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Abstractــــ First order orthotropic shear deformation equations for the nonlinear elastic bending response of 

rectangular plates are introduced. Their solution using a computer program based on finite differences 

implementation of the Dynamic Relaxation (DR) method is outlined. The convergence and accuracy of the DR 

solutions for elastic large deflection response of isotropic, orthotropic, and laminated plates are established by 

comparison with various exact and approximate solutions. The present Dynamic Relaxation method (DR) coupled 

with finite differences method shows a fairly good agreement with other analytical and numerical methods used in the 

verification scheme.It was found that: The convergence and accuracy of the DR solution is dependent on several 

factors including boundary conditions, mesh size and type, fictitious densities, damping coefficients, time increment 

and applied load. Also, the DR large deflection program using uniform finite differences meshes can be employed in 

the analysis of different thicknesses for isotropic, orthotropic or laminated plates under uniform loads. All the 

comparison results for simply supported (SS4) edge conditions showed that deflection is almost dependent on the 

direction of the applied load or the arrangement of the layers 

 

Keywordsــــ Dynamic relaxation, rectangular laminates, large deflection theory, isotropic, orthotropic, laminated 

plates. 

 

Notations 

a, b   plate side lengths in x and y directions respectively. 

𝐴𝑖𝑗  𝑖, 𝑗 = 1,2,6 Plate in plane stiffness. 

𝐴44 , 𝐴55Plate transverse shear stiffness. 

𝐷𝑖𝑗  𝑖, 𝑗 = 1,2,6 Plate flexural stiffness. 

𝜀𝑥
𝑜 , 𝜀𝑦

𝑜 , 𝜀𝑥𝑦
𝑜 Mid – plane direct and shear strains 

𝜀𝑥𝑧
𝑜 , 𝜀𝑦𝑧

𝑜 Mid – plane transverse shear strains. 

𝐸1 , 𝐸2 , 𝐺12In – plane elastic longitudinal, transverse and shear moduli. 

𝐺13 , 𝐺23Transverse shear moduli in the x – z and y – z planes respectively. 

𝑀𝑥 , 𝑀𝑦 , 𝑀𝑥𝑦 Stress couples. 

𝑀 𝑥 , 𝑀 𝑦 , 𝑀 𝑥𝑦 Dimensionless stress couples. 

𝑁𝑥 , 𝑁𝑦 , 𝑁𝑥𝑦Stress resultants. 

𝑁 𝑥 , 𝑁 𝑦 , 𝑁 𝑥𝑦Dimensionless stress resultants. 

𝑞   Dimensionless transverse pressure. 

𝑄𝑥 , 𝑄𝑦   Transverse shear resultants. 

u, v  In – plane displacements. 

w   Deflections 

𝑤 Dimensionless deflection 

x, y, zCartesian co – ordinates. 

𝛿𝑡Time increment 

∅, 𝜓Rotations of the normal to the plate mid – plane  

𝜈𝑥𝑦Poisson‟s ratio 

ℓ𝑢,ℓ𝑣 , ℓ𝑤 , ℓ∅, ℓ𝜓 In plane, out of plane and rotational fictitious densities. 

𝜒𝑥
𝑜 , 𝜒𝑦

𝑜 , 𝜒𝑥𝑧
𝑜 Curvature and twist components of plate mid – plane   

 

I.     INTRODUCTION 

Composites were first considered as structural materials a little more than half a century ago. From that time to 

now, they have received increasing attention in all aspects of material science, manufacturing technology, and theoretical 

analysis. 

 The term composite could mean almost anything if taken at face value, since all materials are composites of 

dissimilar subunits if examined at close enough details. But in modern engineering materials, the term usually refers to a 
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matrix material that is reinforced with fibers. For instance, the term “FRP” which refers to Fiber Reinforced plastic, 

usually indicates a thermosetting polyester matrix containing glass fibers, and this particular composite has the lion‟s 

share of today commercial market. 

