written in the form: 
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 Where Aij ,Bij , and  Dij  ,(i, j=      ) are respectively the membrane rigidities, 

coupling rigidities and flexural rigidities of the plate . The rigidities  Bij display 

coupling between transverse bending and in-plane stretching. The coupling will 

disappear when the reference plane is taken as the plate mid-plane for symmetric 

laminate .The rigidities are calculated as follows:- 
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Hence, the laminate constitutive equations can be represented in the form: 
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Where Aij (i,j =4,5) denote the stiffness coefficients , and are calculated as follows:- 
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Where Ki ,Kj are the shear correction factors. 

2.1.5 Boundary Conditions 

The proper boundary conditions are those which are sufficient to guarantee a 

unique solution of the governing equations. To achieve that goal, one term of each of 

the following five pairs must be prescribed along the boundary. 

                                  w  or  Q ;    or  M;   or  M; u  or N ; u  or  N ssnnsns  nn        ( .  ) 

Where the subscripts n and s indicate the normal and tangential directions 

respectively. The boundary conditions used in this thesis are given in Appendix C. 
 

2.2 Nonlinear theory 

2.2.1 Assumptions 

  The assumptions made in the nonlinear theory of laminated plates are the same  



 

 

   

 

as those listed for linear analysis, section 2.1.1, except for assumption (2), which is 

concerned with the magnitude of deformations. In the nonlinear theory, in-plane 

displacements are again small compared to the thickness of the plate, but the out-of-

plane displacement is not.  

      Equations of equilibrium 

The derivation of the equilibrium equations for finite deformations can be 

found in Refs. [3,6,7,8] and can be written in the following form:    
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The equilibrium equations of a body undergoing large deformations are given 

in Eqns. (2.30) – (2.32) .Assuming the in-plane displacement gradients are small 

compared to unity and neglecting the transverse normal stress 3 , Eqns. (2.30)
 __

 

(2.32) can be written in a simpler form as follows: 
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Integrating Eqns. (2.33) and (2.34) over the thickness of the plate as in section 2.1.2 

gives Eqns. (2.6) and (2.7) as before. When Eqn. (2.35) is integrated, it gives:- 
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This can be rewritten in the following form: 
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However, similar to Eqns. (2.6) and (2.7), the last two terms in Eqn. (2.37) must be 

zero, and so the above equation reduces to: 
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Multiplying Eqns. (2.33) and (2.34) by z and again integrating over the thickness of 

the plate to obtain Eqns. (2.9) and (2.10). 

Hence, the governing equations of the plate are the following five Eqns. (2.6), (2.7), 

  .     (2.9), and (2.10). It should be noted that the shear deformation theory derived 

above reduces to classical laminated theory when the transverse shear strains are 

eliminated by setting: 
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      Strain-Displacement Equations: 

 The in-plane displacements u and v are small, whereas the deflection w is of 

the order of half the plate thickness or more. This assumption implies that:  
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Consequently, the expressions for finite strains can be simplified as follows:- 
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The in-plane displacements are again assumed to vary linearly through the thickness 

of the plate as described for linear analysis i.e.:-  
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When these displacements are substituted into Eqn. (2.40), the following relations are 

obtained:-  
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      Constitutive Equations 

 These are the same as Eqns. ( .  ), and ( .  ) of sections  . . . 

2.2.5 Boundary Conditions 

  These are the same as Eqn. ( .  ) of sections  . . . 

2.3 Transformation Equations  

          2.3.1 Stress-Strain Equations 

 For linear elastic materials, the relation between the stress and strain is as 

follows: 

                                    1,2,...,6) j(i,        jiji C                                                                    

( .  ) 

Where the first subscript i refers to the direction of the normal to the face on which 

the stress component acts, and the second subscript j corresponds to the direction of 

the stress. 

When an orthotropic body is in a state of plane stress, the non-zero components 

of the stiffness tensors C
/
ij are: 
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Where E  and E  are Young's moduli in directions 1 and 2 respectively. 
ij  is 

Poisson's ratio of transverse strain in the j-direction when stressed in the i-direction 

i.e.  
ijij /    When  i   and all other stress are zero. 

 2.3.2 Transformation of Stresses and Strains 

  Consider a co-ordinate system rotated anticlockwise through an angle θ  the 

rotated axes are denoted by  /
,  

/
 as in Fig.2.8. Consider the equilibrium of the small 

element ABC shown. Resolving forces parallel to 1
/
 axis gives: 
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On rearranging, the expression reduces to: 
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Resolving forces parallel to 2
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This can then be written in the form: 
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Fig.2.8 Stresses on a triangular element 

 



 

 

   

 

The same procedure is applied to obtain the other transformed stresses which may be 

written in a matrix form as: 
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The strains are transformed similarly: 
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2.3.3 Transformation of the Elastic Moduli  

In general the principle material axes (1
/
,  

/
   

/
) are not aligned with the 

geometric axes (1, 2, 3) as shown in Fig.2.9 for a unidirectional continuous fiber 

composite. It is necessary to be able to relate the stresses and strains in both co-

ordinate systems. This is achieved by multiplying Eqn. (2.50) by   1
M  i.e.: 

 

 

Fig.2.9 A generally orthotropic plate 
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Substitute Eqn. (2.44) in Eqn. (2.52) to obtain: 
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Then, substitute Eqn. (2.51) in Eqn.   .    
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Eqn. (2.55) gives the constitutive equation for a generally orthotropic lamina in 

which the material axes and geometric axes are not aligned. The constants Cij  are as 

follows: 
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Where  m=cosθ      and   n=sinθ   

 

 



 

 

   

 

CHAPTER (3) 

Numerical Technique 

 
In the present work, finite differences coupled with dynamic relaxation (DR) 

Method, which is a numerical technique, is used. The DR method was first proposed 

and developed in 1960, see Refs. [13], [52], and [53]. In this method, the equations of 

equilibrium are converted to dynamic equations by adding damping and inertia terms. 

These are then expressed in finite difference form and the solution is obtained by an 

iterative procedure as explained below.  

  

    Dynamic Relaxation (DR) Formulation: 

 The DR formulae begin with the dynamic equation, which can be written as: 
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u is the velocity at the middle of the time increment, which can be 

approximated by the mean of the velocities before and after the time increment t , 

i.e. 
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Hence equation (3.2) can be expressed as: 
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Equation (3.3) can then be arranged to give the velocity after the time interval, t : 
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The displacement at the middle of the next time increment can be determined by 

integrating the velocity, so that: 
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The formulation is completed by computing the stress resultants and stress 

couples from the known displacement field. The iterative procedure begins at time 

t=0 with all initial values of the velocities, displacements, and stresses equal to zero 

or any suitable values. In the first iteration, the velocities are obtained from equation 

(3.4), and the displacements from equation (3.5).  After the satisfaction of the 

displacement boundary conditions, the stress resultants and stress couples are 

computed and the appropriate boundary conditions for stresses are applied. 

Subsequent iterations follow the same steps. The iterations continue until the desired 

accuracy is achieved. 

 

3.2 The Plate Equations 
 

 3.2.1 Dimensional Plate Equations  

 The equations concerning the analysis of plates in bending (i.e. Eqns.   .     

  . ),   .      .  ), and (2.38) are derived in chapter 2.  

 



 

 

   

 

3.2.2 Non-Dimensional Plate Equations  

The plate equations can be written in non-dimensionalized form as follows: 
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Substituting Eqn. (3.6) into Eqns. (2.     .      .     .  ),
 
  .  ) the non-

dimensionalized dynamic plate equations are obtained. 

In the following equations, the primes are omitted: 
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The next step is to transform the differential equations into finite difference equations.  

3.3 The Finite Difference Approximation  

3.3.1 Interpolating Function F (x, y) 

It can be shown by using Taylor's series that the first and second derivatives of  



 

 

   

 

a function F(x, y) at an arbitrary node i, j shown in figure (3. ) can be written as 

follows: 
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3.1 Finite difference mesh for an interpolating function F(x,y) with two 

independent  variables x,y 

 

Also   /),( yjiF   And   /),( 22 yjiF  can be obtained similarly. 

  

3.4 Finite Difference form of Plate Equations  

      Velocity Equations  

According to equation (3.4) and from the equations of motion of the plate, i.e. 

Eqns. (3.7)
 __ 

(3.11) , the velocities are determined as follows :- 

     
 

 






 





jiF

ji

t
ji

dt

du
kkji

dt

du
u

u

nuun ,
,

,11),(
1

*1*


                         .         

