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Preface

During my long experience in teaching several engineering subjects | noticed
that many students find it difficult to learn from classical textbooks which are written
as theoretical literature. They tend to read them as one might read a novel and fail to
appreciate what is being set out in each section. The result is that the student ends his
reading with a glorious feeling of knowing it all and with, in fact, no understanding of
the subject whatsoever. To avoid this undesirable end a modern presentation has been
adopted for this book. The subject has been presented in the form of solution of
comprehensive examples in a step by step form. The example itself should contain
three major parts, the first part is concerned with the definition of terms, the second
part deals with a systematic derivation of equations to terminate the problem to its
final stage, the third part is pertinent to the ability and skill in solving problems in a
logical manner.

This book aims to give students of engineering a thorough grounding in the
subject of heat transfer. The book is comprehensive in its coverage without
sacrificing the necessary theoretical details.

The book is designed as a complete course test in heat transfer for degree
courses in mechanical and production engineering and combined studies courses in
which heat transfer and related topics are an important part of the curriculum.
Students on technician diploma and certificate courses in engineering will also find
the book suitable although the content is deeper than they might require.

The entire book has been thoroughly revised and a large number of solved
examples and additional unsolved problems have been added. This book contains
comprehensive treatment of the subject matter in simple and direct language.

The book comprises eight chapters. All chapters are saturated with much needed
text supported and by simple and self-explanatory examples.

Chapter one includes general introduction to transient conduction or unsteady
conduction, definition of its fundamental terms, derivation of equations and a wide

spectrum of solved examples.



In chapter two the time constant and the response of temperature measuring
devices were introduced and discussed thoroughly. This chapter was supported by
different solved examples.

Chapter three discusses the importance of transient heat conduction in solids
with finite conduction and convective resistances. At the end of this chapter a wide
range of solved examples were added. These examples were solved using Heisler
charts.

In chapter four transient heat conduction in semi — infinite solids were
introduced and explained through the solution of different examples using Gaussian
error function in the form of tables and graphs.

Chapter five deals with the periodic variation of surface temperature where the
periodic type of heat flow was explained in a neat and regular manner. At the end of
this chapter a wide range of solved examples was introduced.

Chapter six concerns with temperature distribution in transient conduction. In
using such distribution, the one dimensional transient heat conduction problems could
be solved easily as explained in examples.

In chapter seven additional examples in lumped capacitance system or negligible
internal resistance theory were solved in a systematic manner, so as to enable the
students to understand and digest the subject properly.

Chapter eight which is the last chapter of this book contains unsolved theoretical
questions and further problems in lumped capacitance system. How these problems
are solved will depend on the full understanding of the previous chapters and the
facilities available (e.g. computer, calculator, etc.). In engineering, success depends
on the reliability of the results achieved, not on the method of achieving them.

| would like to express my appreciation of the assistance which I have received
from my colleagues in the teaching profession. | am particularly indebted to Professor
Mahmoud Yassin Osman for his advice on the preparation of this textbook.

When author, printer and publisher have all done their best, some errors may
still remain. For these | apologies and | will be glad to receive any correction or

constructive criticism.
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Chapter One

Introduction

From the study of thermodynamics, you have learned that energy can be
transferred by interactions of a system with its surroundings. These interactions are
called work and heat. However, thermodynamics deals with the end states of the
process during which an interaction occurs and provides no information concerning
the nature of the interaction or the time rate at which it occurs. The objective of this
textbook is to extend thermodynamic analysis through the study of transient
conduction heat transfer and through the development of relations to calculate
different variables of lumped capacitance theory.

In our treatment of conduction in previous studies we have gradually considered
more complicated conditions. We began with the simple case of one dimensional,
steady state conduction with no internal generation, and we subsequently considered
more realistic situations involving multidimensional and generation effects. However,
we have not yet considered situations for which conditions change with time.

We now recognize that many heat transfer problems are time dependent. Such
unsteady, or transient problems typically arise when the boundary conditions of a
system are changed. For example, if the surface temperature of a system is altered,
the temperature at each point in the system will also begin to change. The changes
will continue to occur until a steady state temperature distribution is reached.
Consider a hot metal billet that is removed from a furnace and exposed to a cool air
stream. Energy is transferred by convection and radiation from its surface to the
surroundings. Energy transfer by conduction also occurs from the interior of the
metal to the surface, and the temperature at each point in the billet decreases until a
steady state condition is reached. The final properties of the metal will depend
significantly on the time — temperature history that results from heat transfer.
Controlling the heat transfer is one key to fabricating new materials with enhanced

properties.



Our objective in this textbook is to develop procedures for determining the time
dependence of the temperature distribution within a solid during a transient process,
as well as for determining heat transfer between the solid and its surroundings. The
nature of the procedure depends on assumptions that may be made for the process. If,
for example, temperature gradients within the solid may be neglected, a
comparatively simple approach, termed the lumped capacitance method or negligible
internal resistance theory, may be used to determine the variation of temperature with
time.

Under conditions for which temperature gradients are not negligible, but heat
transfer within the solid is one dimensional, exact solution to the heat equation may
be used to compute the dependence of temperature on both location and time. Such
solutions are for finite and infinite solids. Also, the response of a semi — infinite solid

to periodic heating conditions at its surface is explored.

1.1 General Introduction:

Transient conduction is of importance in many engineering aspects for an
example, when an engine is started sometime should elapse or pass before steady
state is reached. What happens during this lap of time may be detrimental. Again,
when quenching a piece of metal, the time history of the temperature should be
known (i.e. the temperature — time history). One of the cases to be considered is when
the internal or conductive resistance of the body is small and negligible compared to
the external or convective resistance.

This system is also called lumped capacity or capacitance system or negligible
internal resistance system because internal resistance is small, conductivity is high
and the rate of heat flow by conduction is high and therefore, the variation in
temperature through the body is negligible. The measure of the internal resistance is
done by the Biot (Bi) number which is the ratio of the conductive to the convective

resistance.



When Bi « 0.1 the system can be assumed to be of lumped capacity (i.e. at Bi =
0.1 the error is less than 5% and as Bi becomes less the accuracy increases).
1.2 Definition of Lumped Capacity or Capacitance System:

Is the system where the internal or conductive resistance of a body is very small
or negligible compared to the external or convective resistance.

Biot number (Bi): is the ratio between the conductive and convective resistance.

hl ~ conductionresistance x 1 x hA hx

_— - — — T —

Bi = =
' k convection resistance kA" hA kA 1 k

Where x is the characteristic linear dimension and can be written as [, h is the heat
transfer coefficient by convection and K is the thermal conductivity.

When Bi « 0.1, the system is assumed to be of lumped capacity.

1.3 Characteristic Linear Dimensions of Different Geometries:

e ey . . \'% volume of the box
The characteristic linear dimension of abody, L= — =
Ag surface area of the body

_ . . . t
Characteristic linear dimension of a plane surface, L = E

Characteristic linear dimension of a cylinder, L = -

Characteristic linear dimension of a sphere (ball), L = g

Characteristic linear dimension of a cube, L = 2

Where: t is the plate thickness, r is the radius of a cylinder or sphere, and a is the
length side of a cube.

The derivations of the above characteristic lengths are given below:

1) The characteristic length of plane surface, L = %



V = abt
A = 2at + 2bt + 2ab

Since, t is very small; therefore, it can be neglected.

A = 2ab
L_V_abt_t
Ay, 2ab 2

I1) The characteristic length of cylinder,

. |74 T
A, 2
V =nriL
A, = 2mrlL
= V mr’l r
T A, 2mrl 2
1ii) The characteristic length of a sphere (ball),
L= r
R
v=—mr3
Ag = 4mr?
4 3
;= V _ gT[T _ r
A, 4mr? 3




1.4 Derivation of Equations of Lumped Capacitance System:
Consider a hot body of an arbitrary shape as shown in Fig. (1.1) below:

Energy balance at any instant requires that:
The rate of loss of internal energy of the body must be equal to the rate of convection

from the body to the surrounding fluid.

Fig. (1.1) Hot body of an arbitrary shape

dT
q=—pVc, dgt) = hA,(T(t) — Ty) (1.1)

Put (T(t) —T,) =6
And,
ar() do
dt dt

do
i —pVep——=h A (1.2)



If the temperature of the body at time 7 = 0 is equal to T,

% 0,=T,— Ty

do
—pVcp i hA, dt (1.3)

By integrating the above equation (1.3) we obtain the following equation:

k
pcpl?

And,

do

=T
—pVcp 7= f hA, dt
6o =0

6,
0 hA; T
In—=—
6, pVep
—hAg T
oo 9—0 = e pVep (1_4)
hA be writt hV  Ajk s
e T can be written as KA. VzpcPT (1.5)

-7 = Fourier number Fo (dimensionless Quantity) (1.6)

hL—B' 1.7
k - l ()
. 4 =BixF 1.8
C Ve T = Bi o (1.8)
6 T —Tw BixFo
W —=—T1—=¢" 1.
0, T,—T, ° (1.9)

The instantaneous heat transfer rate g’ (t) is given by the following equation:

Attime 7 =0,

q'(v) = hA,0 = hA,0,e B*Fo  (1.10)



q'(v) = hA,0, (1.11)

The total heat transfer rate from t = 0 to 7 = 7 is given by the following equation:

T=T

Q(t)=f q’(T)=fThA5906‘Bi"F° (1.12)
7=0 0

From equation (1.8) — Bi X Fo = :;CS -7 and substitute in equation (1.12), the
P

following equation is obtained:

—hAg
T —hés _ epVep ©
Q(t) = hAsgoJ ePVer = hASQO T
0 -5
pVer |,
—hA -h4As _1°
s .o —pVcp pVcp S
= hAsgo ePVcr X hAS = —hAsgo hAS [e pvep T]O
pVecp =has . pVcp
= ~hAs0o e - {-h4:8, h_AS}
= —hA0 ePVer 4+ hA 0, ——
sYo h < sYo hAS
pVcp { ﬂ.,}
= hA0,—2]1— ePVer
sYo hAS

= h40, - {1 —e BixFo}  (1.13)

Bi X Fo

1.5 Solved Examples:

Example (1):

Chromium steel ball bearing (k = 50w/mK,a = 1.3 X 107°>m?/s) are to be heat
treated. They are heated to a temperature of 650°C and then quenched in oil that is at

a temperature of 55°C.
The ball bearings have a diameter of 4cm and the convective heat transfer coefficient

between the bearings and oil is 300w/m?K. Determine the following:



(@) The length of time that the bearings must remain in oil before the temperature
drops t0200°C.

(b) The total heat removed from each bearing during this time interval.

(c) Instantaneous heat transfer rate from the bearings when they are first placed in the

oil and when they reach 200°C.

Solution:

Chromium steel ball bearings

k = 50w/mK

a = thermal dif fusivity = 1.3 X 10™>m?/s
T, = 650°C, T, =55°C

Diameter of ball bearing, d = 4cm = 0.04m
h = 300w/m?K

a) =7 T(t) =200°C

Bi h L
| = —
k
isti 1 f the ball v
Characteristic length, L = volumeoftheball _ Vv
surface area of the ball Ay
4 3
L v §T[T' T
T Ay 4mr? 3

hL_3oo><o.04_004
kK~ 6x50

Since Bi « 0.1, the lumped capacity system or the negligible internal resistance

Bi =

theory is valid.
0 T@) Ty

— — p,—BiFo
90 To - Too ¢
F k a 1.3 x107° 0.2925
0= T=—=71=———+=0. T
pcpl? L2 (0.02)2
3
i — M _ —0.04X0.2925T
8, 650—55

8



0.2437 = e~001177

log 0.2437 = loge %1177 = —0.0117 Tloge

log 0.2437 log 0.2437
T = = = 1207 S
loge x —0.0117 —0.0117loge
b) Q (1) =?
. T
_ _ p,—BixFo
Q(t) = hAs6,[1—e ]Bi o

120.7
0.04 x 0.2925 x 120.7

Q(t) = 300 X 47 X 0.022(650 — 55)[1 — g ~004x0.2925x120.7]

Q) = 58005.4 ] = 58 kj

¢) Instantaneous heat transfer rate, q'(7) =?