 In the present work, a numerical method known as Dynamic Relaxation (DR) coupled with finite differences is 

used. The DR method was first proposed in 1960s and then passed through a series of studies to verify its validity by 

Turvey and Osman [4], [8] and [9] and Rushton [2], Cassel and Hobbs [10], and Day [11]. In this method, the equations 

of equilibrium are converted to dynamic equations by adding damping and inertia terms. These are then expressed in 

finite difference form and the solution is obtained through iterations. The optimum damping coefficient and time 

increment used to stabilize the solution depend on a number of factors including the matrix properties of the structure, the 

applied load, the boundary conditions and the size of the mesh used. 

 Numerical techniques other than the DR include finite element method, which widely used in the present studies 

i.e. of Damodar R. Ambur et al [12], Ying Qing Huang et al [13], Onsy L. Roufaeil et al [14]… etc. In a comparison 

between the DR and the finite element method, Aalami [15] found that the computer time required for finite element 

method is eight times greater than for DR analysis, whereas the storage capacity for finite element analysis is ten times or 

more than that for DR analysis. This fact is supported by Putcha and Reddy [16] who noted that some of the finite 

element formulations require large storage capacity and computer time. Hence, due to less computations and computer 

time involved in the present study. The DR method is considered more efficient than the finite element method. In 

another comparison Aalami [15] found that the difference in accuracy between one version of finite element and another 

may reach a value of 10% or more, whereas a comparison between one version of finite element method and DR showed 

a difference of more than 15%. Therefore, the DR method can be considered of acceptable accuracy. The only apparent 

limitation of DR method is that it can only be applied to limited geometries. However, this limitation is irrelevant to 

rectangular plates which are widely used in engineering applications. 

 The Dynamic Relaxation (DR) program used in this paper is designed for the analysis of rectangular plates 

irrespective of material, geometry, edge conditions. The functions of the program are to read the file data; compute the 

stiffness of the laminate, the fictitious densities, the velocities and displacements and the mid – plane deflections and 

stresses; check the stability of the numerical computations, the convergence of the solution, and the wrong convergence; 

compute through – thickness stresses in direction of plate axes; and transform through – thickness stresses in the lamina 

principal axes. 

 The convergence of the DR solution is checked at the end of each iteration by comparing the velocities over the 

plate domain with a predetermined value which ranges between 10−9 for small deflections and10−6 for large deflections. 

When all velocities are smaller than a predetermined value, the solution is deemed converged and consequently the 

iterative procedure is terminated. Sometimes DR solution converges to an invalid solution. To check for that the profile 

of the variable is compared with an expected profile over the domain. For example, when the value of the function on the 

boundaries is zero, and it is expected to increase from edge to center, then the solution should follow a similar profile. 

When the computed profile is different from the expected values, the solution is considered incorrect and can hardly be 

made to converge to the correct value by altering the damping coefficients and time increment. Therefore, the boundary 

conditions should be examined and corrected if they are improper. 

 The errors inherent in the DR technique ([17] – [27]) include discretization error which is due to the 

replacement of a continuous function with a discrete function, and there is an additional error because the discrete 

equations are not solved exactly due to the variations of the velocities from the edge of the plate to the center. Finer 

meshes reduce the discretization error, but increase the round – off error due to the large number of calculations involved. 

 

II.      LARGE DEFLECTION THEORY  

The equilibrium, strain, constitutive equations and boundary conditions are introduced below without derivation 

 

2.1 Equilibrium equations: 
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2.2 Strain equations 

 The large deflection strains of the mid – plane of the plate are as given below: 
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2.3 The constitutive equations 

The laminate constitutive equations can be represented in the following form: 

 
𝑁𝑖

𝑀𝑖
 =  

𝐴𝑖𝑗 𝐵𝑖𝑗

𝐵𝑖𝑗 𝐷𝑖𝑗
  

𝜀𝑗
𝑜

𝜒𝑗
𝑜  

        (3)                           