     
 

 






 





jiF

ji

t
ji

dt

dv
kkji

dt

dv
v

v

nvvn ,
,

,11),(
1

*1*


                         .  ) 

     
 

 






 





jiF

ji

t
ji

dt

dw
kkji

dt

dw
w

w

nwwn ,
,

,11),(
1

*1*


                                     .    



 

 

   

 

F

     
 

 










 





jiF

ji

t
ji

dt

d
kkji

dt

d
nn ,

,
,11),(

1

*1*








                         .    

     
 

 










 





jiF

ji

t
ji

dt

d
kkji

dt

d
nn ,

,
,11),(

1

*1*








                       .                

Where   
 ji

tk
k

f

f

f
,2






 and f  is denoted by u, v, w,
dx

dw  or . 

In Eqns. (3.15)
 __

   .     F (i,j) , F (i,j), F (i,j), F (i,j) and  F (i,j) are the finite 

difference approximations of  the terms on the left hand side of the dynamic Eqns. 

  .   
__ 

(3.11), i.e. 

 

 

 

  

      Displacement Equations: 

       The displacements are obtained using the velocities that are explained in Eqns. 

(3.15) to (3.19) as follows: 
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Where   can be denoted by  u, v, w,
dx

dw
or  . 
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               Stress Resultants and Couples Equations: 

The finite difference approximations of the stress resultants and stress couples 

can be obtained using Eqns. (2.26) and (2.27) in chapter 2 as stated below 
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3.4.4 Estimation of the Fictitious Variables: 

 To compute the derivatives of displacements, stress resultants and stress 

couples at the boundaries of a plate, fictitious nodes are considered by extending the 

finite difference mesh beyond the boundaries as shown in Fig.3. . The values of the 

variables at the fictitious nodes are known as fictitious values. The fictitious values 

are estimated in order to eliminate the third derivative of the interpolating function, 

which is quadratic as explained in section  . . . 

Referring to Fig.3.3, the fictitious values at the points defined by (1,j) can be obtained 

by extrapolation as follows : 
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Where f in Eqn. (3.34) can be replaced by u, v, w,   and , . 

3.5 The DR Iterative Procedure  

  In the DR technique, explained in the previous sections of this chapter, the 

static equations of the plate have been converted to dynamic equations i.e. Eqns. (3.7)
 

__
 (3.11). Then the inertia and damping terms are added to all of these equations. The 

 



 

 

   

 

 
 

Fig.3.2 Fictitious nodes outside the plate boundaries 

 

iterations of the DR technique can then be carried out in following procedures: 

1. Set all initial values of variables to zero. 

2. Compute the velocities from Eqns. (3.1 )
 __

   .  ). 

 . Compute the displacements from Eqn.  (3.2 ). 

4. Apply suitable boundary conditions for the displacements. 

5. Compute the stress resultants and stress couples from Eqns. (3.2 )
 
to (3.  ). 

 . Apply the appropriate boundary conditions for the stress resultants and stress 

couples. 

 . Check if the convergence criterion is satisfied, if it is  not repeat the  steps    

     From 2 to 6. 

 It is obvious that this method requires five fictitious densities and a similar number 

of damping coefficients so as the solution will be converged correctly. 
 

    Fictitious Densities:- 

 The computation of the fictitious densities based on the Gershgorin upper 

bound of the stiffness matrix of a plate is discussed in Ref.[52] . The fictitious 

densities vary from point to point over the plate as well as for each iteration, so as to 

improve the convergence of the numerical computations. The corresponding 

expressions for the computations of the fictitious densities are given in Appendix (D). 



 

 

   

 

    Remarks on the Dynamic Relaxation (DR) Technique   

 The DR program is designed for the analysis of rectangular plates irrespective 

of material, geometry, edge conditions. The functions of the program are as follows: 

read the data file; compute the stiffness of the laminate, the fictitious densities, the 

velocities and displacements and the mid-plane deflections and stresses; check the 

stability of the numerical computations, the convergence of the solution, and the 

wrong convergence; compute through-thickness stresses in direction of plate axes; 

and transform through-thickness stresses in the lamina principal axes.  

 The convergence of the DR solution is checked, at the end of each iteration, by 

comparing the velocities over the plate domain with a predetermined value which 

ranges between 10
- 

 for small deflection and 10
- 

 for large deflection. When all 

velocities are smaller than the predetermined value, the solution is deemed converged 

and consequently the iterative procedure is terminated. Sometimes DR solution 

converges to invalid solution. To check for that the profile of variable is compared 

with the expected profile over the domain. For example when the value of the 

function on the boundaries is zero, and it is expected to increase from edge to center, 

then the solution should follow a similar profile. And when the computed profile is 

different from that expected, the solution is considered incorrect and can hardly be 

made to converge to the correct answer by altering the damping coefficients and time 

increment. Therefore, the boundary conditions should be examined and corrected if 

they are improper. 

 Time increment is a very important factor for speeding convergence and 

controlling numerical computations. When the increment is too small, the 

convergence becomes tediously slow; and when it is too large, the solution becomes 

unstable. The proper time increment in the present study it is taken as 0.8 for all 

boundary conditions. 

 The optimum damping coefficient is that which produces critical motion. 

When the damping coefficients are large, the motion is over damped and the 

convergence becomes very slow. And when the coefficients are small, the motion is 



 

 

   

 

under damped and can cause numerical instability. Therefore, the damping 

coefficients must be selected carefully to eliminate under damping and over damping.  

The errors inherent in the DR technique include the discretization error which 

is due to the replacement of a continuous function with a discrete function, and an 

additional error because the discrete equations are not solved exactly due to the 

variations of the velocities from the edge of the plate to the center. Finer meshes 

reduce the discretization error, but increase the round-off error due to the large 

number of calculations involved. The last type of error is relative to the rank of the 

interpolating function employed i.e. quadratic  cubic  etc…   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

   

 

CHAPTER (4) 

Validation of the Dynamic Relaxation (DR) Program  

 

 The present DR results are compared with similar results generated by DR 

and/or alternative techniques including approximate analytical and exact solutions so 

as to validate the DR program. In the following discussion a wide spectrum  of elastic 

comparison results of small and large deflections  are dealt with including isotropic, 

orthotropic, and laminated plates subjected to static uniformly distributed  loading. 

    Small Deflection Comparisons  

  Table A.1 (Appendix A) shows the variations in the center deflection of a 

moderately thick isotropic plate (h/a =0.1) with simply supported (SS5) conditions 

(see Appendix C) as the mesh size is progressively reduced. These results suggest 

that a 5×5 mesh over one quarter of the plate is adequate for the present work (i.e. 

less than  .   difference compared to the finest mesh result available). In Table A.2 

comparisons of the DR deflections and stresses with Turvey and Osman [6] and 

Reddy [46] are presented for a uniformly loaded square and rectangular plates of thin 

(i.e. h/a=0.0 ), moderately thick (i.e. h/a=0. ), and thick laminates (i.e. h/a=0. ) with 

simply supported (SS5) conditions. In this analysis, the results provided are in good 

agreement with each other. Another comparison analysis for small deformation of 

thin and moderately thick Square simply supported isotropic plate (SS5) between the 

present DR, and Roufaeil [31] is shown in Table A.3. Again, these results provide 

further confirmation that a DR analysis based on a 5×5 quarter-plate mesh produces 

results of acceptable accuracy. 

In the following analyses, several orthotropic materials were employed, and their 

properties are given in Table 4.1 below. Exact FSDT solutions are available for plates 

simply supported on all four edges (SS3). 

 

 



 

 

   

 

Table 4.1 Material properties used in the orthotropic plate comparison analysis 

 

Material E /E  G /E  G  /E  G  /E  
 

 

SCF 

Ι   .   .   .   .   .       

П  .     .     .     .     .       

Ш  .   .   .   .   .       

IV   .     .     .     .     .       

 

By imposing only a small load on the plate, the DR program may be made to simulate 

these small deflection solutions. In Table A.4, the computations were made for 

uniform loads and for thickness/side  ratio ranges between  .  to  .   of square simply 

supported in-plane free plates made of material I with ( 1q ) .In this case the center 

deflections of the present DR results are close to those of  Turvey and Osman [7], and 

Reddy [46]. Another small deflection analysis comparison on Table A.5 was made 

for uniformly loaded plates with simply supported in-plane fixed (SS5) square and 

rectangular plates made of material П and subjected to uniform loading ( 1q ). In this 

instance the four sources of results agree on the central deflection, and the center 

stresses at upper and /or lower surface of the plate and corner mid-plane stresses. 