1) When they are first placed in oil,
q'(t) = hA,8, = 300 x 41 X 0.02%2(650 — 55) = 897.24w
i) When they reach 200°c,
q' (1) = hASQOe—BixFo — 897.24 x ¢ ~0-04x0.2925x120.7 — 218 6w

Example (2):

The product from a chemical process is in the form of pellets which are
approximately spherical to the mean diameter, d = 4mm . These pellets are initially
at 403K and must be cooled to 343K maximum before entering storage vessel. This
proposed to cool these pellets to the required temperature by passing them down
slightly inclined channel where they are subjected to a stream of air at 323K. If the
length of the channel is limited to 3m, calculate the maximum velocity of the pellets
along the channel and the total heat transferred from one pellet.

Heat transfer from pellet surface to the air stream may be considered to be the

limiting process with Z—d =2.

a

Where:

h = heat transfer coefficient at the pellet surface.
9



k, = thermal conductivity of air = 0.13w/mK

Other data:

Pellet material density = 480kg/m3

Specific heat capacity cp = 2kj/kgK

You may assume that the lumped capacitance system theory is applicable.
Solution:

The product from a chemical process in the form of spherical pellets,
d = 4mm = 0.004m, r =0.002m

T, = 403 K
T(t) = 343 K
T, = 323K

Length of the channel, L = 3m

Calculate:

* The maximum velocity of the pellets along the channel, v,,,, =7
Q) =7

Heat transfer from pellet surface to the air stream is limited to ’;{—d =2

a

k, = 0.13w/mK

p pellet = 480kg/m3

cp = 2kj/kgK = 2 x 103j/kgK

It is assumed that lumped capacity system or negligible internal resistance theory is
applicable.

Max. Velocity, v,q = %

Biot Number, Bi = %

Characteristic length, L,

3

Wl

_ volumeofasphere V. 37 r
~ surface area of a sphere A, 4mnr?z 3
_r_0.002

-3 "3 "

10



~_hr _0.002h

I = =

3k 3k
hd 5 ¢ h x 0.004 5
k, ~ 013
B 2><0.13_65 20
= 000z ow/m
~0.002x65 0.13
Bi = —
3k 3k
i _ @) —To _ ,—BixFo
0, T,—Tw
6 _343-323 e_%x o
6, 403 — 323
; k k
0= T = T
LZ 2
per 480 x 2 x 103 X (—0'%02)
Fo = 2.34375k T
i — 0 25 — 6_%X2'34375k‘[

0o

0.25 = ¢—0-10156251

log0.25 = —0.1015625 tloge

log 0.25 log 0.25
T = = - 1365 S
loge X —0.1015625 —0.1015625loge
_ L
~ max. velocity, v, = =T3¢5 0.22m/s
Q(t) = hA,0,[1 — e BXFo| —
s7o Bi X Fo

0.13
Q(t) = 65 x 4m x 0.0022(403 — 323) [1 — e 3k (3THIAZEI) o

11



13.65

013 = 1.93 ]/ pellet
'T X 2.34375 x 13.05

=~ Q(t) =1.93]/ pellet

Example (3):

A piece of chromium steel of length 7.4cm (density=8780kg/m’ ; k = 50w/mK and
specific heat cp = 440j/kgK) with mass 1.27kg is rolled into a solid cylinder and
heated to a temperature of 600°C and quenched in oil at 36°c. Show that the lumped
capacitance system analysis is applicable and find the temperature of the cylinder
after 4min. What is the total heat transfer during this period?

You may take the convective heat transfer coefficient between the oil and cylinder at
280w/m’k.

Solution:

A piece of chromium steel, L = 7.4cm = 0.074m

p = 8780kg/m>; k =50w/mK; c, =440j/kgK; m = 1.27kg
Rolled into a solid cylinder,

T, = 600°C; T, =36°C; h=280w/m?K

T(t) =? after 4min. (i.e. T =4 X 60 = 240s); Q(t) =?

Bi hL
Il =—
k
volume of a cylinder %4

Characteristic length, L = _ =
surface area of a cylinder  Ag

B nril o
- 2arl 2
Bi — hr
"T ok
m 1.27
V=—=——=1.4465X%X10"*m3

» 8780

12



L=74cm = 0.074m

V =nr?L =1.4465x 107*

= 0.025m

~ |1.4465x 10~
T T %0074

o _hT_280x0025
YT ok T T 2x50

Since Bi « 0.1, then the system is assumed to be of lumped capacitance system,
and therefore the lumped capacitance system analysis or the negligible internal
resistance theory is applicable.

T(t) =?

T=4%x60=240s

i — T(t) —To — g~ BiFo
0, T, —Te
Fo = k
0= PYNE T
50
Fo = 00252 X 240 = 19.88
8780 X 440 X (=)
i _ T —36 _ ,—0.07x19.88
6, 600—36
r{) —36 _ ,-1.3916
564

~T(t) =56+ e~ 13916 4 36 = 176.254°C
q,(T)ZO = q’(O) = hA0, = hA;(T, — Tx)
= 280 x 2w X 0.025 X 0.074(600 — 36) = 1835.65w

q/(T):4min — hASQOB_Bi xXFo

13



= 1835.65 X e~13916 = 456 5\

Total heat transfer rate,

T

Q1) = hAs8,(1 — €77 77) oe —

Q(t) = 1835.65(1 — e-1-3916)ﬂ = 237855.57 ]
' 1.3916 '

~ 237.86 kj

Example (4):

A piece of aluminum (p = 2705kg/m3,k = 216w/mK, c, = 896j/kgK) having a
mass of 4.78kg and initially at temperature of 290°C is suddenly immersed in a fluid
at 15°C.

The convection heat transfer coefficient is 54w/m?K . Taking the aluminum as a
sphere having the same mass as that given, estimate the time required to cool the
aluminum to 90°C.

Find also the total heat transferred during this period. (Justify your use of the lumped

capacity method of analysis).

Solution:

A piece of aluminum

p =2705kg/m3; k =216w/mK; c, =896]/kgK; m = 4.78kg
P

T, = 290°C;
T, = 15°C;
h = 24w/m?K;

Taking aluminum as a sphere.
Estimate 7=7? T(t) =90°C; Q(t)=?
0 T()—Tw

0, T,—T,

=e —Bi XFo

14



As  4mr?
hr
i= —
3k
_m_V_m_4.78_4 3
P=y V= T 2705 3™
_clar8 3
"= 127054 O™
. 54%0.075
Bi=2"""""2_ 000625

3x 216

If Bi «< 0.1, then the system is assumed to be of lumped capacity.

Since Bi = 0.00625 « 0.1 , therefore the lumped capacity method of analysis is

used.
F k 216
0o = T = .
pepl? 0.075\°
2705 X 896 x (T)
Fo=0.14261
i — M _ —0.00625X0.1426 T
6, 290 —15
E — o—89125x107%7
275
1 > = —89125x107* 71
Og275 = . T10ge
log 75
275
LT = = 1457.
T 89125 x 10T rloge L B8
Total heat transfer rate, Q(t),
T

_ _ ,—BiXFo
Q(t) = hA6,[1—e ]BixFO

15



Q(t) = 54 X 47 x 0.0752(290 — 15)[1 — e~89125x107" x14578]

1457.8
8.9125 x 10~% x 1457.8

= 856552 ] = 856.6 kj

s+ Q(t) = 856552 ] = 856.6 kj

16



Chapter Two

Time Constant and Response of Temperature Measuring

Instruments

2.1 Introduction:
Measurement of temperature by a thermocouple is an important application of
the lumped parameter analysis. The response of a thermocouple is defined as the time

required for the thermocouple to attain the source temperature.

It is evident from equation (1.4), that the larger the quantity ;1;15 the faster the

cp '
exponential term will approach zero or the more rapid will be the response of the
temperature measuring device. This can be accomplished either by increasing the
value of "h" or by decreasing the wire diameter, density and specific heat. Hence, a
very thin wire is recommended for use in thermocouples to ensure a rapid response
(especially when the thermocouples are employed for measuring transient
temperatures).

From equation (1.8);

Bi X Fo _ hA,
T pVcp
pVep T
hA;,  BiXFo
The quantity p;:" (which has units of time) is called time constant and is denoted by

the symbol 7* . Thus,

T, pVep kK V 2.1
BixFo ' hA, ah A, '
fsnoe o= 32
Since a = —

Cp

And,

17



0 _TM)-To BixFo *
— =7 % _ o = e~ (@/T) 2.2
0, Tp—Tw ¢ (2:2)

At T = 7* (one time constant), we have from equation (2.2),

O _TOTo _ 1 _ (368 2.3
o =T 7. =¢ =0 (2.3)

Thus, t* is the time required for the temperature change to reach 36.8% of its final
value in response to a step change in temperature. In other words, temperature
difference would be reduced by 63.2%. The time required by a thermocouple to
reach its 63.2% of the value of initial temperature difference is called its sensitivity.

Depending upon the type of fluid used the response times for different sizes of

thermocouple wires usually vary between 0.04 to 2.5 seconds.
2.2 Solved Examples:

Example (1):

A thermocouple junction of spherical form is to be used to measure the temperature
of a gas stream.

h = 400w/m2°C; k(thermocouple junction) = 20w/m°C; c, = 400/ /kg°C;
and p = 8500kg/m3;

Calculate the following:

(i) Junction diameter needed for the thermocouple to have thermal time constant of
one second.

(if) Time required for the thermocouple junction to reach 198°c if junction is initially

at 25°C and is placed in gas stream which is at 200°C .

Solution:
Given: h = 400w/m2°C; k(thermocouple junction) = 20w/m°C;
8500kg

m3

c, =400//kg°C; p =

(i) Junction diameter, d =?

" (thermal time constant) =1 s
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The time constant is given by:

4
. PVcp _ngm‘gxcp_prcp
~ h4d,  hx4mr2  3h

T

| _ 8500 x 7 x 400
or =T 3% 200

3
o = — = 3. X 1 —4 = 0.
r 8500 3.53 0™*m = 0.353mm

~d=2r=2x0.353=0.706mm
(i1) Time required for the thermocouple junction to reach 198°C; 7 =?
Given: T, = 25°C; T, =200°C; T(t) = 198°C;

hL,

Bi =
TR

r
L. of a sphere = 3

o _ h(r/3) _ 400 % (0.353 X 107°/3)
l = s

= 0.002
. 20 0.00235

As Bi is much less than 0.1, the lumped capacitance method can be used. Now,

T(t) —Tw — g~ BiXFo — ,—(t/7)
TO - Too

k 20
Fo = T = T =42486T

-3 2
8500 X 400 X (0'353; 10 )

Bi X Fo = 0.00235 X 424.86 t = 0.9987

T
s~ Bi X Fo = F = 0.9987

w 7° = 1,therefore, 7 = 0.998t

o — 198 — 200 — p—0.9987
6, 25-200

19



0.01143 = ¢~0:9987

—0.9987 Ine =1n0.01143

In0.01143

= T099gx 1 483

A

Example (2):

A thermocouple junction is in the form of 8mm diameter sphere. Properties of
material are:

c, = 420/ /kg°C; p = 8000kg/m?; k = 40w/m°C; h = 40w/m?°C;
This junction is initially at 40°C and inserted in a stream of hot air at 300°C . Find
the following:
(i) Time constant of the thermocouple.
(i1) The thermocouple is taken out from the hot air after 10 seconds and kept in still
air at 30°C. Assuming the heat transfer coefficient in air is 10w/m2°C, find the
temperature attained by the junction 20 seconds after removal from hot air.

Solution:

. 8 420 8000k
Given: r=-=4mm = 0.004m; c, = ]; = g
2 P kgoc m3

; k = 40w/m°C

h = 40w/m2°C (gas stream or hot air); h = 10w/m?2°C (still air)

(i) Time constant of the thermocouple, t* =?