 
𝑁𝑖

𝑀𝑖
 =  

𝐴𝑖𝑗 𝐵𝑖𝑗

𝐵𝑖𝑗 𝐷𝑖𝑗
  

𝜀𝑗
𝑜

𝜒𝑗
𝑜  

Where𝑁𝑖   refers to 𝑁𝑥  ,𝑁𝑦  and,𝑁𝑥𝑦  and 𝑀𝑖denotes𝑀𝑥 ,𝑀𝑦and𝑀𝑥𝑦 .𝐴𝑖𝑗 ,𝐵𝑖𝑗  and 𝐷𝑖𝑗 (i, j=1, 2, 6) are respectively the 

membrane rigidities, coupling rigidities and flexural rigidities of the plate.𝜒𝑗
𝑜  Denotes

𝜕∅

𝜕𝑥
,
𝜕𝜓

𝜕𝑦
and

𝜕∅

𝜕𝑦
+  

𝜕𝜓

𝜕𝑥
.𝐴44 , 𝐴45and 𝐴55  

denote the stiffness Coefficients and are calculated as follows:- 

𝐴𝑖𝑗 =  𝑘𝑖𝑘𝑗  𝐶𝑖𝑗𝑑𝑧, (𝑖, 𝑗 = 4, 5)

𝑧𝑘+1

𝑧𝑘

𝑛

𝑘−1

 

Where𝐶𝑖𝑗  the stiffness of a lamina is referred to the plate principal axes, and𝐾𝑖 , 𝐾𝑗 are the shear correction factors. 

 

2.4 Boundary conditions 

Four sets of simply supported boundary conditions are used in this paper, and are denoted as SS1, SS2, SS3, and 

SS4 as has been shown in Fig. (1) Below: 

 
Fig. (1)  Simply supported boundary conditions 

 

III.    DYNAMIC RELAXATION OF THE PLATE EQUATIONS 

An exact solution of the plate equations is obtained using finite differences coupled with dynamic relaxation 

method. The damping and inertia terms are added to equations (1). Then the following approximations are introduced for 

the velocity and acceleration terms: 

(2) 



Elmardi et al., International Journal of Advanced Research in Computer Science and Software Engineering 5(9), 

September- 2015, pp. 137-145 

© 2015, IJARCSSE All Rights Reserved                                                                                                               Page | 140 

t
ttt

ttt

ba

ba















































/

2

1

2

2 



 

In which𝛼 ≡ 𝑢, 𝑣, 𝑤, 𝜙, 𝜓. Hence equations (1) become: 
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The superscripts a and b in equations (4) and (5) refer respectively to the values of velocities after and before the time 

increment𝛿𝑡 and𝑘𝛼
∗ =

1

2
𝑘𝛼𝛿𝑡ℓ𝛼

−1. The displacements at the end of each time increment,𝛿𝑡, are evaluated using the 

following integration procedure:  

𝛼𝑎 = 𝛼𝑏 + 𝛿𝑡
𝜕𝛼𝑏

𝜕𝑡
                                                                                                       (6) 

Thus equations (5), (6), (2) and (3) constitute the set of equations for the dynamic relaxation solution. The DR procedure 

operates as follows: 

(1) Set initial conditions. 

(2) Compute velocities from equations (5). 

(3) Compute displacement from equation (6). 

(4) Apply displacement boundary conditions. 

(5) Compute strains from equations (2). 

(6)  Compute stress resultants and stress couples from equations (3). 

(7) Apply stress resultants and stress couples boundary conditions. 

(8) Check if velocities are acceptably small (say 10
-6

). 

(9) Check if the convergence criterion is satisfied, if it is not repeat the steps from 2 to 8. 

 

It is obvious that this method requires five fictitious densities and a similar number of damping coefficients so 

as the solution will be converged correctly.  