However the analytical solution of Srinivas and Rao [11] is not in good agreement 

with the others as far as stresses are concerned. These differences may be attributed 

to the different theory adopted in the analytical solution results of Ref. [11]. 

Most of the published literature on laminated plates are devoted to linear analysis and 

in particular to the development of higher-order shear deformation theories. 

Comparatively, there are few studies on the nonlinear behavior of laminated plates 

and even fewer are those, which include shear deformation. The elastic properties of 

the materials used in the analyses are given in Table 4.2 below. The shear correction 

factors are k 
 
 =k 

 
     , unless otherwise stated.  
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Table 4.2 Material properties used in the laminated plate comparison analysis 

                                                                                                                                                                                           

Material E /E  G /E  G  /E  G  /E  

 

 

SCF 

Ι   .   .   .   .   .       

V    .   .   .   .   .       

VI    .   .   .   .   .      

VII    .     .     .     .     .       

VIII    .   .    .    .     .      

 

 In Table A.6 which shows a comparison between the present DR, and finite 

element results Ref. [22] for a simply supported (SS4) four anti symmetric angle-ply 

plates made of material V and subjected to a small uniform load ( 01.q   ), the center 

deflections and stresses are recorded for different thickness ratios including thick, 

moderately thick and thin laminates which are compared with Reddy’s finite element 

results [22]. There is a good agreement between the two sets of results in spite of the 

different theory adopted in latter case. 

 Another comparison analysis of central deflections between the present DR 

and Zenkour et al [29] using third order shear deformation theory with the help of the 

small parameter method and the results of Librescu and Khdeir [57] are illustrated in 

Table A.7. The three results showed a good agreement especially as the thickness 

ratio decreases. 

4.2 Large Deflection Comparisons  

 Table A.8 shows deflections, stress resultants and stress couples in simply 

supported in-plane free (SS3) isotropic plate. The present results have been computed 

with 6×6 uniform meshes. These results are in a fairly good agreement with those of 

Aalami et al [12] using finite difference analysis (i.e. for deflections, the difference 

ranges between  .    at    =  .  and   % as the pressure is increased to   ). A similar 

comparison between the two results is shown in Table A.9 for simply supported 

q

 2

5

2

4 kk 
12



 

 

   

 

(SS4) conditions. It is apparent that the center deflections, stress couples, and stress 

resultants agree very well. The mid-side stress resultants do not show similar 

agreement whilst the corner stress resultants show considerable differences. This may 

be attributed to the type of mesh used in each analysis. 

 Table A.10 shows comparison between the present analysis and Aalami et al 

[12] for clamped (CC2) edge conditions. Again, it is clear that the center deflections 

and stress resultants and /or couples agree reasonably well, though for the edge stress 

couples it is rather less good. This latter observation may, possibly, be explained by 

the fact that in the present analysis the mesh employed is uniform, whereas it is 

graded in Ref. [12] giving finer mesh spacing at the plate edges. Table A.11 shows 

deflections, stress resultants and stress couples for clamped in-plane fixed (CC3) 

edge conditions. It can be seen that the agreement between the present results and 

Aalami and Chapman [12] is fairly good except for the mid-side and, more 

particularly, the corner stress resultants. A similar set of results for the clamped in-

plane free (CC1) case are given in Table A.12. In this case the present center values 

for deflections, stress couples and the mid-side couples approach are close to those of 

Ref. [12], whereas the central and mid-side stress resultants differ considerably from 

those of Ref. [12]. 

 The final set of thin plate results comparisons presented here are with Rushton 

    , who employed the DR method coupled with finite differences. The present 

results for simply supported (SS5) square plates were computed for two thickness 

ratios using an 8×8 uniform mesh and are listed in Table A.13. In this instant, the 

present results differ slightly from those found in Ref. [13]. A similar comparison for 

plates with clamped edges (CC5) is shown in Table A.14. In this case it is observed 

that the center deflection; and the stress at the upper and /or lower side of the plate 

are slightly different compared to those of Ref. [13] as the load applied is increased. 

Also, the mid- side stress at the upper and/ or lower side of the plate shows a 

considerable difference compared to Ref. [13] with the increase of the applied load. 



 

 

   

 

These significant differences may be attributed to the less well-converged solution of 

the latter.  

 Another  comparison for simply-supported (SS5) square isotropic plates 

subjected to uniformly distributed loads are shown in Tables A.15 and A.16 

respectively for large deflection analysis of thin and moderately thick plates . In this 

comparison, it is noted that, the center deflections of the present DR analysis, and 

those of Azizian and Dawe [16] who employed the finite strip method are fairly good 

(i.e. with a maximum error not exceeding 0.09%). 

 There are two large deflection comparisons for orthotropic plates were made 

with the same DR program. In the first case, the DR center deflections of a thin 

square plate made of material Ш with clamped in-plane fixed edges (CC5) and 

subjected to a uniform load were compared with DR results of Turvey and Osman [7] 

and  Chia’s      . The comparison is shown in Table A.  . The three sets of results 

show a good agreement for lower and intermediate loads, but they differ slightly as 

the load is increased further. These differences are due to the employment of the 

classical laminated plate theory  CLPT  in the analytical solution of Chia’s values  

which is less accurate than FSDT. 

 In the second case the present DR results are compared with DR Ref. [7], 

Reddy’s       and Zaghloul et al results     . For a thin uniformly loaded square plate 

made of material IV and with simply supported in-plane free (SS3) edges. The center 

deflections are presented in Table A.18 where the DR showed a good agreement with 

the other three. 

 The small and large deflection analyses confirm the accuracy and versatility of 

the DR program based on FSDT. 

 In Table A.    comparisons are made with Chia’s perturbation results based on 

the Von Karman plate theory [60] for 4 and 2-layer antisymmetric angle-ply clamped 

(CC1) plates made of material V and subjected to uniform load for thickness/length 

ratio equivalent to  .   .For a 4-layer laminate the present DR center deflections are 

slightly higher than Chia’s results. Whereas  the contrary applies to the  -laminate 



 

 

   

 

results. These changes are partially due to the different plate theories used in the 

present analysis and Chia’s results and partially due to the approximation of Chia’s 

values as it is taken from a graph. 

 Putcha and Reddy [10] presented finite element results for symmetric and anti-

symmetric square moderately thick plates (h/a =0.1). These results are compared with 

the present DR results in Tables A.20 and A.21. Table A.20 shows a comparison of 

the center deflections for a laminated plate [  
     

o
  -  

o
    

o 
] with clamped (CC5) 

edges. It is observed that the present DR results are slightly higher than that of Ref. 

[10]. Whereas in Table A.21, comparisons are made between the present DR, and 

finite element results Ref. [10] for the center deflection of a 2 and 8-layer 

antisymmetric angles-ply laminates made of material I. The plates are square, 

clamped (CC5), thick, and uniformly loaded. For a 2-layer laminate the present DR 

results differ greatly from those of Ref. [10]. Whereas, for 8-layer laminate, the 

present results differ slightly from those of Ref. [10]. 

 Another analysis of thin large deflection plates was made by recomputing Sun 

and Chin’s results      for      
o 
   

o] using the DR program and material VI. The 

results were obtained for one quarter of a plate using a 5×5 rectangular mesh, with 

shear correction factors k 
 
 = k 

  
    . The analysis was made for different boundary 

conditions and the results were shown in Tables A.22, A.23, A.24, and A.25 as 

follows: the present DR deflections of the two-layer antisymmetric cross-ply simply 

supported in-plane fixed (SS5) are compared with DR results of Turvey and Osman 

    and with Sun and Chin’s values for a range of loads as shown in Table A.  . The 

good agreement found confirms that for simply supported (SS5) edge conditions, the 

deflection depends on the direction of the applied load or the arrangement of the 

layers. Table A.23 shows a comparison between the present DR, and DR Ref. [8] 

results, which are approximately identical. The difference between the center 

deflection of the laminates [ o
   

o] and [  
o
  

o] at b/a =5 is  .    whilst it is    when 

b/a =1. Also Tables A.24 and A.25 give central deflections, which are in good 

agreement with the DR results Ref. [8]. In Table A.26 which shows a comparison 



 

 

   

 

between the present DR, Kolli and Chandrashekhara finite element method [28] large 

deformation results for simply supported (SS5) four-layer symmetric rectangular 

laminates of cross-ply [ o
    

o    
o
   

o] and angle-ply [  
o
 -  

o
 -  

o
   

o] orientations of 

material VШ subjected to uniform pressure ( 43211.q  ) .The center deflections are 

completely identical for cross-ply laminates and differ slightly for angle-ply 

laminates. The comparisons made between DR and alternative techniques show a 

good agreement and hence the present DR large deflection program using uniform 

finite differences meshes can be employed with confidence in the analysis of 

moderately thick and thin flat isotropic, orthotropic or laminated plates under uniform 

loads. The program can be used with the same confidence to generate small 

deflection results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

   

 

CHAPTER     

Generation of New Numerical Results 

           With confidence in the DR program proved through the various verification 

exercises undertaken, it was decided to undertake some study cases and generate new 

results for uniformly loaded laminated rectangular plates. The plates were assumed to 

be either simply supported or clamped on all edges. 