4
., T _pVep _ngﬂrsxcp_prcp
Y TBixFo hA,  hxamr? _ 3h

. 8000 x 0.004 x 420
N 3 x 40

N T = 112 s (when thermocouple is in gas stream)

(if) The temperature attained by the junction, ; T(t) =?
Given: T, = 40°C; T, =300°C; 7=10s;
The temperature variation with respect to time during heating (when dipped in gas

stream) is given by:
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0 — T() — Ty — p—BixFo _ ,—(t/7")

9, T, —T,
T(t) — 300 *
T 7500~/ = o-10/112) — 9146
" 20—-300 ¢ ¢

~ T(t) =—260x%x0.9146 + 300 = 62.2°C

The temperature variation with respect to time during cooling (when exposed to air)

IS given by:
T(t) - TOO — e_(T/T*)
T, — Ty
h . _prcp 8000 x0.004 x 420 248
WQFET—3h— 3 x 10 = S
T(t)—30
— p(-20/448) — (.
2230 ° 0.9563
or T(T) = (62.2 —30) X 0.9563 + 30 = 60.79°C
Example (3):

A very thin glass walled 3mm diameter mercury thermometer is placed in a stream of

air, where heat transfer coefficient is 55w/m2°C, for measuring the unsteady
temperature of air. Consider cylindrical thermometer bulb to consist of mercury only
for which k = 8.8w/m°C and a = 0.0166m?/h. Calculate the time required for

the temperature change to reach half its final value.

Solution:

Given: r=2=15mm =0.0015m; h =55w/m?°C; k = 8.8w/m°C;

a = 0.0166m?/h
The time constant is given by:
kv

Tt = P A_s from equation (2.1)

k wr?lL  kr 8.8 x 0.0015

= —X = =
ah 2nrl 2ah 2 Xx0.0166 X 55
21

*

T = 0.0027229h = 26s




For temperature change to reach half its final value

i — l — e—(T/T*)
0,
ln1 =Ilne ™"
2

] L *1
nz——r/r ne

1
T lnf 1
——=—%2=]n==-0.693
™ Ine 2
T
s —=0.693
T

ort=1"%X0.693 =26x%x0.693 =18.02s

Note: Thus, one can expect thermometer to record the temperature trend accurately

only for unsteady temperature changes which are slower.

Example (4):

The temperature of an air stream flowing with a velocity of 3m/s is measured by a
copper — constantan thermocouple which may be approximately as a sphere of 2.5mm
in diameter. Initially the junction and air are at a temperature of 25°C. The air
temperature suddenly changes to and is maintained at 215°C.

(i) Determine the time required for the thermocouple to indicate a temperature of
165°C. Also, determine the thermal time constant and the temperature indicated by
the thermocouple at that instant.

(i1) Discuss the stability of this thermocouple to measure unsteady state temperature
of a fluid when the temperature variation in the fluid has a time period of 3.6s.

The thermal junction properties are:

p = 8750kg/m>; ¢, =380J/kg°C; k(thermocouple) = 28w/m°C; and

h = 145w/m2°C;

Solution:
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Given: r = % = 1.25mm = 0.00125m; T, = 25°C; T, = 215°C; T(t) = 165°C

Time required to indicate temperature of 165°C; 7 =? and 7* =7?;
Characteristic length,

Lo=r o 3 _ 000125 h004167m
© A, 4mr? 3 3
Thermal diffusivity,
a = < 28 =8.421 x 107°m?/s
pcp 8750 x 380
Fourier number,
Foo—K . o0 _BAXI0TT 000,
pcpl? [2 ~ (0.0004167)2
Biot number,
Bi = hli,c _ 145 X 02.(:3004167 — 0.002158

As Bi « 0.1, hence lumped capacitance method may be used for the solution of the
problem.

The temperature distribution is given by:

i _ T(t) —To — e—BixFo
90 To - TOO
or 165 — 215 — o(=0.002158x48.497T) _ ,—0.10467
25— 215

0.263 = e—0.1046‘t

—0.10467 Ine =1n0.263

In0.263

T T 201046 x 1

=12.76s

Thus, the thermocouple requires 12.76 s to indicate a temperature of 165°C . The

actual time requirement will, however, be greater because of radiation from the probe
and conduction along the thermocouple lead wires.
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The time constant (™) is defined as the time required to yield a value of unity for the

exponent term in the transient relation.

T
BixFo=—=1

T
Or
0.002158 x 48.497t* =1
Or
" =955s
At 9.55 s, the temperature indicated by the thermocouple is given by:
T T  _,
T, — Toy
Or
T()—215 |
25— 215
Or

T(t) = 215+ (25— 215)e~! = 145°¢

(i1) As the thermal time constant is 9.55 s and time required to effect the temperature
variation is 3.6 s which is less than the thermal time constant, hence, the temperature

recovered by the thermocouple may not be reliable.
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Chapter Three
Transient Heat Conduction in Solids with Finite Conduction

and Convective Resistances [0 < Bi < 100]

3.1 Introduction:

As shown in Fig. (3.1) below, consider the heating and cooling of a plane wall
having a thickness of 2L and extending to infinity in y and z directions.
Let us assume that the wall, initially, is at uniform temperature T, and both the
surfaces (x = +L) are suddenly exposed to and maintained at the ambient (i.e.

surrounding) temperature T,,. The governing differential equation is:

d’t 1ldt 21
dx?  adr (3-1)
The boundary conditions are:
(YAt t=0, T(t) =T,
i)At t=0, L=
dx
(iii) At x = +L; kATE = hA(T(Y) - T.,)

(The conduction heat transfer equals convective heat transfer at the wall surface).

2 plane wall

P h

Fig. (3.1) Transient heat conduction in an infinite plane wall

The solutions obtained after rigorous mathematical analysis indicate that:
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T(t)—Tw  .[x Rl ar] (3.2)

T,—T, ’IL k' 12
From equation (3.2), it is evident that when conduction resistance is not negligible,

the temperature history becomes a function of Biot numbers {k} Fourier number
{%} and the dimensionless parameter {%} which indicates the location of point within
the plate where temperature is to be obtained. The dimensionless parameter {%} IS

replaced by {%} in case of cylinders and spheres.

For the equation (3.2) graphical charts have been prepared in a variety of forms. In

the Figs. from (3.2) to (3.4) the Heisler charts are shown which depict the

dimensionless temperature [ ] versus Fo (Fourier number) for various values of

(B—i) for solids of different geometrical shapes such as plates, cylinders and spheres.

These charts provide the temperature history of the solid at its mid — plane (x = 0)
and the temperatures at other locations are worked out by multiplying the mid — plane
temperature by correction factors read from charts given in figs. (3.5) to (3.7). The
following relationship is used:

0 T —Te [T—T] [T(t) ]

6, T,—T-

The values Bi (Biot number) and Fo (Fourier number), as used in Heisler charts, are
evaluated on the basis of a characteristic parameter s which is the semi — thickness in
the case of plates and the surface radius in case of cylinders and spheres.

When both conduction and convection resistances are almost of equal importance the

Heister charts are extensively used to determine the temperature distribution.
3.2 Solved Examples:

Example (1):
A 60 mm thickness large steel plate (k = 42.6w/m°C,a = 0.043m?/h), initially at

440°C is suddenly exposed on both sides to an environment with convective heat

transfer coefficient 235w /m?2°C, and temperature 50°C. Determine the center line
26



temperature, and temperature inside the plate 15mm from the mid — plane after 4.3
minutes.

Solution:

Given: 2L = 60mm = 0.06m, k = 42.6w/m°C,a = 0.043m?/h, T, = 440°C,

h = 235w/m2°C, T, = 50°C, 0 = 4.3minutes.

Temperature at the mid — plane (centerline) of the plate T:

The characteristic length, L, = % = 30mm = 0.03m

Fourier number, F, = = = % = 3.424

Biot number, Bi = hLc _ 235x0.03 _ 0.165
k 42.6

At Bi > 0.1, the internal temperature gradients are not small, therefore, internal
resistance cannot be neglected. Thus, the plate cannot be considered as a lumped
system. Further, as the Bi < 100, Heisler charts can be used to find the solution of
the problem.

Corresponding to the following parametric values, from Heisler charts Fig. (3.2), we

have F, = 3.424; Bii = ﬁ = 6.06 and = = 0 (mid — plane).
Tc —Tw .
T T, = 0.6 [from Heisler charts]
Substituting the values, we have
T, — 50
240 —50  *°

Or
T, =50+ 0.6(440 — 50) = 248°C

Temperature inside the plate 15mm from the mid - plane, T(t) =? the distance 15mm
from the mid — plane implies that:

15

X __0s5
L 30

Corresponding to % = 0.5 and % = 6.06, from Fig. (3.5), we have:
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T(t) —Te _

T, = 097
Substituting the values, we get:
T(t) —50
) =097
Or
T(t) = 50 + 0.97(284 — 50) = 276.98°C
Example (2):

A 6 mm thick stainless steel plate (p=7800kg/m3,cp=460]/kg°C,k=
55w/m°C) is used to form the nose section of a missile. It is held initially at a
uniform temperature of 30°C. When the missile enters the denser layers of the
atmosphere at a very high velocity the effective temperature of air surrounding the
nose region attains 2150°C; the surface convective heat transfer coefficient is
estimated 3395w/m2°C. If the maximum metal temperature is not to exceed
1100°C, determine:

(i) Maximum permissible time in these surroundings.

(i) Inside surface temperature under these conditions.

Solution:
Given: 2L = 6mm = 0.006m, k = 55w/m°C, ¢, = 460]/kg° C, T, = 30°C,
p =7800kg/m3, T, =2150°C, T(t)=1100°C
(i) Maximum permissible time, T =?
0.006

Characteristic length, L, = — = 0.003m

hL — 3395X0.003

Biot number, Bi = — = 0.185
k 55

As Bi > 0.1, therefore, lumped analysis cannot be applied in this case. Further, as

Bi < 100, Heisler charts can be used to obtain the solution of the problem.
Corresponding to Bil = 5.4 and f= 1 (outside surface of nose section, from Fig.

(3.5), we have),
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T(t) — T

T oT. = 0.93
Also,
0 T - [T —To ] [T(t) ]
0, n—T
Or
1100 — 2150 _ [TC - Too] « 0.93
30 — 2150 T, — T
Or

T,—To 1 [1100—2150
T,—T, 0931 30—2150

Now, from Fig. (3.2), corresponding to the above dimensionless temperature and

= 0.495

% = 5, we got the value of Fourier number, Fo = 4.4

=44
- Iz =4,
Or
k [r] _ 44
pc, | L1
Or
T
=44
[7800 X 460] [0.0032]
Or
4.4 % 0.003% x 7800 X 460
T= o = 2.58s

(i) Inside surface temperature, T, =?

The temperature T, at the inside surface (x = 0) is given by:

C [¢e)
= 0.495
T, — Ty
Or
T, — 2150
= 0.495

30 — 2150
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Or
T, = 2150+ 0.495(30 — 2150) = 1100.6°C

Example (3):

Along cylindrical bar (k = 17.4w/m° C,a = 0.019m?/h) of radius 80mm comes
out of an oven at 830° C throughout and is cooled by quenching it in a large bath of
40° C coolant. The surface coefficient of heat transferred between the bar surface and
the coolant is 180w/m? °C . Determine:

(i) The time taken by the shaft center to reach 120° C .

(if) The surface temperature of the shaft when its center temperature is 120° C. Also,

calculate the temperature gradient at outside surface at the same instant of time.

Solution:

Given: R = 80mm = 0.08m, T, = 830°C, T,, = 40°C, h = 180w/m? °C,
T(t) =120° C,k = 17.4w/m° C,a = 0.019 m?/h.

(i) The time taken by the shaft center to reach 120°C, t =7

mR?L R 0.08
=—-=—=0.04m
2MRL 2 2

Characteristic length, L. =

Biot number, Bi = hic _ 180x00% _ 0.413
k 17.4

As Bi > 0.1, therefore, lumped analysis cannot be applied in this case. Further, as
Bi < 100, Heisler charts can be used to obtain the solution of the problem.

The parametric values for the cylindrical bar are:

t__1 = 2.42
Bi 0413
T(t) - T, 120—40

= =0.1
T,—T, 830—40

At the center of the bar, % =0

Corresponding to the above values, from the chart for an infinite cylinder Fig. (3.3),

we read the Fourier number Fo = 3.2.

_ar — 39 0.019)(‘[_
TwHE Tt %" Tooar T
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Or

_32x004° 0.2695h 970.2
T = 0.019 = V. or LS

(if) Temperature at the surface, T(t) or T, =?