 

IV.     RESULTS AND DISCUSSIONS  

           Various verification exercises of the dynamic relaxation (DR) method using large deflection theory were 

undertaken including isotropic, orthotropic and laminated rectangular plates as shown below: 

 Table 1 shows deflections, stress resultants and stress couples in simply supported in – plane free (SS2) 

isotropic plate. The present results have been computed with6 × 6  uniform meshes. These results are in a fairly good 

agreement with those of Aalami et al [1] using finite difference method (i.e. for deflections, the difference ranges 

between 0.35% at 𝑞 = 20.8 and 0 % as the pressure is increased to 97). A similar comparison between the two results is 

shown in Table 2 for simply supported (SS3) condition. It is apparent that the center deflections, stress couples and stress 

resultants agree very well. The mid – side stress resultants do not show similar agreement whilst the corner stress 

resultants show considerable differences. This may be attributed to the type of mesh used in each analysis. A set of thin 

plate results comparisons presented here with Rushton [2] who employed the DR method coupled with finite differences. 

The present results for simply supported (SS4) square plates were computed for two thickness ratios using a 8 × 8 

uniform mesh are listed in Table 3. In this instant, the present results differ slightly from those found in [2]. Another 

comparison for simply supported (SS4) square isotropic plates subjected to uniformly distributed loads are shown in 

Tables 4 and 5 respectively for deflection analysis of thin and moderately thick plates. In this comparison, it is noted that, 

the center deflection of the present DR analysis, and those of Azizian and Dawe [3] who employed the finite strip method 

are in fairly good agreement (i.e. with a maximum error not exceeding 0.09%). 

 A large deflection comparison for orthotropic plates was made with the DR program. The results are compared 

with DR results of Turvey and Osman [4], Reddy‟s [5], and Zaghloul et al results [6]. For a thin uniformly loaded square 

plate made of material I which its properties are stated in Table 6 and with simply supported in – plane free (SS2) edges. 

The center deflections are presented in Table 7 where DR showed a good agreement with the other three. 

(4) 

(5) 
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 A large deflection comparison for laminated plates was made by recomposing sun and chin‟s results [7] for 

[904
𝑜/04

0] using the DR program and material II which its properties are cited in Table 6. The results were obtained for 

quarter of a plate using a 5 × 5 square mesh, with shear correction factors𝑘4
2 = 𝑘5

2 = 5/6. The analysis was made for 

different boundary conditions and the results were shown in Tables 8, and 9 as follows: The present DR deflections of 

two layer anti–symmetric cross – ply simply supported in – plane fixed (SS4) are compared with DR results of Turvey 

and Osman [8] and with sun and chin‟s [7] values for a range of loads as shown in Table 8. The good agreement found 

confirms that for simply supported (SS4) edge conditions, the deflection depends on the direction of the applied load or 

the arrangement of the layers. Table 9 shows a comparison between the present DR, and DR [8] results, which are 

approximately identical. The difference between laminates 0𝑜/90𝑜   and 90𝑜/0𝑜   at𝑏/𝑎 = 5is 0.3% whilst it is 0% 

when𝑏/𝑎 = 1.  

The comparisons made between DR and alterative techniques show a good agreement and hence the present DR 

large deflection program using uniform finite difference meshes can be employed with confidence in the analysis of 

moderately thick and thin flat isotropic, orthotropic and laminated plates under uniform loads. The program can be used 

with the same confidence to generate small deflection results. 

 

Table 1 comparison of present DR, Aalami and Chapman‟s [1] large deflection results for simply supported (SS2) square 

isotropic plate subjected to uniform pressure (ℎ/𝑎 = 0.02, 𝜈 = 0.3) 

𝒒  S 𝒘 𝒄 
𝑴 𝒙 𝟏  
𝑴 𝒚 𝟐  

𝑵 𝒙 𝟏  
𝑵 𝒚 𝟐  

20.8 
1 

2 

0.7360 

0.7386 

0.7357 

0.7454 

0.7852 

0.8278 

41.6 
1 

2 

1.1477 

1.1507 

1.0742 

1.0779 

1.8436 

1.9597 

63.7 
1 

2 

1.4467 

1.4499 

1.2845 

1.2746 

2.8461 

3.0403 

97.0 
1 

2 

1.7800 

1.7800 

1.4915 

1.4575 

4.1688 

4.4322 

 