  The effects of transverse shear deformation, material anisotropy, orientation, 

and coupling between stretching and bending on the deflections of laminated plates 

are investigated. 

 The material chosen has the following properties: 

.3.0, / 8265.4G ,  / 653.9E , / 9.137 12

2

12

2

2

2

1  mmkNmmkNmmkNE  It is 

assumed that G   = G   =G  .  

5.1 Effect of Load 

 The variations of the center deflections, Cw  with load, q  for thin (h/a = 0.02) 

and thick (h/a=0.2) isotropic plates of simply supported in-plane fixed (SS5) 

condition are given in Table A.27, and Fig. B.1. It is observed that, the center 

deflections of thin and thick plates increase with the applied load, and that the 

deflections of thick plates are greater than those of thin plates under the same loading 

conditions. The difference in linear deflection is due to shear deformation effects 

which are significant in thick plates. Whereas, the non-linear deflection of thin and 

thick plates, which are nearly coincident, implies that the shear deformation effect 

vanishes as the load is increased. 

5.2 Effect of Length to Thickness Ratio  

 Table A.28 and Fig.B.2 contain numerical results and plots of  center 

deflection versus length to thickness ratio of anti-symmetric cross-ply [ o
   

o
  

o
   

o] 

and angle-ply [  
o
 -  

o
   

o
 -  

o] square plates  under uniform lateral load ( 0.1q  ) for 

two boundary conditions (i.e. simply supported (SS1) and clamped (CC1)). The 

maximum percentage difference in deflections for a range of length / thickness ratio 



 

 

   

 

between 10 and 100, fluctuates between 35% for simply supported (SS1) cross-ply 

laminate and 73.3% for angle-ply laminate as the length/thickness ratio increases to a 

value of a/h = 40.0, and then become fairly constant. It is evident that shear 

deformation effect is significant for a/h < 40.0. It is obvious that shear deformation 

reduces as the length/thickness ratio increases. The orientation effect is clearly 

noticeable when the plate is simply supported while it is not apparent when the plate 

is clamped. 

       As shown in Table A.29 and Fig.B.3, the maximum percentage difference in 

deflection ( 0.200q ) for a range of length/ thickness ratio between 10 and 100 

fluctuates between 6.36% for simply supported (SS1) cross-ply laminate and 38.7% 

for clamped (CC1) angle-ply laminate. This means that the center deflections become 

independent on the length/thickness ratio as the load gets larger. 

5.3 Effect of Number of Layers  

 Fig.B.4 shows a plot of the maximum deflection of a simply supported (SS5) 

anti-symmetric cross-ply [( o
   

o)n] (n=1,2,3,4,8) square plates under uniformly 

distributed load of a moderately thick plate (h/a = 0.1). The numerical results are given 

in Table A.30. Two, four, six, eight, and sixteen-layer laminates are considered. The 

results show that as the number of layers increases, the plate becomes stiffer and the 

deflection becomes smaller. This is mainly due to the existence of coupling between 

bending and stretching which generally increases the stiffness of the plate as the 

number of layers is increased. When the number of layers exceeds 8, the deflection 

becomes independent on the number of layers. This is because the effect of coupling 

between bending and stretching does not change as the number of layers increases 

beyond 8 layers. 

       In Table A.31 and Fig. B.5, the deflection of simply supported (SS5) angle-ply 

plates [(  
o
 -  

o
)n] is given. Similar features can be noted as in the case of cross-ply 

plates [(0
o
   

o
)n] mentioned above. 

 

 



 

 

   

 

5.4 Effect of Material Anisotropy  

          According to Whitney and Pagano [44], the severity of shear deformation 

effects depends on the material anisotropy, E /E  of the layers. 

 The exact maximum deflections of clamped (CC5) four-layer symmetric cross-

ply [ o
   

o
   

o
  

o] and angle-ply [  
o
 -  

o
 -  

o
   

o] laminates are compared in Table 

A.32 and Fig.B.6 for various degrees of anisotropy. It is observed that, when the 

degree of anisotropy is small the deflection is large. As the degree of the anisotropy 

increases, the plate becomes stiffer. This may be attributed to the shear deformation 

effects which increase as the material anisotropy is decreased. When the degree of 

anisotropy becomes greater than 40.0, the deflection becomes approximately 

independent on the degree of anisotropy. This is due to the diminishing of the shear 

deformation effects and the dominance of bending effects. 

The results in Table A.33 and the plot in Fig. B.7 is for simply supported (SS5) 

laminates which follow a similar behavior but the deflections are relatively smaller. 

The apparent difference between the non-linear deflections of both clamped (CC5) 

and simply supported (SS5) symmetric laminates, as shown in Figs. B.6 and B.7 may 

be attributed to the different boundary conditions used in each case which either 

permits edge rotation or prohibits it.   

5.5 Effect of Fiber Orientation  

 The variation of the maximum deflection, Cw  with fiber orientation of a square 

laminated plate is shown in Table A.34 and Fig.B.8 for 0.120q  , and h/a = 0.1. Four 

simply supported boundary conditions SS2, SS3, SS4 and SS5 are considered in this 

case. The non-linear curves SS2 and SS3 conditions show minimum deflection at θ   

  
o . However, this trend is different for a plate under SS4 and SS5 conditions in 

which the non-linear deflection increases with θ. This is due to the in-plane fixed 

edges in the latter case. Also, the non-linear   curves for clamped boundary conditions 

CC1, CC3, CC4 and CC5 as shown in Table A.35 and Fig.B.9 indicate the same 

trend as in the simply supported SS4 and SS5. These differences indicate that the type 

of end support is a determinant factor in the deflections for different orientations.  



 

 

   

 

Another set of results showing the variation of center deflections, Cw with 

Load, q  for a range of orientations is given in Tables A.36 and A.37, and Fig. B.10 

and B.11.Table A.36 and Fig. B.10 show the variations in the center deflection of 

thick laminates (h/a=0.2) with load ranges between 0.20q  and  0.200q  for a 

simply supported (SS4), 4 – layer anti-symmetric square plate of orientation [

o-/  ooo ]. It is noticed from Fig. B.10 that the deflection of thick laminates 

increases with the applied load as the angle of orientation is decreased (i.e. from   
o 

to  o) to a point where 7060  q  and then increases as the angle of orientation is 

increased beyond that point. This results in the inflection of the deflection curves at a 

point where 7060  q . This behavior is caused by coupling between bending and 

stretching which arises as the angle of orientation increases.  

Similar behavior is exhibited by thick anti-symmetric clamped (CC3) laminates as 

shown in Table A.37 and Fig. B.11 but with a low response due to the different 

boundary conditions used in each case.   

5.6 Effect of Reversing Lamination Order   

 The DR deflections of two-layer anti-symmetric cross-ply [ o
/  

o] simply 

supported in-plane fixed (SS5) rectangular laminates are given in Table A.38 and 

plotted in Fig. B.12. the deflection of the plate with coupling stiffness  0ijB  is also 

shown for the sake of comparison. The percentage difference between the center 

deflections ]90/0[1

oow  and ]0/90[2

oow  at 0.20q   is    .  .whilst when 0.200q , it is 

  .  .  It is obvious that the deflection depends on the direction of the applied load or 

the arrangement of the layers. The coupling stiffness  0ijB  serves as the limit 

between positive and negative coupling. For a positive coupling, the deflection 

increases as the magnitude of coupling increases.  In other words, the apparent 

laminate bending stiffness decreases as the bending – extension coupling increases. 

Whereas, negative coupling is seen to stiffen the laminate. This contradicts the 

common notion that the bending – extension coupling lowers the laminate bending 

stiffness.  