Corresponding to £= 1; Bi— 2.42 , from the chart Fig. (3.6) for an infinite

i

cylinder, we read,

= 0.83
T. — Ty
Or
T(t) — 40
120 — 40 0.83
Or
T(t) — 40 = 0.83(120 — 40)
Or

T(t) or T, = 40 + 0.83(120 — 40) = 106.4°C

Temperature gradient at the outer surface, % =7

% at the outside surface is determined by the boundary condition r = R, at which,

rate of energy conducted to the fluid — solid surface interface from within the solid =

rate at which energy is convected away into the fluid.

aT
kA, 3 = hA (T, — Ty)
Or
aT
kﬁ = h(T, — Ty)
Or
o _ E(T —To)
or k>° °°
Or
% = 180 (106.4 — 40) = 686.89 °C
or 174

31



Example (4):

A 120mm diameter apple p = 990kg/m53, ¢, =4170]/kg° C, k = 0.58w/m°C),
approximately spherical in shape is taken from a 25°C environment and placed in a
refrigerator where temperature is 6°C and the average convective heat transfer

coefficient over the apple surface is 12.8w/m?2°C. Determine the temperature at the

center of the apple after a period of 2 hours.

Solution:
Given: R = 120/2 = 60mm = 0.06m, p = 990kg/m>, c, = 4170]/kg°C,

k =0.58w/m°C,T, = 25°C, T, = 6°C,h = 18.8W/m20C,r = 2hours = 7200s

4 53

. SR .
The characteristic length, L, = ol == R=2%_0.02m
4R 3 3
Biot number, Bi = ke = 128X002 _ 441
k 0.58

Since Bi > 0.1, a lumped capacitance approach is appropriate.
Further, as Bi < 100, Heisler charts can be used to obtain the solution of the
problem.

The parametric values for the spherical apple are:

t__1 = 2.267
Bi 0441

Fo — at k r_[ 0.58 ]X[7200]_0281
T Wy? |pe,| 12~ 1990 x 4170] ~ [0.022] T

r
> = 0 (mid — plane or center of the apple)

Corresponding to the above values, from the chart for a sphere Fig. (3.7), we read

c ~To _ (95
T, — Ty
Or
C_ —
25_6_0.75
Or

T, = 6+ 0.75(25 — 6) = 20.25 °C
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Chapter Four

Transient Heat conduction in semi — infinite solids
[H or Bi —» o]
4.1 Introduction:

A solid which extends itself infinitely in all directions of space is termed as an

infinite solid. If an infinite solid is split in the middle by a plane, each half is known
as semi — infinite solid. In a semi — infinite body, at any instant of time, there is
always a point where the effect of heating (or cooling) at one of its boundaries is not
felt at all. At the point the temperature remains unaltered. The transient temperature
change in a plane of infinitely thick wall is similar to that of a semi — infinite body
until enough time has passed for the surface temperature effect to penetrate through
it.
As shown in Fig. (4.1) below, consider a semi — infinite plate, a plate bounded by a
plane x = 0 and extending to infinity in the (4+ve) x — direction. The entire body is
initially at uniform temperature T, including the surface at x = 0. The surface
temperature at x = 0 is suddenly raised to T, for all times greater than Tt = 0 . The
governing equation is:

dzt_ldt i1
dx?  a dt (4.1)

Semi-infinite

/4.’-:',,
7 7
’///I ~(inttial uniform /;}
// lcmpcr.xxurc) /)
d A,
Q=-kA\"7T ;*/’/, 4
. d‘ sl ,////"'_//: A /
7
T

Fig. (4.1) Transition heat flow in a semi — infinite plate
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The boundary conditions are:

(i) T(x,0)=T,;

(ii) T(0,7) =Ty, for t>0;

(iii) T(oo,7) =T, for 7> 0;

The solution of the above differential equation, with these boundary conditions, for
temperature distribution at any time t at a plane parallel to and at a distance x from
the surface is given by:

T(x,7) — Ty
T, — T,

=erf(z) = erf[ ] (4.2)

Where z = ZLM is known as Gaussian error function and is defined by:

erf[ =erf(z) = \/_f e dn (4.3)

7 -

With erf(0) = 0, erf(c0) = 1.

Table (4.1) shows a few representative values of erf(z). Suitable values of error

functions may be obtained from Fig. (4.2) below.

1.0 _-——

0.8 /

JS 04
v | A

0.2

%02 04 06 08 1.0 1.2 14 1.6 18 20

2:1(11:

Fig. (4.2) Gauss's error integral
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Table (4.1) The error function

Z

2 ) X
erf(z) =— | e "d where z =
(z) e JO n N

z erf(z) z erf(z)
0.00 0.0000 0.32 0.3491
0.02 0.0225 0.34 0.3694
0.04 0.0451 0.36 0.3893
0.06 0.0676 0.38 0.4090
0.08 0.0901 0.40 0.4284
0.10 0.1125 0.42 0.4475
0.12 0.1348 0.44 0.4662
0.14 0.1569 0.46 0.4847
0.16 0.1709 0.48 0.5027
0.18 0.2009 0.50 0.5205
0.20 0.2227 0.55 0.5633
0.22 0.2443 0.60 0.6039
0.024 0.2657 0.65 0.6420
0.26 0.2869 0.70 0.6778
0.28 0.3079 0.75 0.7112
0.30 0.3286 0.80 0.7421
0.85 0.7707 1.65 0.9800
0.90 0.7970 1.70 0.9883
0.95 0.8270 1.75 0.9864
1.00 0.8427 1.80 0.9891
1.05 0.8614 1.85 0.9909
1.10 0.8802 1.90 0.9928
1.15 0.8952 1.95 0.9940
1.20 0.9103 2.00 0.9953
1.25 0.9221 2.10 0.9967
1.30 0.9340 2.20 0.9981
1.35 0.9431 2.30 0.9987
1.40 0.9523 2.40 0.9993
1.45 0.9592 2.50 0.9995
1.50 0.9661 2.60 0.9998
1.55 0.9712 2.80 0.9999
1.60 0.9763 3.00 1.0000

By insertion of definition of error function in equation (4.2), we get

2 VA
T(x,7) = To + (T, — Too)ﬁj e " dn
0

On differentiating the above equation, we obtain

oT T,—T.,
0x rmart
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.. The instantaneous heat flow rate at a given x — location within the semi — infinite

body at a specified time is given by:

xZ
e[_4 a r]
Qinstantaneous = —KA(Ty — Too) W (4.4)
T i aT] - .,
By substituting the gradient [E] in Fourier's law.
The heat flow rate at the surface (x = 0) is given by:
_kA(To - Too)
= 4.5
qurface \/m ( )

.. The total heat flow rate,

_ kAT, -Ty) (1 B T
Q(t) = = foﬁdr— KA(T, Tm)z\/;

Or
Q(t) = —1.13kA(T, — Too)\/g (4.6)

The general criterion for the infinite solution to apply to a body of finite thickness

(slab) subjected to one dimensional heat transfer is:

L
> 0.5
2Vat

Where, L = thickness of the body.
The temperature at the center of cylinder or sphere of radius R, under similar
conditions of heating or cooling, is given as follows:

T(t) — Tw

at
T = ef = (4.7)

For the cylindrical and spherical surfaces the values of function erf [g] can be

obtained from Fig. (4.3) which is shown below.
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Fig. (4.3) Error integral for cylinders and spheres

4.2 Penetration Depth and Penetration Time:

Penetration depth refers to the location of a point where the temperature change
Is within 1 percent of the change in the surface temperature.

T(t) — Te
.e. —— =109
“e T T,
This corresponds to zxﬁ = 1.8, from the table for Gaussian error integral.

Thus, the depth (d) to which the temperature perturbation at the surface has
penetrated,

d=36+art

Penetration time is the time t, taken for a surface penetration to be felt at that depth
in the range of 1 percent. It is given by:

Or
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(4.8)

4.3 Solved Examples:

Example (1):

A steel ingot (large in size) heated uniformly to 745° C is hardened by quenching it
in an oil path maintained at 20° C. Determine the length of time required for the
temperature to reach 595° C at a depth of 12mm. The ingot may be approximated as

a flat plate. For steel ingot take a(thermal diffusivity) = 1.2 X 10™°>m?/s

Solution:

Given: T, =745°,T, = 20°,T(t) = 595°%,x = 12mm = 0.012m,
a=1.2x10"°m?/s, time required, T =?

The temperature distribution at any time t at a plane parallel to and at a distance x

from the surface is given by:

T(t) — Ty X
—Tc ~T. =erf [2—\/% (4.2)
Or
595—_20=0.79=erf[ a ]
745 — 20 2Vat
Or
" > \;CE =0.9 from Table (4.1) or Fig. (4.3)
Or
2
Ta:- 0.81
Or
L x? _ 0.0122 _ 376
4ax081 4x1.2x107°>x%x0.81 '
Example (2):

It is proposed to bury water pipes underground in wet soil which is initially at 5.4° C.

The temperature of the surface of soil suddenly drops to —6° C and remains at this

43



value for 9.5 hours. Determine the maximum depth at which the pipes be laid if the
surrounding soil temperature is to remain above 0° C (without water getting frozen).
Assume the soil as semi — infinite solid.

For wet soil take a(thermal diffusivity) = 2.75 X 1073m?/h

Solution:
Given: T, =5.4°C,T,, = —6°¢, Ty) = 0°C,a = 2.75 x 107*m? /s, maximum

depth x =?
The temperature, at critical depth, will just reach after 9.5 hours,
Now,

T(t) — Ty X

T T, =erf [2 NeT (4.2)
Or

979 _ 526 erf[ i

5.4 — (—6) V2at
Or

> \7% ~ 0.5 from Table (4.1)or Fig. (4.3)
Or
x=05x%x2Vat
Or
x =0.5x%2+2.75% 1073 x 9.5 = 0.162m

Example (3):

A 60mm thick mild steel plate (@ = 1.22 x 10™°m?/s) is initially at a temperature
of 30° C. It is suddenly exposed on one side to a fluid which causes the surface
temperature to increase to and remain at 110° C . Determine:

(i) The maximum time that the slab be treated as a semi — infinite body;

(if) The temperature at the center of the slab 1.5 minutes after the change in surface

temperature.
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Solution:

Given: L = 60mm = 0.06m, a = 1.22 x 10~>m?/s, T, = 30°C, T, = 110°C,

T = 1.5 minutes =90 s

(i) The maximum time that the slab be treated as a semi — infinite body, (7,4, = )-
The general criterion for the infinite solution to apply to a body of finite thickness

subjected to one — dimensional heat transfer is:

> jﬁ > 0.5 (where L = thickness of the body)
Or
; =0.5 or L = 0.25
2 m 4a Ty
Or

12 B 0.062
4a x025 4x1.22x%x1075x%0.25

Tmax -

= 295.1s

(if) The temperature at the center of the slab, T (t) =?
At the center of the slab, x = 0.03m; 7=90s

T(t) — Ty X
—_—= erf[
T, — To, 2Vat
Or
T(t) = T, + f[ * ](T T.)
=T, +er — Te
2Vat 0
Where:
f[ X ] f[ 0.0 ] £(0.453)
er = er = er .
2Vat 2v1.22 x 1075 % 90
=~ 0.47 [from Table (4.1)]
T(t) =T, =110 + 0.47(30 — 110) = 72.4°C
Example (4):

The initial uniform temperature of a thick concrete wall (a = 1.6 X 1073m? /h, k =

0.9w/m°C) of a jet engine test cell is 25°C. The surface temperature of the wall
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suddenly rises to 340°C when the combination of exhaust gases from the turbo jet ...
spray of cooling water occurs. Determine:

(i) The temperature at a point 80mm from the surface after 8 hours.

(if) The instantaneous heat flow rate at the specified plane and at the surface itself at
the instant mentioned at (i).

Use the solution for semi — infinite solid.

Solution:
Given: T, = 25°C,T,, = 340°C,a = 1.6 X 1073m? /h, k = 0.94w/m°C,T = 8h,
x = 80mm = 0.08m
(i) The temperature at a point 0.08m from the surface; T(t) =?
T(t) — Te X
o=t
To - Too 2Vat

Or
T =To+erf |5 jﬁ] (T, — )
Where
erf[ a ] = erf[ 0.03 ] = erf(0.353) = 0.37
2vat 2v/1.6x 1073 x 8

.~ T(t) =340+ 0.37(25 — 340) = 223.45°C
(if) The instantaneous heat flow rate, Q;,srantancous at the specified plane =?
2
el:_‘l-)il T]

VT aT

Q; = _kA(To —Ts)

from equation (4.4)

o[—0.082/(4x1.6x1073x8)]
Q; = —0.94 x 1 x (25 — 340)

VI x1.6x 1073 x 8

= —296.1 X

— _ 2
02005 — 1303.28w/m* of wall area

The negative sign shows the heat lost from the wall.