S (1): present DR results (6 × 6uniform mesh over quarter of the plate) 

S (2): [1] results (6 × 6graded mesh over quarter of the plate) 

 1  𝑥 = 𝑦 =  
1

2
𝑎, 𝑧 = 0 

 

Table 2 Comparison of present DR, Aalami and Chapman‟s [1] large deflection results for simply supported (SS3) square 

isotropic plate subjected to uniform pressure (ℎ/𝑎 = 0.02, 𝑣 = 0.3) 

𝒒  S 𝒘 𝒄 
𝑴 𝒙 𝟏  
𝑴 𝒚 𝟏  

𝑵 𝒙 𝟏  
𝑵 𝒚 𝟏  

𝑵 𝒙 𝟐  
𝑵 𝒚 𝟑  

𝑵 𝒙 𝟑  
𝑵 𝒚 𝟐  

𝑵 𝒙 𝟒  
𝑵 𝒚 𝟒  

20.8 
1 

2 

0.5994 

0.6094 

0.6077 

0.6234 

1.0775 

1.0714 

0.2423 

0.2097 

1.1411 

1.1172 

0.1648 

0.2225 

41.6 
1 

2 

0.8613 

0.8783 

0.8418 

0.8562 

2.2435 

2.2711 

0.5405 

0.4808 

2.4122 

2.4084 

0.3177 

0.4551 

63.7 
1 

2 

1.0434 

1.0572 

0.9930 

1.0114 

3.3151 

3.3700 

0.8393 

0.7564 

3.6014 

3.6172 

0.4380 

0.6538 

97.0 
1 

2 

1.2411 

1.2454 

1.1489 

1.1454 

4.7267 

4.8626 

1.2604 

1.1538 

5.1874 

2.2747 

0.5706 

0.9075 

 

S (1): present DR results (6 × 6uniform mesh over quarter of the plate) 

S (2): [1] results (6 × 6graded mesh over quarter of the plate) 

 1  𝑥 = 𝑦 =  
1

2
𝑎, 𝑧 = 0;  2 𝑥 =

1

2
𝑎, 𝑦 = 𝑧 = 0;  3 𝑥 = 0, 𝑦 =

1

2
𝑎, 𝑧 = 0;  4 𝑥 = 𝑦 = 𝑧 = 0  

 

Table 3 Comparison of present DR, and Rushton‟s [2] large deflection results for simply supported (SS4) square 

isotropic plate subjected to uniform pressure (𝜈 = 0.3) 

𝒒  S 𝒘 𝒄 𝝈 𝟏(𝟏) 

8.2 

1 

2 

3 

0.3172 

0.3176 

0.2910 

2.3063 

2.3136 

2.0900 

29.3 

1 

2 

3 

0.7252 

0.7249 

0.7310 

5.9556 

5.9580 

6.2500 

91.6 

1 

2 

3 

1.2147 

1.2147 

1.2200 

11.3180 

11.3249 

11.4300 
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293.0 

1 

2 

3 

1.8754 

1.8755 

1.8700 

20.749 

20.752 

20.820 

 

S (1): present DR results (ℎ/𝑎 = 0.02; 8 × 8uniform mesh over quarter of the plate) 

S (2): present DR results (ℎ/𝑎 = 0.01; 8 × 8uniform mesh over quarter of the plate)  

S (3): [2] results (thin plate 8 × 8 uniform mesh over quarter of the plate) 

 1  𝑥 = 𝑦 =  
1

2
𝑎, 𝑧 =

1

2
ℎ 

 

Table 4 Comparison of the present DR, and Azizian and Dawe‟s [3] large deflection results for thin shear deformable 

simply supported (SS4) square isotropic plate subjected to uniform pressure (ℎ/𝑎 = 0.01, 𝜈 = 0.3) 

𝒒  S 𝒘 𝒄 

9.2 
1 

2 

0.34693 

0.34677 

36.6 
1 

2 

0.80838 

0.81539 

146.5 
1 

2 

1.45232 

1.46250 

586.1 
1 

2 

2.38616 

2.38820 

 

S (1): present DR results (6 × 6uniform mesh over quarter of the plate) 

S (2): Azizian and Dawe [3] results. 