 

 

   

 

 In a similar analysis, the deflection of an anti-symmetric angle-ply  

]45/45[1

oow   and ]45/45[2

oow   simply supported in-plane fixed (SS5) laminates are 

shown in Table A.39 and Fig. B.13. There is no difference in deflection between 

]45/45[ oo   and ]45/45[ oo   as in the case of ]90/0[ oo  and ]0/90[ oo . This comparison 

with laminate  0ijB  indicates that coupling between bending and twisting always 

lowers the laminate bending stiffness of angle-ply laminates.  

5.7 Effect of Aspect Ratio 

 Table A.40 and correspondingly Fig.B.14 show the variations in the maximum 

deflection of a two-layer anti-symmetric cross-ply and angle-ply  oo 45/45   simply 

supported in-plane fixed (SS5) rectangular laminate under uniform load and with 

different aspect ratios ( 0.200q  , and h/a =0.1). It is noticeable that, when the aspect 

ratio is small the deflection is small, and as the aspect ratio increases further beyond 

2.0, the deflection becomes independent on the aspect ratio. This is due to coupling 

between bending and stretching which becomes fairly constant beyond b/a=2.0 and 

therefore the plate behaves as a beam.   

5.8 Effect of Boundary Conditions  

 The type of boundary support is an important factor in determining the 

deflections of a plate along with other factors such as the applied load, the length / 

thickness ratio, the fiber orientation, etc.   

 Three sets of boundary conditions ranging between extreme in-plane fixed to 

in-plane free of an isotropic plate were considered and the results are given in Table 

A.41 and shown graphically in Fig. B.15. the variations of center deflection,  Cw  with 

load, q  for thin (h/a =0.02) isotropic simply supported (SS1) and (SS5) and clamped 

(CC5) plates are given. It is observed that, for all cases the deflections increase with 

the load but at different rates depending on whether the plate is simply supported in-

plane free or clamped. The deflection is a maximum when the plate is simply 

supported in-plane free and a minimum when the plate is clamped. 

 



 

 

   

 

5.9 Effect of Lamination Scheme 

 In the present analysis the lamination scheme of plates is either symmetric or 

anti-symmetric. The anti-symmetric arrangement involves coupling between bending 

and stretching which affects greatly the deflections of both cross-ply and angle-ply 

laminates.  

 The variations of center deflection, Cw  with load, q  varying between 0 and 

100 are given in Tables A.42 and A.43 and shown graphically in Figs. B.16 and B.17. 

The transverse central deflection of 4- layered square laminated plates with simply 

supported (SS2) boundary condition subjected to uniformly distributed load is shown 

in Table A.42 and Fig.B.16.  The thickness of all layers is assumed equal. The results 

indicate that the anti-symmetric angle-ply  oooo 45/45/45/45   laminate is stiffer 

than the symmetric one, and that the symmetric cross-ply laminate is stiffer than the 

anti-symmetric one. This phenomenon is caused by coupling between bending and 

stretching which lowers the deflections of anti-symmetric angle-ply laminates, and 

raises the deflections of anti-symmetric cross-ply plates.  

 Similar behavior is shown by angle-ply laminates for clamped (CC2) 

condition. In the case of cross-ply laminates as given in Table A.43 and shown in Fig. 

B.17 the anti-symmetric cross-ply is stiffer than the symmetric one. This is due to the 

restrained edge rotation in this case. 

 

 

 

 

 

 

 

 

 



 

 

   

 

CHAPTER      

Conclusions and Recommendations 

6.1 Conclusions 

          A Dynamic Relaxation (DR) program based on finite differences has been 

developed for small and large deflection analysis of rectangular laminated plates 

using first order shear deformation theory (FSDT). The plate, which is assumed to 

consist of a number of orthotropic layers, is replaced by a single anisotropic layer and 

the displacements are assumed linear through the thickness of the plate. A series of 

numerical comparisons have been undertaken to demonstrate the accuracy of the DR 

program. Finally, a series of new results for uniformly loaded thin, moderately thick, 

and thick plates with simply supported and clamped edges have been presented. 

These results show the following:   

 . The linear theory seriously over-predicts the deflection of plates. 

 . The deformations of a plate are dependent on bending and extension in the 

nonlinear theory, whereas they are dependent on bending alone in the linear 

theory. 

 .  Convergence of the DR solution depends on several factors including boundary 

conditions, mesh size, the fictitious densities, and load.  

 . Deflection is greatly dependent on plate length/ thickness ratio at small loads, and 

it becomes almost independent on that when the load is large. 

 . As the number of layers in a plate increases, the plate becomes increasingly stiffer. 

 . As the degree of anisotropy increases, the plate becomes stiffer and when it is 

greater than 40.0, the deflection becomes virtually independent on the degree of 

anisotropy. 

 . Deflection of plates depends on the angle of orientation of individual plies. An 

increase of angle of orientation results in a decrease in the deflection at small 

loads and an increase in deflection at large loads. 



 

 

   

 

 . Coupling between bending and stretching increases the deflection of [0
o
   

o
] and 

decreases the deflection of [90
o
  

o
] plates depending on whether it is positive or 

negative. Whereas, it always decreases the deflection of [  
o
 -  

o
] and [-  

o
   

o
] 

plates.  It also lowers the deflection of anti-symmetric angle-ply laminate [45
o
 -

  
o
   

o
 -  

o
] and increases that of anti-symmetric cross-ply laminate [0

o
   

o 

  
o
   

o
]. 

 . Deflection depends on the aspect ratio of plate. When the aspect ratio becomes 

greater than 2.0, the plate behaves as a beam, and therefore the deflection becomes 

independent on the aspect ratio. 

  . As the edges of a plate are more restrained, the deflection decreases. 

 

    Recommendations 

The topics, which require further investigations in the future, are: 

 . The DR iterations suffer from instability when a plate is in-plane free and the 

load is large. Further work could be directed towards investigating the sources 

of instability. 

 . Further investigations on the influence of coupling between bending and 

extension and/ or twisting on the response of laminated plates could be carried 

out. 

 . Analysis of plates under concentrated load is another area of research which 

requires further study.  
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APPENDIX (A) 

Tables  

 

Table A.1   DR Solution convergence results for a simply supported (SS5) square 

plate subjected to uniform pressure  0.3  and  0.1h/a , 1  q   

 

Mesh size Cw 

2 × 2  .      

3 × 3  .      

4 × 4  .      

5 × 5  .      

6 × 6  .      

7 × 7  .      

8 × 8  .      

 
 

 

Table A.2 Comparison of present DR, Turvey and Osman [6], and exact values 

of Reddy [46] small deflection results for uniformly loaded simply supported 

(SS5) square and rectangular plates of various thickness ratios  0.3  ,1  q . 

 

a/b h/a S cw   11   12   26   35   44  
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S (1): Present DR results  

S (2): DR results of Ref. [ ]. 

S (3): Exact results of Ref. [4 ]. 
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Table A.3   Dimensionless central deflection of a square simply supported 

isotropic plate (SS5)  0.833k   ,0.3   0.1 2  q  
       

a/h 
Present DR

*
 

Results 

3- Node strip 

Ref.[31] 

2-node strip 

Ref.[31] 

Hinton E, Huang  H 

as stated in Ref.[31] 

     .       .       .       .      

    .       .       .       .      

 

Table A.    Comparison of present  DR , Turvey and Osman [7] , and Ref.[46] 

center deflections of a simply supported (SS3) square orthotropic plate made of 

material I for different thickness ratios when subjected to uniform loading 

 0.1q  

Thickness ratio 

h/a 

Uniform Load 

 DRwC  

present 

 DRwC  

Ref. [7] 

 exactwC  

Ref. [46] 

 .   .        .        .       

 .   .       .       .       



 

 

   

 

 .    .        .        .       

 .    .        .        .       

 .    .        .        .       

 .    .        .        .       

 

Table A.    Comparison of present DR, Ref.[7] , Ref. [46],  and exact solutions 

Ref.[11] for a uniformly loaded simply supported (SS5) orthotropic plate made 

of material II when subjected to uniform loading  0.1q  

 

b/a h/a S Cw   11   25  
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S(1):  Present DR results  

S(2): DR results of Ref.[7].  

S(3): Finite element solution  Ref.[46]. 

S(4): Exact solution Ref.[11].             
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1
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Table A.    Comparison of  present DR , and  finite element results Ref. [22] for 

[45o/-45o/45o/-45o] simply supported (SS4) square laminate made of material V 

and subjected to  uniform loads and for different thickness ratios ( 0.1q ) 

 

h/a S Cw ×10
   11  

 .  
   .      .     