Heat flow rate at the surface itself, Qg race =?
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kA (To - Too)
qurface or Qs = — Jraz

from equation(4.5)

0.94 x 1 x (25 — 340) 5
= — = (—)1476.6w per m* of wall area

Vrx1.6x103x 8

Example (5):
The initial uniform temperature of a large mass of material (a = 0.42m?/h) is
120°C. The surface is suddenly exposed to and held permanently at 6°C. Calculate

the time required for the temperature gradient at the surface to reach 400°C /m.

Solution:
Given: T, =120°C,T,, = 6°C,a = 0.42m?/h,

0T
ﬂ] (temperature gradient at the surface) = 400°C/m
x=0

Time required, 7 =?

Heat flow rate at the surface (x = 0) is given by:

kAT, — To) .
Qsurface = — N from equation (4.5)
Or
y [a_T] _ kAT, — T
d xly—o Vrat
Or
aT T, — T
dxlo  Vmar
substituting the values above, we obtain:
200 — (120 — 6)
Vo X 042X T
Or
X 0.427 = [120 _ 6]2 = 0.0812
400
Or
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0.0812

T = m = 0.0615h = 221.4s

Example (6):

A motor car of mass 1600kg travelling at 90km/h, is brought to reset within a period
of 9 seconds when the brakes are applied. The braking system consists of 4 brakes
with each brake band of 360 cm? area, these press against steel drums of equivalent
area. The brake lining and the drum surface (k = 54w/m°C,a = 1.25 X 10™°m?/s)
are at the same temperature and the heat generated during the stoppage action
dissipates by flowing across drums. The drum surface is treated as semi — infinite

plane, calculate the maximum temperature rise.

Solution:

Given: m = 1600kg, v(velocity) = 90km/h,t = 9s, A(Area of 4 brake bands)
=4 x 360 x 10~*m? or 0.144m? k = 54w/m°C,a = 1.25 x 10~>m?/s.
Maximum temperature rise, T, — T, =?

When the car comes to rest (after applying brakes), its kinetic energy is converted

into heat energy which is dissipated through the drums.

Kinetic energy of the moving car = %mvz

90 x 100072

1
25“600)([ 60 X 60

= 5% 10°] in 9 seconds

5x 10°

- Heat flow rate = 5

= 0.555 X 10°] /s or w

This value equals the instantaneous heat flow rate at the surface (x = 0), which is

given by:
) kA(T, — Te,) 0555 x 105 f ton (45)
i)surface — — N = U. rom equation (4.
Or

54 x 0.144(T, — T.,)
VI x1.25x1075x9
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Or

0555 x 10° X VT x 1.25 %X 1075 % 9

~(To —Teo) = 54 % 0.144 = 1343

Or
T, —T, = 134.3°C

Hence, maximum temperature rise = 134.3°C

Example (7):

A copper cylinder (a« = 1.12 X 10~*m?/s), 600mm in diameter and 750mm in
length, is initially at a uniform temperature of 20°C. When the cylinder is exposed to
hot flue gases, its surface temperature suddenly increases to 480°C. Calculate:

(i) The temperature at the center of cylinder 3 minutes after the operation of change
in surface temperature;

(if) Time required to attain a temperature of 350°C.

Assume the cylinder as semi — infinite solid.

Solution:
Given: R = :ﬂ = 300mm or0.3m, a=112x10"*m?/s, T, =20°C,

T, = 480°C, T(t)=350°C, T=3%Xx60=180s

(i) The temperature at the center of the cylinder, T(t) or T, =?

The temperature distribution at the center of the cylinder is expressed as:
T(t)—To _ a T]

T T, erf | o7 from equation (4.7)
Where:

at 1.12 x 10~ x 180
erf [F] = erf[ T ] = erf(0.224) = 0.32 [from Fig. (4.3)]

Substituting the values, we obtain:
T(t) —480 _

20 — 480 0.32
Or

T(t) = 480 + 0.32(20 — 480) = 332.8°C
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(if) Time required to attain a temperature of 350°C, t =?

Or

350 — 480

20—480 7 |rz

)

0.2826 = erf [%]

. aT
0.23 X R? _0.23x 0.3
a T 1.12x 10
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Chapter Five

Systems with Periodic Variation of Surface Temperature

5.1 Introduction:

The periodic type of heat flow occurs in cyclic generators, in reciprocating
internal combustion engines and in the earth as the result of daily cycle of the sun.
These periodic changes, in general, are not simply sinusoidal but rather complex.
However, these complex changes can be approximated by a number of sinusoidal

components.

Let us consider a thick plane wall (one dimensional case) whose surface
temperature alters according to a sine function as shown in Fig. (5.1) below. The
surface temperature oscillates about the mean temperature level t,, according to the

following relation:

Os . = 05, sin(2mnt)
Where,
s = excess over the mean temperature (= tsr — tm) ;

85 . = Amplitude of temperature excess, i.e., the maximum temperature excess at the
surface;

n = Frequency of temperature wave.

The temperature excess at any depth x and time t can be expressed by the following

relation:
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Surface temperature
amplitude (0, ) Temperature amplitude
t at distance x (0, )
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Fig. (5.1) Temperature curves for periodic variation of surface temperature

,nn
Oyr = 0Osq exp[—x,/nn/a|sin [27mr - X ?] (5.1)

The temperature excess, at the surface (x = 0), becomes zero at = = 0. But at any

depth, x > 0, atime ||%|[—= would elapse before the temperature excess 6, ,
P > :

antn

becomes zero. The time interval between the two instant is called the time lag.

b
The time lag At = 5 (5.2)

anmtn

At depth x, the temperature amplitude (6, ;) is given by:

,n n
Oxq = Osq €Xp [—x 7] (5.3)

The above relations indicate the following facts:

1. At any depth, x > 0, the amplitude (maximum value) occurs late and is smaller
than that at the surface (x = 0).
2. The amplitude of temperature oscillation decreases with increasing depth.

(Therefore, the amplitude becomes negligibly small at a particular depth inside the
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solid and consequently a solid thicker than this particular depth is not of any
Importance as far as variation in temperature is concerned).
3. With increasing value of frequency, time lag and the amplitude reduce.

4. Increase in diffusivity a decreases the time lag but keeps the amplitude large.

n

5. The amplitude of temperature depends upon depth x as well as the factor \/;

Thus, if \/g is large, equation (5.3) holds good for thin solid rods also.

5.2 Solved Examples:

Example (1):

During the periodic heating and cooling of a thick brick wall, the wall temperature
varies sinusoidally. The surface temperature ranges from 30°C to 80°C during a
period of 24 hours. Determine the time lag of the temperature wave corresponding to
a point located at 300mm from the wall surface.

The properties of the wall material are:

p = 1610kg/m3,k = 0.65w/m°C; cp = 440] /kg°C

Solution:
Given: x = 300mm = 0.3m,p = 1610kg/m3,k = 0.65w/m°C;

1
cp =440]/kg°C,n = 2= 0.04167/h

Timelag At =?

X 1 _
At = > g from equation (5.2)
Where:
_k 0.65 =9.176 x 10~7 m? 0.0033m?%/h
& e, 1610 x 440 m”/s or 0.0033m"/
AT = 03 X ! =72h
CAT T 100033 X x 004167
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Example (2):
A single cylinder (a = 0.044m?/h for cylinder material) two — stroke I.C. engine
operates at 1400 rev/min. Calculate the depth where the temperature wave due to

variation of cylinder temperature is damped to 2% of its surface value.

Solution:
Given: a = 0.044m?/h, n = 1400 x 60 = 84000/h

The amplitude of temperature excess, at any depth x, is given by:

Oxa = 054 e @ from equation (5.3)
Or
O _ 52
s,a
Or

2 TX84000
e “NT004F = p—2449x

100
In 0.02 = —2449 x [ne

In0.02

_ _ -3
YT IvE] 1.597 X 10™°m or 1.597mm

X
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Chapter Six

Transient Conduction with Given Temperature Distribution

6.1 Introduction:

The temperature distribution at some instant of time, in some situations, is
known for the one — dimensional transient heat conduction through a solid.
The known temperature distribution may be expressed in the form of polynomial
t =a—bx+cx?+dx3—ex* Where a,b,c,d and e are the known coefficients.
By using such distribution, the one — dimensional transient heat conduction problem

can be solved.
6.2 Solved Examples:

Example (1):

The temperature distribution across a large concrete slab 500mm thick heated from
one side as measured by thermocouples approximates to the following relation,
t =120 — 100x + 24x? + 40x3 — 30x*

Where tisin °C and x is in m. Considering an area of 4m?, Calculate:

(i) The heat entering and leaving the slab in unit time;

(ii) The heat energy stored in unit time;

(iii) The rate of temperature change at both sides of the slab;

(iv) The point where the rate of heating or cooling is maximum.

The properties of concrete are as follows:

k=12w/m°C, a =177 x10"3m?/h

Solution:
Given: A = 4m?,x = 500mm = 0.5m,k = 1.22w/m°C,a = 1.77 X 1073m? /h
t =120 — 100x + 24x?% + 40x3 — 30x* (Temperature distribution polynomial)

dt
== —100 + 48x + 120x? — 120x3

d*t
—— =48+ 240x — 360x?2
dx?
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(i) The heat entering and leaving the slab in unit time: Q; =? Q, =?

Heat leaving the slab,
dt
Qin = —kA [—] = (=12 x 5)(—100) = 600w
dx x=0

Heat leaving the slab,

dt
Qout = —kA [& = (1.2 x 5)(=100 + 48 x 0.5 + 120 x 0.5 — 120 x 0.5%)
x=0.5

= 0.6(—100+ 24 + 30 — 15) = 366w
(if) The heat energy stored in unit time:

rate of heat storage = Q;,, — Qyyur = 600 — 366 = 234w

(i) The rate of temperature change at both sides of the slab: [ﬁ] and [ﬁ] =?
dtly=p dtly=0.5
at _ a’t = a(48 + 240x — 360x?
e adxz = a( X x“)

dt
[_] — 1.77 x 10~3(48) = 0.08496 °C/h
dt x=0

dt
and, [E] = 1.77 x 1073(48 + 240 x 0.5 — 360 x 0.52) = 1.3806 °c/h
x=0.5

(iv) The point where the rate of heating or cooling is maximum, x:

d [dt]_o
dx ldtl

Or
d[ d?t
a[“m =0
Or
dx3
Or
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240 —-720x =0

240

s~ x ==——==0.333m

~ 720
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Chapter Seven

Additional Solved Examples in Lumped Capacitance System

7.1 Example (1): Determination of Temperature and Rate of Cooling
of a Steel Ball
A steel ball 100mm in diameter and initially at 900°C is placed in air at 30°C, find:

(i) Temperature of the ball after 30 seconds.

(if) The rate of cooling (°C/min.) after 30 seconds.

Take: h =20w/m2°C; k(steel) = 40w/m°C; p(steel) = 7800kg/m3;
cp(steel) = 460]/kg°C

Solution:

Given: R = 1(2)—0 = 50mm or 0.05m; T, =900°C; T, = 30°C,h = 20W/m20C;
k(steel) = 40w/m°C; p(steel) = 7800kg/m3; cp(steel) = 460]/kg°C;

T =30s

(i) Temperature of the ball after 30 seconds: T(t) =?