 

Table 5 Comparison of the present DR, and Azizian and Dawe‟s [3] large deflection results for moderately thick shear 

deformable simply supported (SS4) square isotropic plates subjected to uniform pressure (ℎ/𝑎 = 0.05, 𝜈 = 0.3) 

𝒒  S 𝒘 𝒄 

0.92 
1 

2 

0.04106 

0.04105 

4.6 
1 

2 

0.19493 

0.19503 

6.9 
1 

2 

0.27718 

0.27760 

9.2 
1 

2 

0.34850 

0.34938 

 

S (1): present DR results (6 × 6uniform mesh over quarter of the plate) 

S (2): Azizian and Dawe [3] results. 

 

Table 6 Material properties used in orthotropic and laminated plate comparison analysis. 

Material 𝑬𝟏/𝑬𝟐 𝑮𝟐/𝑬𝟐 𝑮𝟏𝟑/𝑬𝟐 𝑮𝟐𝟑/𝑬𝟐 𝝂𝟏𝟐 𝑺𝑪𝑭(𝒌𝟒
𝟐 = 𝒌𝟓

𝟐) 

I 2.345 0.289 0.289 0.289 0.32 5/6 

II 14.3 0.5 0.5 0.5 0.3 5/6 

 

Table 7 Comparison of present DR, DR results of [4], finite element results [5] and experimental results [6] for a 

uniformly loaded simply supported (SS2) square orthotropic plate made of material I (h/a = 0.0115) 

𝒒  𝒘 𝒄(1) 𝒘 𝒄(2) 𝒘 𝒄(3) 𝒘 𝒄(4) 

17.9 0.5859 0.5858 0.58 0.58 

53.6 1.2710 1.2710 1.30 1.34 

71.5 1.4977 1.4977 1.56 1.59 

89.3 1.6862 1.6862 1.74 1.74 
 

S (1): present DR results (5 × 5uniform non – interlacing mesh over quarter of the plate). 

S (2): DR results of [4]. 

S (3): Reddy‟s finite element results [5]. 

S (4): Zaghloul‟s and Kennedy‟s [6] experimental results as read from graph. 
 

Table 8 Deflection of the center of a two – layer anti symmetric cross ply simply supported in – plane fixed (SS4) strip 

under uniform pressure (b/a= 5,h/a= 0.01) 

 𝒒  S 𝒘 𝟏 𝟎
𝒐/𝟗𝟎𝒐  𝒘 𝟐 𝟗𝟎

𝒐/𝟎𝒐  𝒘 𝒐(𝑩𝒊𝒋 = 𝟎) %(1) %(2) %(3) 

18 
1 

2 

0.6851 

0.6824 

0.2516 

0.2544 
0.2961 

131.4 

130.5 

- 15.0 

- 14.1 

172.3 

168.2 
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3 0.6800 0.2600 

36 

1 

2 

3 

0.8587 

0.8561 

0.8400 

0.3772 

0.3822 

0.3900 

0.4565 

88.1 

87.5 

- 17.4 

- 16.3 

127.7 

124.0 

72 

1 

2 

3 

1.0453 

1.0443 

1.0400 

0.5387 

0.5472 

0.5500 

0.6491 

61.0 

60.9 

- 17.0 

- 15.7 

94.0 

90.8 

108 

1 

2 

3 

1.1671 

1.1675 

1.1500 

0.6520 

0.6630 

0.6600 

0.7781 

50.0 

50.0 

- 16.2 

- 14.8 

79.0 

76.1 

 

S (1): present DR results  

S (2): DR results [8]. 