  9.0000  .     

 .   
  4.3769  .     

  4.2000  .     

 .   
  3.2007  .     

  3.0000  .     

 .   
   .      .     

   .      .     

 .   
   .      .     

   .      .     

 

 

S (1):  Present DR results  

S (3): Reddy [22] as read from graph.   hzay
2

1
,

2

1
1   x . 

Table A.  Non-dimensionalized deflections in three layer cross-ply [0o/90o/0o] 

simply supported (SS5) square laminates under uniform load ( 0.1q )  

 

a/h S Cw  
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S (1): Present DR results linear analysis  

S (2): Librescu L and Khdeir A. A [57].  

S (3):A.M.Zenkour, and M.E.Fares [29] results.  

 

Table A.    Comparison of present DR, Aalami and Chapman's [12] large 

deflection results for a simply supported (SS3) square isotropic plate subjected 

to uniform pressure  0.3 ,  0.02h/a    

 

q  S cw  
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S (1): Present DR results (6×6 uniform mesh over quarter of the plate) 

S (2): Ref.[12]  results (6×6  graded  mesh over quarter of the plate) 



 

 

   

 

    x = y = 
2

1
a, z = 0. 

 

Table A.9 Comparison of present DR, Aalami and Chapman's [12] large 

deflection results for simply supported (SS4) square isotropic plate subjected to 

uniform pressure  0.3   ,0.02h/a    
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S(1): Present DR results (6×6 uniform mesh over quarter of the plate) 

S(2) : Ref.[12]  results (6×6  graded  mesh over quarter of the plate) 
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Table A.   Comparison of present DR, Aalami and Chapman's [12] large 

deflection results for simply supported (SS2) square isotropic plate subjected to 

uniform pressure  0.3 ,  0.02h/a    
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S (1): Present DR results (6×6 uniform mesh over quarter of the plate) 

S (2) : Ref.[12]  results (6×6    graded  mesh over quarter of the plate) 
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Table A.11 Comparison of present DR, Aalami and Chapman's [12] large 

deflection results for Clamped (CC3) square isotropic plate subjected to uniform 

pressure  0.3   ,0.02h/a    
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S(1): Present DR results (6×6 uniform mesh over quarter of the plate) 

S(2) : Ref.[12]  results (6×6  graded  mesh over quarter of the plate) 
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Table A.12 Comparison of present DR, Aalami and Chapman's [12] large 

deflection results for Clamped (CC1) square isotropic plate subjected to uniform 

pressure  0.3   ,0.02h/a    
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S(1):  Present DR results (6×6 uniform mesh over quarter of the plate) 

S(2) : Ref.[12]  results (6×6  graded  mesh over quarter of the plate) 

 

 

Table A.    Comparison of present DR, and Rushton's [13] large deflection 

results for a simply supported (SS5) square isotropic plate subjected to a 

uniform pressure  3.0  
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S (1): Present DR results (h/a =0.02; 8 × 8 uniform mesh over quarter of the plate) 

S (2):  Present DR results (h/a =0.01; 8×8 uniform mesh over quarter of the plate)  

S (3): Ref. [13] results (thin plate 8×8 uniform mesh over quarter of the plate) 
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1
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Table A.14 Comparison of present DR, and Rushton's Ref. [14] large deflection 

results for clamped (CC5) square isotropic plate subjected to a uniform pressure

 3.0  

 

q  S Cw   11   21  
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S (1):  Present DR results (h/a =0.02; 8 × 8 uniform mesh over quarter of the plate) 

S (2): Ref. [13] results (thin plate 8×8 uniform mesh over quarter of the plate) 
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Table A.15 Comparison of the present DR, and Azizian and Dawe's [16] large 

deflection results for thin shear deformable simply supported (SS5) square 

isotropic plates subjected to a uniform pressure (h/a =0.01, ν =0.3) 

 

q  S Cw  
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   .      

  .  
   .      

   .      
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   .      

 

S (1): Present DR results (6 × 6 uniform mesh over quarter of the plate) 

S (2): Azizian and Dawe [16] results. 
 

Table A.16 Comparison of the present DR, and Azizian and Dawe's [16] large 

deflection results for moderately thick shear deformable simply supported (SS5) 

square isotropic plates subjected to a uniform pressure (h/a =0.05, ν =0.3) 

 

q  S Cw  
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S (1): Present DR results (6 × 6 uniform mesh over quarter of the plate) 

S (2): Azizian and Dawe [16] results. 

 



 

 

   

 

Table A.17 Pressure versus center deflection comparison for a square clamped 

(CC 5) orthotropic plate made of material III and subjected to uniform loading 

(h/a        

q   DRwC  Cw (DR Ref. [8] )   58 results 'sChiawC  

  .   .     .      .   

   .   .      .      .   

   .   .      .      .   

   .   .      .      .   

   .   .      .      .   

 

DR results (5 × 5 uniform mesh over quarter of the plate) of the present study. 

DR results Ref. [8] (5×5 uniform mesh over quarter of the plate). 

Table A.18   Comparison of present DR , finite element  results Ref. [59], and 

experimental  results Ref. [42]  for  a uniformly loaded  simply supported (SS3)  

square orthotropic plate made of material IV (h/a           
 

 

 

 

 

 

S (1): Present DR results (5 × 5 uniform non – interlacing mesh over quarter of the plate) 

S (3): Reddy's finite element results [59]. 

S (4): Zaghloul's and Kennedy's Ref. [42] experimental results as read from graph. 

 

Table A.1  Comparison of present DR, and Chia's approximate analytical 

results for 4 and 2-layer anti-symmetric angle-ply clamped (CC1) plates made of 

material V and subjected to uniform pressure. 

 

q  NOL
*
 Cw  (DR) 

Cw (Chia's results [60]) 

   .  
   .     0.58 

  1.1432 1.24 

1000.0 
4 1.1273 1.10 

2 1.8500 2.00 

 

q   1Cw   2Cw   3Cw   4Cw  

17.9 0.5859 0.5858 0.58 0.58 

53.6 1.2710 1.2710 1.30 1.34 

71.5 1.4977 1.4977 1.56 1.59 

89.3 1.6862 1.6862 1.74 1.74 



 

 

   

 

    .  4 1.6016 1.53 

2000.0 4 2.0113 1.94 
 

*
 Denote number of layers. 

Present DR results: ((h/a = 0.02) 5×5 uniform mesh over quarter of the plate). 

Chia's results: Results read from graph [60]. 
 

Table A. 20 Comparison of present DR, and finite element Ref. [10] center 

deflections of quasi-isotropic [ o
   

o
 -  

o
   

o] clamped (CC5) square plates made 

of material V and subjected to uniform pressure. (h/a     ) 

 

q  S Cw  

  .  
   .   

   .   

   .  
   .    

   .   

   .  
   .    

   .   

   .  
   .   

   .   

   .  
   .   

   .   

 

S (1):  Present DR results (5 × 5 uniform mesh over quarter of the plate) 

S (2): Putcha and Reddy's finite element results Ref. [10] read from graph. 

 

Table A.21 Comparison of present DR, and finite element results Ref. [10] for a 

2and 8-layer anti-symmetric angle-ply [  o
 -  

o
 …] clamped (CC5) square plate 

made of material I and subjected to uniform pressure .(h/a      )  

 

 

q
 

S  2NOLwC   8NOLwC  

  .  
   .      .     

   .      .     



 

 

   

 

   .  
   .      .     

   .      .     

   .  
   .      .     

   .      .     

   .  
   .      .     

   .      .     

   .  
   .      .     

   .      .     

 

S (1):  Present DR results (5 × 5 uniform mesh over quarter of the plate) 

S ( ): Ref. [  ] results read from graph. 

NOL: Number of layers.  

 

Table A.2  Deflection of the center of a two-layer anti-symmetric cross- ply 

simply supported in-plane fixed (SS5) strip under uniform pressure (b/a =5, h/a 

        

 

q  S  90/01

ow   0/90w o

2   0ijo Bw                 

   

   .      .     

 .     

   .  -  .     .  

   .      .        .  -  .     .  

   .      .        

   

   .      .     

 .     

  .  -  .     .  

   .      .       .  -  .     .  

   .      .        

   

   .      .     

 .     

  .  -  .    .  

   .      .       .  -  .    .  

   .      .        

    

   .      .     

 .     

  .  -  .    .  

   .      .       .  -  .    .  

   .      .        

    

   .      .     

 .     

  .  -  .    .  

   .      .       .  -  .    .  