Characteristic length,

4 13
L.= v —§7TR —R—0'05—001667
T A T amrz T3 "3 ~ ° m
Biot number,
~ hL, 20x0.01667
Bi = = = 0.008335

k 40

Since, Bi is less than 0.1, hence lumped capacitance method (Newtonian heating or
cooling) may be applied for the solution of the problem.
The time versus temperature distribution is given by equation (1.4):

6 T@) T —hAs

_ —— = — ppVc 1
0, T,—-T, < &

Now,
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e ™[l (7] = [7m00 % 7001 [o7ea] 0 = 001
oVer lpepd V1T T 17800 x 460] [0.01667 e

S T()-30

— ,—001 _
“ 50030 = ¢ 0.99

Or
T(t) =30+ 0.99(900 — 30) = 891.3°C
(if) The rate of cooling (°C/min) after 30 seconds: % =?
The rate of cooling means we have to find out % at the required time. Now,

differentiating equation (1), we get:
1 dt hA, 1 —h4s.
X—= — [ ] e,DVCp
T,-T, dr pVUCp

Now, substituting the proper values in the above equation, we have:

1 dt 20
(900 —30) dr 17800 % 460~ 0.01667

] X 0.99 = —-3.31x107*

dt
= (900 — 30)(—3.31 x 107%) = —0.288°C/s

dt
or i —0.288 X 60 = —17.28%c/mim

7.2 Example (2): Calculation of the Time Required to Cool a Thin
Copper Plate

A thin copper plate 20mm thick is initially at 150°C. One surface is in contact with
water at 30°¢ (h,, = 100w/m2°C) and the other surface is exposed to air at 30°C
(h, = 20w/m2°C). Determine the time required to cool the plate to 90°C.

Take the following properties of the copper:

p = 8800kg/m3; cp = 400/ /kg°C and k = 360w/m°C

The plate is shown in Fig. (7.1) below:

Solution:

Given: L = 20mm or 0.02m; T, = 150°C; T,, = 30°C, h,, = 100w/m2°C;
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h, = 20w/m?°C; T(t) = 90°C; p = 8800kg/m3; cp = 400] /kg°C;

k = 360w/m°C
Time required to cool the plate, 7 =?

Biot number,

L
i = e _ h(3) _100%(002/2) _ oo
Tk Tk T 360 7

Since, Bi < 0.1, the internal resistance can be neglected and lumped capacitance

method may be applied for the solution of the problem.

= Plate

g

4(..4_ Air at 30°C

L~ (h, = 20 Wim? C)
= e

7 —H |[—dt
Z .‘q.s_

Water at 30°C
(h,, = 100 W/m?°C) |

fe—1, —] ' S —

Fig. (7.1)
The basic heat transfer equation can be written as:

do = —mep jt = h, A (T(t) = T,)) + hyA (T (t) = T,)

= Ag[h, (T(t) = T,,) + ho(T(t) — T,)]

Where T,, and T, are temperatures of water and air respectively and they are not
changing with time.

dT())

—pA.Lcp ( ——) = Aslh (T(®) = T) + ko (T(©) = T)]

Or

dt
—pLcp dr =T()(hy + hg) — (hy, Ty + hoTy)
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Or

dT (t) _dt
T(t) (hw + ha) - (thw + haTa) - p L Cp
Or
arc) dt
c;T(t)—c,  pLecp
Where
¢, =h,+h, and ¢, = h,T, + h,T,
1 are) f dt
al T -2 pLcp
€1
Or
1 (T®  4T(t) Todr Cy
— —F = —j where ¢ = —
Cilr, T()-=2 o PLcp Cy
€1
Or
Zlin(r(e) - T = ———
€1 To pLcp
Or
1 T, T
a [In(T(t) — C)]T(t) = m
Or
_pLcp T,—c ]
te C1 " T(t)—c 1

¢, = hy, +h, =100 4+ 20 = 120
¢, = hy, T, + hyT, = 100 X 30 + 20 x 30 = 3600

_c; 3600
¢ 120

Substituting the proper values in equation (1), we get:
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_8800x0.02x400 1150 —30

120 In 90 =30 = 406.6 s or 6.776 minutes

T

7.3 Example (3): Determining the Conditions under which the Contact

Surface Remains at Constant Temperature

Two infinite bodies of thermal conductivities k, and k,, thermal diffusivities a; and
a, are initially at temperatures t; and t, respectively. Each body has single plane
surface and these surfaces are placed in contact with each other. Determine the
conditions under which the contact surface remains at constant temperature t; where

t; >ts> t,.

Solution:
The rate of heat flow at a surface (x = 0) is given by,
_ —kAAt

VT aT

Heat received by each unit area of contact surface from the body at temperature t; is,

The contact surface will remain at a constant temperature if:

—kq(t; — t5) _ —k,(ts — t3)
JTagt JTa,t

Or
ky(t, —ts) _ ky(ts — t3)
v a4 v s
Or
ky(ty — ts)\/a_z = k,(ts — tz)\/“—1
Or

k1t1\/a—2 - klts@ = kztS\/a—1 - kztz\/a—1
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Or

ts(kl\/a_z + k2\/a_1) = kltl\/a_z + kth\/a_1

Or

— kitiva, + kytyn/ag
° kivay + koo

By dividing the numerator and the denominator by \/a; a5, the following formula is

obtained:

Ui V@) + (kata/ @)
B CYCARICYES

7.4 Example (4): Calculation of the Time Required for the Plate to

Reach a Given Temperature

A 50cm X 50cm copper slab 6.25mm thick has a uniform temperature of 300°C. Its
temperature is suddenly lowered to 36°C. Calculate the time required for the plate to

reach the temperature of 108°C.

Take: p = 9000kg/m3; cp = 0.38kJ/kg°C; k = 370w/m°C and h = 90w/m?2°C

Solution:
Surface area of plate (two sides),
A, =2x%0.5x%0.5=0.5m?
Volume of plate,
V =0.5x%0.5x0.00625 = 0.0015625m3
Characteristic length,

V. _ 00015625 .
4.~ 05 m

o hL_90x0003125
YT T 370 -

&

Since, Bi « 0.1, hence lumped capacitance method (Newtonian heating or cooling)

may be applied for the solution of the problem.
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The temperature distribution is given by:

O T =To _ _pixro
9, T,—T.,
Fo=— .12 579 — 11.0784
O = o2 T T 9000 x 0.38 x 10° x 0.0031252 T O%T
o _ 108 — 36 _ p—7:6X1074x11.07847 _ ,—8.42X107° 7
6, 300 — 36

027273 = e—8.42x1o-3 T

In0.27273 = —8.42x 103t Ine

In0.27273

842x 1023 ne _ 10431

T

7.5 Example (5): Determination of the Time Required for the Plate to

Reach a Given Temperature

An aluminum alloy plate of 400mm X 400mm X 4mm size at 200°C is suddenly
quenched into liquid oxygen at —183°C. Starting from fundamentals or deriving the
necessary expression, determine the time required for the plate to reach a temperature
of —70°C. Assume h = 20000kJ/m? - hr-° C

cp = 0.8kJ/kg°C ,and p = 3000kg/m3, k for aluminum at low temperature

may be taken as 214w /m°C or 770.4 k] /mh°C

Solution:
Surface area of the plate,
A, =2x0.4 % 0.4 =0.32m?
Volume of the plate,
V =0.4x 0.4 x0.004 = 0.00064m3

Characteristic length,

,_t_0004
—2T T TUYRem
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0 ,_V _o0o0064
r a4, o032 _ ooem

k for aluminum, at low temperature may be taken as 214w/m°C or 770.4kJ /mh°c

| gy hL_2000x0002 _
YT T T 7704 T

Since, Bi « 0.1, hence lumped capacitance method may be applied for the solution
of the problem.

The temperature distribution is given by:

6 T —To

6, T,—T,

— e—leFo

po_ ko 214
® = ez T T 3000 x 0.8 x 103 x 0.0022

T=2237T

Bi X Fo =0.0519 x 22.3 =1.15737 7

6 —70—(-183)

P —— 1157377
6, 200-—(—183)
ﬁ — @~ 1157371
383

0.295 = e—1.15737 T

In0.295 = —1.15737 7 Ine

In 0.295

= a5 <1 000

T

7.6 Example (6): Determining the Temperature of a Solid Copper
Sphere at a Given Time after the Immersion in a Well — Stirred Fluid
A solid copper sphere of 10cm diameter (p = 8954kg/m?,c, = 383/ /kg, K =

386w/mK) initially at a uniform temperature of T, = 250°C, is suddenly immersed

in a well — stirred fluid which is maintained at a uniform temperature T,, = 50°C.
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The heat transfer coefficient between the sphere and the fluid is h = 200w/m?K.

Determine the temperature of the copper block at T = 5 min. after the immersion.

Solution:

Given: d = 10cm = 0.1m; p = 8954kg/m3; ¢, =383J/kg k; k =386w/mK,
T, = 250°C; T, = 50°C; h = 200w/m?K; T =5min=5%x60=300s
Temperature of the copper block, T(t) =7?

The characteristic length of the sphere is,

4
§7TT'

d 0.1
=% = 0.01667m

6

L_V_ T
A, 4mr? 3

5 _ hL _ 200X 001667
TR T 386

Since, Bi « 0.1, hence lumped capacitance method (Newtonian heating or cooling)

=8.64 x 1073

may be applied for the solution of the problem.
The temperature distribution is given by:
0 T()—Tw

6, T,—T,

— e—le Fo

k 386
Fo =

—_—_— . = = 121.513
pcol2 © T 8954 x 383 x 0.016672 X 300

Bi X Fo = 8.64 x 1073 x 121.513 = 1.05

8 -T()-50

"6, 250-50

—1.05

T(t) — 50 = 200 e~ 105
2 T(t) = 50 + 200 e"195 = 50 + 70 = 120°¢

7.7 Example (7): Determination of the Heat Transfer Coefficient

An average convective heat transfer coefficient for flow of 90°C air over a plate is
measured by observing the temperature — time history of a 40mm thick copper slab
(p =9000kg/m3,c, = 0.38kj/kg°C,k = 370w/m°C) exposed to 90°C air. In
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one test run, the initial temperature of the plate was 200°C, and in 4.5 minutes the
temperature decreased by 35°C. Find the heat transfer coefficient for this case.

Neglect internal thermal resistance.
Solution:

Given: T, = 90°C;t = 40mm or 0.04m; p = 9000kg/m?>; c, = 0.38kj/kg°C;
T, = 200°C; T(t) = 200 — 35 = 165°C; T = 4.5min = 270s

Characteristic length of the sphere is,

L_t_0.04_002
T T T T UUem
B'—hL—O'OZh—5405><10—5h
'Sk T 370
k 370

Fo =

- 7= x 270 = 73.03
pcplZ 9000 x 0.38 x 103 x 0.022

Bi X Fo = 5.405 x 107> X 73.03h = 394.73 X 10™°h = 0.003947h

i _ @) —To _ ,—BixFo
0, T, — T
i _ 165 —-90 — —0.003947h
6, 200-90

0.682 = ¢ —0.003947h

In0.682 = —0.003947h Ine

In 0.682

_ - 20
= T0.003947 <1 207w/mTC

7.8 Example (8): Determination of the Heat Transfer Coefficient

The heat transfer coefficients for flow of air at 28°C over a 12.5mm diameter sphere
are measured by observing the temperature — time history of a copper ball of the same

dimension. The temperature of the copper ball (c, = 0.4kj/kg K and p =

8850kg/m?3) was measured by two thermo — couples, one located in the center and
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the other near the surface. Both the thermocouples registered the same temperature at
a given instant. In one test the initial temperature of the ball was 65°C, and in 1.15
minutes the temperature decreased by 11°C . Calculate the heat transfer coefficient

for this case.
Solution:
Given: T, = 28°C; r(sphere) = == = 6.25mm = 0.00625m; c, = 0.4kj/kg K;

p = 8850kg/m3; T, = 65°C; T(t) = 65— 11 = 54°C; 7 = 1.15min = 69 s;

Bi = M. baracreristic length L — - = | = 0:00625
l—k,caracerlslceng _A5_3_ 3

Since, heat transfer coefficient has to be calculated, so assume that the internal

=2.083 x 1073

resistance is negligible and Bi is much less than 0.1 .

_hr 0.00625h _ 2.083 x 1073h
3k 3k k

Bi

k k
Fo =

- 7= X 270
pcpl2 T 8850 X 0.4 x 103 x (2.083 x 10-3)2

= 0.0651kXx69=45k

0.00625h
Bi X Fo = — X 4.5k =9.375 x 107 3h

6 T(t)-T,

6, T,—T,

— e—leFo

6 54—-128

6, 65—28

_ -3
=e 9.375X10™°h

0.7027 = ¢~0-009375h
In0.7027 = —0.009375Ah Ine

In0.7027

_ _ 2
= 0009375 x 1 S/ 03w/mK
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7.9 Example (9): Calculation of the Initial Rate of Cooling of a Steel
Ball

A steel ball 50mm in diameter and at 900°C is placed in still atmosphere of 30°C.
Calculate the initial rate of cooling of the ball in °C /min, if the duration of cooling is

1 minute.
Take: p = 7800kg/m>; «c, = 2kj/kg°C (for steel); h = 30w,/m?°C.