S (3): Values determined from sun and chin‟s results [7]. 

(1): 100 × (𝑤 1 − 𝑤 𝑜)/𝑤 𝑜  

(2): 100 × (𝑤 2 − 𝑤 𝑜)/𝑤 𝑜  

(3): 100 × (𝑤 1 − 𝑤 2)/𝑤 2 

 

Table 9 Center deflection of two – layer anti – symmetric cross – ply simply supported in – plane free (SS1) plate under 

uniform pressure and with different aspect ratios (ℎ/𝑎 = 0.01; 𝑞 = 18). 

𝑏/𝑎 S 𝒘 𝟏 𝟎
𝒐/𝟗𝟎𝒐  𝒘 𝟐 𝟗𝟎

𝒐/𝟎𝒐  𝒘 𝒐(𝑩𝒊𝒋 = 𝟎) %(1) %(2) %(3) 

2.5 
1 

2 

0.8325 

0.8328 

0.8422 

0.8424 

0.3907 

0.3907 

113.1 

113.2 

115.6 

115.6 

- 1.15 

- 1.1 

2.0 
1 

2 

0.7707 

0.7712 

0.7796 

0.7799 

0.3807 

0.3807 

102.4 

102.6 

104.8 

104.9 

- 1.14 

- 1.1 

1.75 
1 

2 

0.7173 

0.7169 

0.7248 

0.7251 

0.3640 

0.3640 

97.0 

97.0 

99.1 

99.2 

- 1.0 

- 1.1 

1.5 
1 

2 

0.6407 

0.6407 

0.6460 

0.6455 

0.3335 

0.3325 

92.1 

92.7 

93.7 

94.1 

- 0.82 

- 0.70 

1.25 
1 

2 

0.5324 

0.5325 

0.5346 

0.5347 

0.2781 

0.2782 

91.4 

91.4 

92.2 

92.2 

- 0.4 

- 0.4 

1.0 
1 

2 

0.3797 

0.3796 

0.3797 

0.3796 

0.1946 

0.1949 

95.1 

94.8 

95.1 

94.8 

0.0 

0.0 
 

S (1): present DR results  

S (2): DR results [8]. 

(1): 100 × (𝑤 1 − 𝑤 𝑜)/𝑤 𝑜  

(2): 100 × (𝑤 2 − 𝑤 𝑜)/𝑤 𝑜  

(3): 100 × (𝑤 1 − 𝑤 2)/𝑤 2 
 

V.    CONCLUSIONS 

A Dynamic relaxation (DR) program basedon finite differences has been developed for large deflection analysis 

of rectangular laminated plates using first order shear deformation theory (FSDT). The displacements are assumed linear 

through the thickness of the plate. A series of new results for uniformly loaded thin, moderately thick, and thick plates 

with simply supported edges have been presented. Finally a series of numerical comparisons have been undertaken to 

demonstrate the accuracy of the DR program. These comparisons show the following:- 

1.  The convergence of the DR solution depends on several factors including boundary conditions, meshes size, 

fictitious densities and applied load. 

2.  The DR large deflection program using uniform finite differences meshes can be employed with confidence in 

the analysis of moderately thick and flat isotropic, orthotropic or laminated plates under uniform loads. 

3.  The DR program can be used with the same confidence to generate small deflection results. 

4.  The time increment is a very important factor for speeding convergence and controlling numerical 

computations. When the increment is too small, the convergence becomes tediously slow; and when it is too 

large, the solution becomes unstable. The proper time increment in the present study is taken as 0.8 for all 

boundary conditions. 

5.  The optimum damping coefficient is that which produces critical motion. When the damping coefficients are 

large, the motion is over – damped and the convergence becomes very slow. At the other hand when the 

coefficients are small, the motion is under – damped and can cause numerical instability. Therefore, the 

damping coefficients must be selected carefully to eliminate under – damping and over – damping. 
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