   .      .        



 

 

   

 

    

   .      .     

 .     

  .  -  .    .  

   .      .       .  -  .    .  

   .      .        

 

S (1): Present DR results  

S (2): DR results Ref. [8]. 

S (3): Values determined from Sun and Chin's graphical results Ref. [15]. 

     :   oo www /100 1  . 

     :   oo www /100 2  . 

        221 /100 www  .  

 

Table A.23 Center deflection of two-layer anti-symmetric cross-ply simply 

supported in-plane free (SS1) plate under uniform pressure and with 

different aspect ratios (h/a      ; 18q ). 

 

b/a S  90/01

ow   0/902

ow   0ijo Bw                 

 .  
   .      .      .        .     .  - .  

   .      .      .        .     .  - .  

 .  
   .      .      .        .     .  - .  

   .      .      .        .     .  - .  

 .  
   .      .      .        .     .  - .  

   .      .      .        .     .  - .  

 .  
   .      .      .        .     .  - .   

   .      .      .        .     .  - .  

 .  
   .      .      .        .     .  - .   

   .      .      .        .     .  - .  

 .   
   .      .      .       .    .  - .  

   .      .      .       .    .  - .  

 .  
   .      .      .       .    .  - .   

   .      .      .       .    .  - .   



 

 

   

 

 .   
   .      .      .       .    .  - .  

   .      .      .       .    .  - .  

 .  
   .      .      .       .    .   .  

   .      .      .       .    .   .  

 

S (1):  Present DR results  

S (2): DR results Ref.[ ]. 

      oo1 w/ww100  . 

      oo2 w/ww100  . 

      221 w/ww100  .  

Table A.24 Center deflection of a two-layer anti-symmetric cross-ply clamped 

in-plane free (CC1) plate with different aspect ratios (h/a      ; 18q )  

 

b/a S  90/01

ow   0/902

ow   0ijo Bw                 

 .  
   .      .      .        .     .   .  

   .      .      .        .     .   .  

 .  
   .      .      .        .     .   .  

   .      .      .        .     .   .  

 .  
   .      .      .        .     .   .  

   .      .      .        .     .   .  

 .  
   .      .      .        .     .  - .  

   .      .      .        .     .  - .  

 .  
   .      .      .        .     .  - .  

   .      .      .        .     .  - .  

 .   
   .      .      .        .     .  - .  

   .      .      .        .     .  - .  

 .  
   .      .      .        .     .  - .  

   .      .      .        .     .  - .  

 .   
   .      .      .        .     .   .  

   .      .      .        .     .   .  

 .  
   .      .      .        .     .   .  

   .      .      .        .     .   .  

S (1): Present DR results  



 

 

   

 

S (2): DR results Ref.[ ]. 

      oo1 w/ww100  . 

       oo2 w/ww100  . 

       221 w/ww100  .  

 

Table A.25 Center deflection of two-layer anti-symmetric cross-ply clamped in -

plane (CC5) rectangular plate with different aspect ratios (h/a      ) 

 

b/a S q   90/01

ow   0/902

ow   0ijo Bw                 

 .  

 

  

    .      .      .        .     .   .  

    .      .      .       .    .   .  

     .      .      .       .    .   .  

  

    .      .    .  .        .     .   .  

    .      .      .       .    .   .  

     .      .      .      .   .   .  

 .  

  

    .      .      .        .     .   .  

    .      .      .       .  68.3  .  

    0.8037 0.8040 0.6073 32.3 32.3  .  

  

   0.1712 0.1712 0.0771 122.0 122.0  .  

   0.4955 0.4957 0.3084 60.7 60.7  .  

    0.8040 0.8044 0.7711 4.3 4.3  .  

 .  

  

    .     0.1720 0.0776 121.6 121.6  .  

   0.4974 0.4974 0.2967 67.6 67.6  .  

    0.8059 0.8065 0.6111 31.9 32.0  .  

  

   0.1720 0.1720 0.0777 120.4 120.4  .  

   0.4976 0.4979 0.3110 60.0 60.0  .  

    0.8062 0.8068 0.7771 3.7 3.7  .  

 .  

  

   0.1722 0.1722 0.0781 120.5 120.5  .  

   0.4994 0.4994 0.2985 67.3 67.3  .  

    0.8083 0.8090 0.6150 31.4 31.5  .  

  

   0.1723 0.1722 0.0781 120.6 120.6  .  

   0.4996 0.4999 0.3126 59.8 59.9  .  

    0.8086 0.8093 0.7802 3.6 3.7  .  



 

 

   

 

 .  

  

   0.1698 0.1698 0.0776 118.8 118.8  .  

   0.4997 0.4997 0.2976 67.9 67.9  .  

    0.8103 0.8110 0.6170 31.3 31.4  .  

  

   0.1699 0.1697 0.0775 119.2 119.2  .  

   0.4999 0.4999 0.3101 61.2 61.2  .  

    0.8106 0.8113 0.7711 5.1 5.1  .  

 .   

  

   0.1649 0.1649 0.0756 118.1 118.1  .  

   0.4947 0.4947 0.2917 69.6 69.6  .  

    0.8072 0.8078 0.6113 32.0 32.0  .  

  

   0.1650 0.1648 0.0756 118.3 118.0  .  

   0.4949 0.4948 0.3022 63.8 63.8  .  

    0.8075 0.8081 0.7492 7.8 7.9  .  

 .  

  

   0.1539 0.1539 0.0708 117.4 117.4  .  

   0.4778 0.4778 0.2753 73.6 73.6  .  

    0.7918 0.7922 0.5895 34.3 34.4  .  

  

   0.1539 0.1537 0.0707 117.7 117.7  .  

   0.4780 0.4778 0.2828 69.0 69.0  .  

    0.7921 0.7925 0.6993 13.3 13.3  .  

 .   

  

   0.1313 0.1313 0.0605 117.0 117.0  .  

   0.4330 0.4330 0.2383 81.7 81.7  .  

    0.7430 0.7432 0.5301 40.2 40.2  .  

  

   0.1314 0.1312 0.0605 117.2 116.9  .  

   0.4331 0.4330 0.2420 79.0 79.0  .  

    0.7432 0.7434 0.5992 24.0 24.1  .  

 .  

  

   0.0927 0.0927 0.0428 116.6 116.6  .  

   0.3347 0.3347 0.1702 96.7 96.7  .  

    0.6207 0.6207 0.4012 54.7 54.7  .  

  

   0.0928 0.0928 0.0428 116.8 116.8  .  

   0.3348 0.3348 0.1711 95.7 95.7  .  

    0.6210 0.6210 0.4261 45.7 45.7  .  

 

S (1): Present DR results  

S (2): DR results Ref. [8]. 

       oo1 w/ww100  . 

        oo2 w/ww100  . 



 

 

   

 

        221 w/ww100  .  
 

Table A.26 Comparison of the present DR method and M.Kolli and K. 

Chandrashekhara [28] large deformation results for simply supported (SS5) 

four layer symmetric rectangular laminates of cross-ply [ o
   

o
   

o
  

o]  and angle-

ply [  o
 -  

o
 -  

o
   

o] subjected to uniform pressure . (b/a      a/h     , 3.0 ) 

q  S 
Cw  

 
o
   

o
   

o
  

o 
  

 o
 -  

 o
 -  

 o
   

 o
 

  .    
   .    .   

   .    .   

 

S (1): present DR results. 

S (2): results of Ref. [2 ]. 

 

Table A.27 Variation of central deflection 
cw with load, q  of thin (h/a = 0.02) 

and thick (h/a =0.2) isotropic plates of simply supported (SS5) condition  3.0  

q  S cw  

h/a =0.02
 

h/a = 0.2 
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 .     
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 .     
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 .     
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 .     

 .     

 .     

      

  

 .     

 .     

 .     

 .     

      

  

 .     

 .     
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 .     

      

  

 .     