Neglect internal thermal resistance.
Solution:
Given: r = ? = 25mm = 0.025m; T, = 900°C; T,, = 30°C; p = 7800kg/m3

¢, = 2kj/kg°C; h= 30w/m2°C; T = 1lmin = 60 s;
The temperature variation in the ball (with respect to time), neglecting internal

thermal resistance, is given by:

izT(t)_Tooze—BixFo

0, T,—To
s ey T _ 0025
[ = i ofaba =373

_hr 30x0.025 025
“ 3k 3k  k

Bi

k k
Fo=— .7 = .
0= o2 T T 7800 % 2 x 10° x (0.025/3) ©

Fo =9.23x107* x 60 = 0.0554k

0.25
Bi X Fo = —— x 0.0554k = 0.01385

k
i _ T —30 _ ,—0.01385
6, 900-30

T(t) = 870 e~001385 4 30 = 888°(C

900 — 888

1 min
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7.10 Example (10): Determination of the Maximum Speed of a

Cylindrical Ingot inside a Furnace

A cylinder ingot 10cm diameter and 30cm long passes through a heat treatment
furnace which is 6m in length. The ingot must reach a temperature of 800°C before it
comes out of the furnace. The furnace gas is at 1250°C and the ingot initial
temperature is 90°C. What is the maximum speed with which the ingot should move
in the furnace to attain the required temperature? The combined radiative and

convective surface heat transfer coefficient is 100w/m2°C.

Take: k (steel) = 40w/m2°C and « (thermal diffusivity of steel) = 1.16 x 10~5m?/s.

Solution:

d = 10cm = 0.1m; L = 30cm = 0.3m; Length of the furnace = 6m;
T, = 800°C; T(t) =800°C; T, =90°C;

Vmasx OF INgOt passing through the furnace =?

h = 100w/m2°C; k(steel) = 40w/m°C; a(steel) = 1.16 x 10~5m?2/s

Characteristic length,

4

L v §d2L _ o dL

¢ AS [T[dL'i‘EdZ XZ] 4L+2d

)

__0ax03 oo
T4x03+2x01 m
kL, 100 x 0.02143

Bi = = = (0.0536

k 40
As Bi « 0.1, Then internal thermal resistance of the ingot for conduction heat flow

can be neglected.
.. The time versus temperature relation is given as:
T@) —To
T,—Te

k a 1.16 X 107>
=E'T=W'T= 0.02526

—BixFo
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Bi X Fo = 0.0536 x 0.02526 7 = 1.35410737 = 0.001354 1

9 _TW =T _ _pixro
0, T,—T,
E _ 800 — 90 _ ,—0.001354
6, 1250—-90

0.6121 = 00013547

—0.001354 7 Ine = In0.6121

_ In0.6121 3625
' T 0001354 4
Vmasx OF INgOt passing through the furnace,
_ furnace length — 0.01655
Umar = e~ 325 0.01655m/s

7.11 Example (11): Determining the Time Required to Cool a Mild
Steel Sphere, the Instantaneous Heat Transfer Rate, and the Total

Energy Transfer

A 15mm diameter mild steel sphere (k = 4.2w/m°C is exposed to cooling air flow
at 20°c resulting in the convective, coefficient h = 120w/m?2°C.

Determine the following:

(i) Time required to cool the sphere from 550°C to 90°C .

(i) Instantaneous heat transfer rate 2 minutes after the start of cooling.

(iii) Total energy transferred from the sphere during the first 2 minutes.

For mild steel take: p = 7850kg/m?>; c, = 475]/kg°C;and a = 0.045 m?/h

Solution:
Given: r = 12—5 = 7.5mm = 0.0075m; k = 42w/mZOC; T, = 20°C; T, = 550°C;

T(t) =90°C; h = 120w/m2°C;
(i) Time required to cool the sphere from 550°C to 90°C,t =?

The characteristic length, L, is given by,
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r _0.0075

c=3 5 = 0.0025m

Biot number,
hL, _ 120 x 0.0025
k 42

Bi = = 0.007143

Since, Bi « 0.1, so we can use the lumped capacitance theory to solve this problem.

Fourier Number,

Fo — k _«a
0_pCPL2 T—L% T

= 0.045m2/h = 222 _ 1 25 x 10-5m?
@ =0045m"/h =55 = 1 m/s

1.25x107°

(0.0025)2 = “*

Fo

Bi X Fo = 0.007143 X 27

The temperature variation with time is given by:

i — T(t) —To — p—BixFo

90 To —Tw

— 90 — 20 — o—0.0142867
550 — 20

0.132 = e—0.014-286 T

—0.014286 7 Ine =1n0.132

In 0.132

U= Too1azg6 A7

(i) Instantaneous heat transfer rate 2 minutes (0.0333h) after the start of cooling,
q'(7) =?
q'(1) = hA;f,e =B

Bi X Fo = 0.014286 x 2 X 60 = 1.7143
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q'(t) = 120 X 47 x (0.0075)2(550 — 20)e~17143 = 8 1w

(iii) Total energy transferred from the sphere during the first 2 minutes, (0.0333h)
Q) =7

, T
— — p—BiXFo

Q(t) = hA6,[1—e ]Bl_ o
=120 x 41 x (0.0075)%(550 — 20)[1 — e~ 17143] x 120 _ 2580.2 ]

' 1.7143 '

Or
Fo = K = « X 120 = 206
0= eIzt T 7850 x 475 x 0.00252 -
Bi x Fo = 0.007143 x 206 = 1.471
120

Q(t) = 120 x 41 x (0.0075)2(550 — 20)[1 — e~ 1471] x ——— = 2825

1.471

7.12 Example (12): Estimation of the Time Required to Cool a
Decorative Plastic Film on Copper Sphere to a Given Temperature
using Lumped Capacitance Theory

The decorative plastic film on copper sphere 10mm in diameter is cured in an oven at
75°C. After removal from oven, the sphere is exposed to an air stream at 10m/s and
23°C. Estimate the time taken to cool the sphere to 35°C using lumped capacitance
theory.

Use the following correlation:

U 0.25
Nu =2+ [0.4(Re)° +0.06(Re)?*](pr)°* | 7]

S

For determination of correlation coefficient h, use the following properties of air and
copper:
For copper: p = 8933kg/m?; k = 400w/mK; ¢, = 380]/kg°C
For air at 23°C: u, = 18.6 Xx 107®Ns/m?,v = 15.36 x 10™°m?/s
k =0.0258w/mK, pr = 0.709,and

Us = 19.7 x 10"6Ns/m?, at 35°C
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Solution:

d =10mm = 0.01m; T, = 75°C;v = 10m/s; T,, = 23°C; T(t) = 35°C;
Time taken to cool the sphere, T =7

o, P __10x001
¢ = T1536x10-°

= 6510

18.16 X 10—6]0'25

— 0.5 2/3 0.4
Nu = 2 +[0.4(6510)%5 + 0.06(6510)2/%] x (0.709) ><[19.78><10—6

=2+ [32.27 + 20.92] X 0.87 X 0.979 = 47.3

hd
or Nu=7=473

k 0.0258
~h=—=Nu=

_ 20
y So7 X473 =122w/m*°C

The time taken to cool from 75°C to 35°C may be found from the following relation:
0 T —Tw

— — p—BixFo
0, T, -T, °
Bi — hL
Tk
The characteristic length of a sphere, L = g = 0'03—05m
~ hL 122 x0.005
Bi = = =5.083 x 107*

kK~ 3x400

Since, Bi « 0.1, so we can use the lumped capacitance theory to solve this problem.

k 400
Fo = ST = T=424211

C LZ 2
pee 8933 x 380 X (0'005)

3
Bi X Fo =5.083 x 107* x 42421t = 0.0216 1

6 35-23

6, 75-—23

=e —0.0216 7

0.2308 = 002167
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In0.2308 = —0.0216 T Ine

_ 1n0.2308

T—m=67.9268S

7.13 Example (13): Calculation of the Time Taken to Boil an Egg

An egg with mean diameter of 40mm and initially at 20°C is placed in a boiling
water pan for 4 minutes and found to be boiled to the consumer's taste. For how long
should a similar egg for the same consumer be boiled when taken from a refrigerator
at 5°C. Take the following properties for eggs:

k = 10w/m°C; p =1200kg/m>; c, = 2kj/kg°C;and

h (heat transfer coefficient) = 100W/m20C :

Use lumped capacitance theory.

Solution:
Given: r = 2 = 20mm = 0.02m; T, = 20°¢; T, = 100°C; T = 4 X 60 = 240s;
k = 10w/m°C; p = 1200kg/m3; ¢, = 2kj/kg°C; h = 100w/m?°C;

For using the lumped capacitance theory, the required condition Bi < 0.1 must be

valid.
Bi = hk—L , Where L is the characteristic length which is given by,
[ = |74 T 0.02
~a, 3 3 "
. B__hL_th.OZ_ 100><0.02_0067
T T T Tkx3 T 1ox3
As Bi « 0.1, we can use the lumped capacitance system.
The temperature variation with time is given by:
T(t) —To — g~ BixFo
T, —Te
k 10
Fo = T = > X 240 = 22.5

T pepl? 0.02)

1200 x 2 X 103 ><(T
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Bi X Fo = 0.067 x 22.5 = 1.5075

T(t) —100
20—100

—1.5075

T(t) = 100 — 80 e~15%75 = 82.3°C ~ 82°C

Now, let us find T when the given data is: T, = 5°C; T, = 100°C and

T(t) = 82°C.
82100 _ o,
5—100
k 10
Fo = CL2-T= 0022"[:0.09375‘[
pep 1200><2><103><('T)

Bi X Fo = 0.067 x 0.093757 = 6.281 x 10737 = 0.00628 t
01895 — e—0.00628‘r

—0.00628 7 Ine =1n0.1895

_ 1n0.1895

= m = 264.9 s = 4.414 minutes

T

7.14 Example (14): Determining the Total Time Required for a

Cylindrical Ingot to be heated to a Given Temperature

A hot cylinder ingot of 50mm diameter and 200mm long is taken out from the

furnace at 800°C and dipped in water till its temperature fall to 500°C . Then, it is

directly exposed to air till its temperature falls to 100°C. Find the total time required

for the ingot to reach the temperature from 800°C to 100°C. Take the following:

k(thermal conductivity of ingot) = 60w/m°C;
c(specific heat of ingot) = 200//m°C;
p(density of ingot material) = 800kg/m3;

h,, (heat transfer coefficient in water) = ZOOW/mZOC;
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h, (heat transfer coefficient in air) = 20w /mZOC ;

Temperature of air or water = 30°C

Solution:

Given: r = 52—0 — 25mm = 0.025m; L = 200mm or 0.2m

The characteristic length of a cylinder,

Lo=2=29%_ 0125
cT2T T2 e

hL 200x0.0125

’ 0 = 0.04167

Bi =

As Bi is less than 0.1, the internal thermal resistance can be neglected, and lumped
capacitance theory can be used. The total time (t) can be calculated by calculating
T, (time required in water) and t, (time required in air) and adding them such that
T=T7,+71;

(@) The temperature variation with respect to time when cooled in water is given by:
(see Fig. (7.2) below)

800'0(./&

Seol | _ _ _ _X tyr =30

By

Fig. (7.2) Temperature variation with time when the ingot is cooled in water
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— ,—BiXFo

T(t) - Tw
To - Tw a
k 60
Fo= 2 ™ ~ 800 x 200 X (0.0125)2

Tl = 24 Tl

Bi X Fo =0.04167 x 241, = 0.1 14

6 T -T,

90 To_Tw
50030
~800-30 °©

0.61 = 01m

— e—BLxFo

_01 Tl

—0.17; Ine =1n0.61

_In0.61

T, = 01 =494s

(b) The temperature variation with respect to time when cooled in air is given by: (see
Fig. (7.3) below)