 .     
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S (1): Linear  

S (2): Nonlinear  



 

 

   

 

Table A.28 A comparison of the non-dimensionalized center deflections Vs. side  

to thickness ratio of a four layered anti-symmetric cross-ply [0
o
   

o
  

o
   

o
] and 

angle-ply [45
o
 -  

o
   

o
 -  

o
] square laminates under uniform lateral load ( q       

 
 

 

a/h 

cw  

SS1 CC1 

  
o
   

o
  

o
   

o
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o
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o
   

o
 -  

o
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o
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Table A.29 A comparison of the non-dimensionalized center deflections vs. side 

to thickness ratio of a four layered anti-symmetric cross-ply [0
o
   

o
  

o
   

o
] and 

angle-ply [45
o
 -  

o
   

o
 -  

o
] square laminates under uniform lateral load. (q

        

 

a/h 
cw  

SS1 CC1 

  
o
   

o
  

o
   

o
]    

o
 -  

o
   

o
 -  

o
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o
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o
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o
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o
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Table A.30 Number of layers effect on a simply supported (SS5) anti-symmetric 

cross-ply [(0
o
   

o
)n] square plate under uniformly distributed loads. (h/a        

 

q  cw  

  
o
   

o
]   

o
   

o
]    

o
   

o
]    

o
   

o
]    

o
   

o
]  

    .      .      .      .      .     

    .      .      .      .      .     

    .      .      .      .      .     

    .      .      .      .      .     

     .      .      .      .      .     
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     .      .      .      .      .     

     .      .      .      .      .     

     .      .      .      .      .     

     .      .      .      .      .     
 

Subscripted values 2, 3, 4, and 8: No. of the arrangements of a two layered laminate. 

 

 

 

Table A.31 Number of layers effect on a simply supported (SS5) anti-symmetric 

angle-ply [(45
o
 -  

o 
)n] square plate under uniformly distributed loads. (h/a        

 

q  cw  

  
o
   

o
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o
   

o
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o
   

o
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o
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o
]  
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Subscripted values 2, 3, 4, and 8: No. of the arrangements of a two layered laminate. 

 

 

 

 

 



 

 

   

 

Table A.32 Effect of material anisotropy on the non-dimensionalized center 

deflections of a four layered symmetric cross-ply and angle-ply clamped 

laminates (CC5) under uniform lateral load ( q        h/a         

 

E /E  
cw  
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o
   

o
  

o
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o
 -  

o
 -  
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o
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Table A.33 Effect of material anisotropy on the non-dimensionalized center 

deflections of a four layered symmetric cross-ply and angle-ply simply 

supported laminates (SS5) under uniform lateral load ( q        h/a         

 

 

E /E  

cw  
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o
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o
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o
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Table A.34 Effects of fiber orientation θ on the deflection of a simply supported 

square plate ( q           h/a        

 
 

θ cw  

SS2 SS3 SS4 SS5 
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Table A.35 Effects of fiber orientation θ on the deflection of a clamped  square 

plate ( q           h/a        

 

 

θ cw  

CC1 CC2 CC3 CC4 CC5 
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Table A.36 Variation of central deflection 
cw with a high pressure range q  of a 

simply supported (SS4) four-layered anti-symmetric square plate of the 

arrangement  oooo  ///  with different orientations (h/a =0.2)  

 

q  cw  
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Table A.37 Variation of central deflection 
cw with a high pressure range q  of 

clamped (CC3) four-layered anti-symmetric square plate of the arrangement 

 oooo  ///  with different orientations (h/a =0.2) 
 

q  cw  
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Table A.38 Central deflection of a two layer anti-symmetric cross-ply simply 

supported in-plane fixed (SS5) rectangular plate under uniform pressure (b/a   

     h/a        

 

q  1w   
o
   

 
] 2w    

o
  

 
] 0w (Bij     %S(1) %S(2) %S(3) 
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S(1):100 × ( 1w - 0w )/ 0w  

S(2):100 × ( 2w - 0w )/ 0w  

S(3):100 × ( 1w - 2w )/ 2w  
 

 

Table A.39 Central deflection of a two layer anti-symmetric angle-ply simply 

supported in-plane fixed (SS5) rectangular plate under uniform pressure (b/a   

     h/a         

 

q  
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= 2w  -  
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0w (Bij     
%S(1)= 

%S(2) 
%S(3) 
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S(1):100 × ( 1w - 0w )/ 0w  

S(2):100 × ( 2w - 0w )/ 0w  

S(3):100 × ( 1w - 2w )/ 2w  

 

Table A.40 Central deflection of a two layer anti-symmetric cross-ply and angle-

ply simply supported in-plane fixed (SS5) rectangular plate under uniform 

pressure and with different aspect ratios ( h/a        q       ) 
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Table A.41 Variations of center deflection 
cw with load, q  of simply supported 

(SS1) and (SS5), and clamped (CC5) thin isotropic plates (h/a         ν        
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Table A.42 Variation of central deflection 
cw with pressure q  of a simply 

supported (SS2) four-layered anti-symmetric and symmetric cross-ply and 

angle-ply square plate (h/a        
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Table A.43 Variation of central deflection 
cw with pressure q  of clamped (CC2) 

four-layered anti-symmetric and symmetric cross-ply and angle-ply square plate 

(h/a        
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Appendix (B) 

Graphs  
 

 
 

Fig. B.1 Variation of central deflection, cw  with load, q  of thin (h/a =0.02) and thick (h/a 

=0.2) simply supported (SS5) square isotropic plate. 

 
Fig. B.2 A comparison of center deflections versus side to thickness ratio of anti-symmetric 

cross-ply and angle-ply square laminates under uniform lateral load  ( q          



 

 

   

 

 

Fig. B.3 A comparison of center deflections versus side to thickness ratio of anti-

symmetric cross-ply and angle-ply square laminates under uniform lateral load (

q           

 
Fig. B.4 Number of layers effect on a simply supported (SS5) antisymmetric 

cross-ply [(0
o 
    

o
)n] square plate under uniformly distributed loads ( h/a         



 

 

   

 

 
Fig. B.5 Number of layers effect on a simply supported (SS5) antisymmetric a 

angle-ply [(45
o 
  -  

o
)n] square plate  under uniformly distributed loads  (h/a   

      

 
Fig. B.6 Effect of material anisotropy on the non-dimensionalized Centre 

deflections of a four layered symmetric cross-ply and angle-ply clamped 

laminates (CC5) under uniform lateral load   ( q          h/a         

 



 

 

   

 

 
Fig. B.7 Effect of material anisotropy on the non-dimensionalized center 

deflections of a four layered symmetric cross-ply and angle-ply simply 

supported laminates (SS5) under uniform lateral load   ( q          h/a         

 

 
Fig. B.8 Effects of fiber orientation, θ on the deflection of a simply supported 

square plate ( q          h/a         

 

 



 

 

   

 

 
Fig. B.9 Effects of fiber orientation, θ on the deflection of a clamped square plate 

( q         h/a                         

 

 
Fig. B.10 Variation of central deflection, cw  with pressure, q of simply 

supported (SS4) antisymmetric square plate with different orientations (h/a 

      



 

 

   

 

 
Fig. B.11 Variation of central deflection, cw  with pressure, q of clamped (CC3) 

antisymmetric square plate with different orientations (h/a = 0.2). 

 

 
Fig. B.12 Central deflection of a two layer antisymmetric cross-ply    simply 

supported (SS5) rectangular plate under uniform pressure (b/a        h/a         



 

 

   

 

 
Fig. B.13 Central deflection of a two-layer antisymmetric angle-ply    simply 

supported (SS5) rectangular plate under uniform pressure (b/a        h/a         

 

 
Fig. B.14 Central deflection of a two layer antisymmetric cross-ply and angle-ply 

simply supported (SS5) rectangular plate under uniform pressure and with 

different aspect ratios (h/a        q           

 



 

 

   

 

 
Fig. B.15 Variations of central deflection, cw  with load, q of thin (h/a =0.02) 

isotropic simply supported (SS1) and (SS5), and clamped (CC5) conditions  (ν   

      

 

 
Fig. B.16 Variation of cw  with pressure, q of simply supported (SS2) 4-layered 

anti-symmetric and symmetric cross-ply and angle-ply square laminate (h/a   

      

 



 

 

   

 

 
Fig. B.17 Variation of central deflection, cw  with pressure, q of clamped (CC2) 

4-layered anti-symmetric and symmetric cross-ply and angle-ply square 

laminate (h/a         

 

 

 

 

 

 

  



 

 

   

 

Appendix (C)  

Boundary conditions 

 
 

 
 

 

 
 

Fig.  C.1 Simply supported boundary conditions  



 

 

   

 

 

 
 

 

 
 

 
 

 Fig. C.2 Clamped boundary conditions  

 

 



 

 

    

 

Appendix (D) 

Estimation of the Fictitious Densities 

 

 The following fictitious densities have been derived using the procedure 

proposed by Cassel and Hobbs [52]. 

 With reference to Fig.3.2:  
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Where the over lined quantities are given by: 
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And 1l , 2l  and 3l  are as follows: 
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