A

Soo C
i
looC |- - . 6‘€4=LSOQQ
' >>
=
B 2

Fig. (7.2) Temperature variation with time when the ingot is cooled in air
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8 T -T,

o —BiXFo
90 To_Ta
g ML _20x00125
Tk T 0 T
FO=W'T2=2.4T2

Bi X Fo = 0.004167 x 2.4 7, = 0.01 1,

6 100-30 70
— = = =e

— — — p—0.017,
8, 500—-30 470

0.149 = ¢~001%

—0.017, Ine =1n0.149

. _mo149
"2 T Tooix1 s

.. Total time (7) is given by:

T=17,+7, =494+ 190.42 = 195.36 s = 3.256 min.
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Chapter Eight
Unsolved Theoretical Questions and Further Problems in

Lumped Capacitance System

8.1 Theoretical Questions:

1. What is meant by transient heat conduction?

2. What is lumped capacity?

3. What are the assumptions for lumped capacity analysis?

4. What are Fourier and Biot numbers? What is the physical significance of these
numbers?

5. Define a semi — infinite body.

6. What is an error function? Explain its significance in a semi — infinite body in
transient state.

7. What are Heisler charts?

8. Explain the significance of Heisler charts in solving transient conduction problems.

8.2 Further Problems:
1. A copper slab (p = 9000kg/m3,c = 380J/kg°C,k = 370w/m°C) measuring
400mm X 400mm X 5mm has a uniform temperature of 250°c. Its temperature is

suddenly lowered to 30°C. Calculate the time required for the plate to reach the

temperature of 90°C. Assume convective heat transfer coefficient as 90w/m?2°C .
Ans.{123.75 s}
2. An aluminum alloy plate 0.2m? surface area (both sides), 4mm thick and at 200°C
is suddenly quenched into liquid oxygen which is at -183°C . Find the time required
for the plate to reach the temperature of -70°C .
Take: p = 2700kg/m3, c = 890] /kg°C, h = 500w/m2°C
Ans. {23.45 s}
3. A sphere of 200mm diameter made of cast iron initially at a uniform temperature

of 400°c is quenched into oil. The oil bath temperature is 40°C. If the temperature of
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sphere is 100°C after 5 minutes, find heat transfer coefficient on the surface of the
sphere.
Take: cp (cast iron) =0.32K] /kg°C; p(cast iron) =7000kg/m’
Neglect internal thermal resistance.
Ans.{134kw/m?°C}
4. An average convective heat transfer coefficient for flow of 100°C air over a flat
plate is measured by observing the temperature — time history of a 30 mm thick
copper slab (p = 9000kg/m3,c = 0.38k]/kg°C,k = 370w/m°C) exposed to
100°C air. In one test run, the initial temperature of the plate was 210°C and in 5
minutes the temperature decreased by 40°C . Find the heat transfer coefficient for
this case. Neglect internal thermal resistance.
Ans. {77.24w/m?°C}
5. A cylinder steel ingot 150mm in diameter and 400mm long passes through a heat
treatment furnace which is 6m in length. The ingot must reach a temperature of
850°C before it comes out of the furnace. The furnace gas is at 1280°C and ingot
initial temperature is 100°C. What is the maximum speed with which the ingot
should move in the furnace to attain the required temperature? The combined
radiative and convective surface heat transfer coefficient is 100w/m?2°C. Take k
(steel)= 45w/m°C and «a (thermal diffusivity) = 0.46 x 10™>m?/s.
Ans.{ 1.619 x 103m/s }
6. A hot mild steel sphere (k = 42.5w/m°C) having 12mm diameter is planned to be
cooled by an air flow at 27°C. The convective heat transfer coefficient is 114w/
m2°C. Determine the following:
(i) Time required to cool the sphere from 540°C to 95°C;
(ii) Instantaneous heat transfer rate 2 minutes after the start of cooling;
(iii) Total energy transferred from the sphere during the first 2 minutes. Take mild
steel properties as (p = 7850kg/m3,c = 475k] /kg°C ,a = 0.043m?/h).
Ans.{ (i) 2.104 min; (ii) 3.884w ; (iii) 1475.7 J}
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7. The heat transfer coefficients for the flow of 30°C air over a 12.5mm diameter
sphere are measured from observing the temperature — time history of a copper ball
of the same dimensions. The temperature of the copper ball (p = 8930kg/m3; ¢ =
0.375k] /kg®C) was measured by two thermocouples, one located at the center and
the other near the surface. Both thermocouples registered within the accuracy of the
recording instruments the same temperature at the given instant, on one test run, the
initial temperature of the ball was 70°C and in 1.15 minutes the temperature

decreased by 7°C. Calculate the convective heat transfer coefficient for this case.

Ans. {194.5 w/m?°C}

8. The temperature of an air stream flowing with a velocity of 3 m/s is measured by a
copper — constantan thermocouple which may be approximated as a sphere 3mm in
diameter. Initially the junction and air are at a temperature of 25°C. The air
temperature suddenly changes to and is maintained at 200°C.
1) Determine the time required for the thermocouple to indicate a temperature of
150°C. Also determine the thermal time constant and temperature indicated by the
thermocouple at that instant;
1) Discuss the suitability of this thermocouple to measure unsteady state temperature
of a fluid when the temperature variation in the fluid has a time period of 3 seconds.
The thermocouple junction properties are:
Density = 8685kg/m?> ; specific heat ¢ =383 j/kg°C ; thermal conductivity
(thermocouple) k = 29w /m°C and convective coefficient h = 150w/m2°C .

Ans. {13.89s; 11.09s; 155.63°C}
9. A 50 mm thick large steel plate (k = 42.5w/m°C, a = 0.043 m?/h), initially at
425°C is suddenly exposed on both sides to an environment with convective heat
transfer coefficient 285w /m?2°C and temperature 65°C . Determine the center line
temperature and temperature inside the plate 12.5mm from the mid-plane after 3
minutes.
10. A long cylindrical bar (k = 17.5w/m°C, a = 0.0185 m?/h) of radius 75mm

comes out of oven at 815°C throughout and is cooled by quenching it in a large bath
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of 38°C coolant. The surface coefficient of heat transfer between the bar surface and

the coolant is 175w/m2°C. Determine:
(i) The time taken by the shaft to reach 116°C ;
(if) The surface temperature of the shaft when its center temperature is 116°C. Also
calculate the temperature gradient at the outside surface at the same instant of time.
Ans. {(i) 2102s; (ii) 92.6°C; 546°C/m}
11. A concrete highway may reach a temperature of 55°C on a hot summer's day.
Suppose that a stream of water is directed on the highway so that the surface
temperature is suddenly lowered to 35°C. How long will it take to cool the concrete
to 45°C at a depth of 50mm from the surface?
For concrete take a (thermal diffusivity) = 1.77 X 1073m?/h
Ans. {1.51 h}
12. It is proposed to bury water pipes underground in wet soil which is initially at
4.5°C. The temperature of the surface of soil suddenly drops to —5°C and remains at
this value for 10 hours. Determine the minimum depth at which the pipes be laid if
the surrounding soil temperature is to remain above 0°C (without water getting
frozen). Assume the soil as semi — infinite soild.
For wet soil take a (thermal diffusivity) = 2.78 X 10™3m?/h
Ans. {0.167m}
13. A 50 mm thick mild steel plate (a = 1.25x 107>m?/s) is initially at a
temperature of 40°C. It is suddenly exposed on one side to a fluid which causes the
surface temperature to increase to and remain at 90°C. Determine:
(i) The maximum time that the slab be treated as a semi — infinite body;
(if) The temperature as the center of the slab one minute after the change in surface
temperature.
Ans. {(i) 200s ; (ii) 66°C}
14. The initial uniform temperature of a thick concrete wall (a = 1.58 X 1073m?/h;

k = 0.937w/m°C) of a jet engine test cell is 21°C. The surface temperature of the

83



wall suddenly rises to 315°C when the combination of exhaust gases from the
turbojet and spray of cooling water occurs. Determine:
(i) The temperature at a point 75 mm from the surface after 7.5 hours;
(if) The instantaneous heat flow rate at the specified plane and at the surface itself at
the instant mentioned at (i).
Use the solution for semi — infinite solid.
Ans. {(i) 206°C; (ii) — 1265.6w/m?; —1425w/m?}
15. The initial uniform temperature of a large mass of material (a = 0.41 m?/h) is
120°C. The surface of the material is suddenly exposed to and held permanently at
5°C. Calculate the time required for the temperature gradient at the surface to reach
350°C/m.
Ans. {206s}
16. A motor car of mass 1500 kg travelling at 80 km/h is brought to rest within a
period of 5 seconds when brakes are applied. The braking system consists of 4 brakes
with each brake band of 350 cm? area; these press against steel drum of equivalent
area. The Dbrake lining and the drum surfaces (k =55w/m°C, a = 1.24 X
107>m?/s) are at the same temperature and the heat generated during the stoppage
action dissipates by flowing across drums. If the drum surface is treated as semi —
infinite plate, calculate the maximum temperature rise.
Ans. {134.11°C}
17. During periodic heating and cooling of a thick brick wall, the wall temperature
varies sinusoidally. The surface temperature ranges from 25°C to 75°C during a
period of 24 hours. Determine the time lag of the temperature wave corresponding to
a point located at 250 mm from the wall surface. The properties of the wall material
are: (p = 1620kg/m3,c = 450] /kg°C, k = 0.62w/m°C).
Ans. {6.24 h}
18. A single cylinder (a = 0.042 m?/h from cylinder material) two — stroke I.C.
engine operates at 1500 r. p. m. Calculate the depth where the temperature wave due

to variation of cylinder temperature is damped to 1% of its surface value.

84



Ans. {1.775 mm}
19. The temperature distribution across a large concrete slab (k = 1.2w/m°C,
a =177 x 1073m?/h) 500 mm thick heated from one side as measured by
thermocouples approximates to the relation: ¢ = 60 — 50x + 12x2 + 20x3 — 15x*
where t is in°C and x is in meters. Considering an area of 5m?, compute the
following:
(i) The heat entering and leaving the slab in unit time;
(if) The heat energy stored in unit time;
(iif) The rate of temperature change at both sides of the slab; and

(iv) The point where the rate of heating or cooling is maximum.
Ans, {(i) 300w,183 w; (ii) 117w; (iii)42.48 X 10‘3°c/h, 69.03 X
1073°¢/h; (iv) 0.33m)}
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Appendix

Mathematical Formulae Summary

1. Conduction of heat in unsteady state refers to the transient conditions where in heat
flow and the temperature distribution at any point of the system vary continuously

with time.
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2. The process in which the internal resistance is assumed negligible in comparison
with its surface resistance is called the Newtonian heating or cooling process.
0 T()—To —has

_ ——~Z = — ppVc 1
0. - T. -, e W

Where,

p = density of the solid, kg/m3

V = volume of the body, m3

cp = specific heat of the body, J/kg°C or J/kg K

h = heat transfer coefficient of the surface, w/m2°C or w/m?K
A, = surface area of the body, m?

T (t) = temperature of the body at any time, °c

T,, = ambient temperature, °c

T=time, s
Biot number,
hL,
Bi=—
Tk
Fourier number,
Fo = aT
0= L%

Where,

L. = characteristic length, or characteristic linear dimension.
a = || = thermal diffusivity of the solid.
pcp

0 T(t)— Ty .
R ( ) — e—le Fo (ii)
90 To —Tw

Instantaneous heat flow rate:
q'(v) = —hAg(T, — T,)e BXFo  (iip)
Total or cumulative heat transfer:
Q) = pV cp(T, — Too)[eBFO = 1] (i)
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3. Time constant and response of temperature measuring instruments:

The quantity 2 :ACP is called time constant (¢*).
0 _TO-Tw _ o=/
90 To - Too

The time required by a thermocouple to reach its 63.2% of the value of the initial
temperature difference is called its sensitivity.

4. Transient heat conduction in semi — infinite solids (h or Bi — o): The temperature
distribution at any time 7 at a plane parallel to and at a distance x from the surface

IS given by:

Where erf [2\/%] is known as "Gaussian error function”.

The instantaneous heat flow rate at a given x — location within the semi — infinite

body at a specified time is given by:

e[—x2/4ar]
= —kA(T, — T,)) ———— (i
Ql ( o ) \/m ( )
The heat flow rate at the surface (x = 0) is given by:
= —kA(T, — Tw)
qurface = \/r:‘[ (iii)

The heat flow rate Q(t) is given by:

Q(t) = —1.13kA(T, — Too)\/g (iv)

90



91



