
THEORIES ON LAMINATED COMPOSITE PLATES 

DEDICATED TO THE MEMORY OF MY MOTHER KHADRA 

DIRAR TAHA 

AUTHOR 

ASSISTANT PROFESSOR: OSAMA M. ELMARDI 

JUNE 2017 

 



 1 

CHAPTER (   

Introduction 

    General Introduction:  

Composites were first considered as structural materials a little more than 

three quarters of a century ago. From that time to now, they have received 

increasing attention in all aspects of material science, manufacturing technology, 

and theoretical analysis. 

The term composite could mean almost anything if taken at face value, 

since all materials are composites of dissimilar subunits if examined at close 

enough details. But in modern materials engineering, the term usually refers to a 

matrix material that is reinforced with fibers. For instance, the term "FRP" 

which refers to Fiber Reinforced Plastic usually indicates a thermosetting 

polyester matrix containing glass fibers, and this particular composite has the 

lion's share of today commercial market. 

 Many composites used today are at the leading edge of materials 

technology, with performance and costs appropriate to ultra-demanding 

applications such as space crafts. But heterogeneous materials combining the 

best aspects of dissimilar constituents have been used by nature for million of 

years. Ancient societies, imitating nature, used this approach as well: The book 

of Exodus speaks of using straw to reinforce mud in brick making, without 

which the bricks would have almost no strength. Here in Sudan, people from 

ancient times dated back to Meroe civilization, and up to now used zibala (i.e. 

animals’ dung) mixed with mud as a strong building material. 

 As seen in table 1.1 below, which is cited by David Roylance [ ], Stephen 

et al.     and Turvey et al.    , the fibers used in modern composites have 

strengths and stiffnesses far above those of traditional structural materials. The 

high strengths of the glass fibers are due to processing that avoids the internal or 

external textures flaws which normally weaken glass, and the strength and 



 2 

stiffness of polymeric aramid fiber is a consequence of the nearly perfect 

alignment of the molecular chains with the fiber axis.   

Table 1.1 Properties of composite reinforcing fibers  

Material 
E 

(GN/m
 
) 

b  

(GN/m
 
) 

b  

(%) 

  

(Mg/m
 
) 

/E  

(MN.m/kg) 

 /b  

(MN.m/kg) 

E-glass                             

S-glass                            

Aramid                         

Boron                           

H S 

graphite 
                         

H M 

graphite 
                         

 

Where E is Young's modulus, b  is the breaking stress, b   is the breaking 

strain, and   is the mass density. 

These materials are not generally usable as fibers alone, and typically they 

are impregnated by a matrix material that acts to transfer loads to the fibers, and 

also to protect the fibers from abrasion and environmental attack. The matrix 

dilutes the properties to some degree, but even so very high specific (weight – 

adjusted) properties are available from these materials. Polymers are much more 

commonly used, with unsaturated Styrene – hardened polyesters having the 

majority of low to medium performance applications and Epoxy or more 

sophisticated thermosets having the higher end of the market. Thermoplastic 

matrix composites are increasingly attractive materials, with processing 

difficulties being perhaps their principal limitation. 

Recently, composite materials are increasingly used in many mechanical, 

civil, and aerospace engineering applications due to two desirable features: the 

first one is their high specific stiffness (stiffness per unit density) and high 

specific strength (strength per unit density), and the second is their properties 
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that can be tailored through variation of the fiber orientation and stacking 

sequence which gives the designers a wide spectrum of flexibility. The 

incorporation of high strength, high modulus and low-density filaments in a low 

strength and a low modulus matrix material is known to result in a structural 

composite material with a high strength to weight ratio. Thus, the potential of a 

two-material composite for use in aerospace, under-water, and automotive 

structures has stimulated considerable research activities in the theoretical 

prediction of the behaviour of these materials. One commonly used composite 

structure consists of many layers bonded one on top of another to form a high-

strength laminated composite plate. Each lamina is fiber reinforced along a 

single direction, with adjacent layers usually having different filament 

orientations. For these reasons, composites are continuing to replace other 

materials used in structures such as conventional materials. In fact composites 

are the potential structural materials of the future as their cost continues to 

decrease due to the continuous improvements in production techniques and the 

expanding rate of sales.    

1.2 Structure of composites: 

 There are many situations in engineering where no single material will be 

suitable to meet a particular design requirement. However, two materials in 

combination may possess the desired properties and provide a feasible solution 

to the materials selection problem. A composite can be defined as a material that 

is composed of two or more distinct phases, usually a reinforced material 

supported in a compatible matrix, assembled in prescribed amounts to achieve 

specific physical and chemical properties.   

In order to classify and characterize composite materials, distinction 

between the following two types is commonly accepted; see Vernon [ ], Jan 

Stegmann and Erik Lund [ ], and David Roylance [ ]. 
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   Fibrous composite materials:  Which are composed of high strength fibers 

embedded in a matrix.  The functions of the matrix are to bond the fibers 

together to protect them from damage, and to transmit the load from one fiber to 

another. {See fig.1.1}. 

   Particulate composite materials: These are composed of particles encased 

within a tough matrix, e.g. powders or particles in a matrix like ceramics. 

 

  

 

 

 

 

 

 In this book the focus will be on fiber reinforced composite materials, as 

they are the basic building element of a rectangular laminated plate structure. 

Typically, such a material consists of stacks of bonded-together layers (i.e. 

laminas or plies) made from fiber reinforced material. The layers will often be 

oriented in different directions to provide specific and directed strengths and 

stiffnesses of the laminate. Thus, the strengths and stiffnesses of the laminated 

fiber reinforced composite material can be tailored to the specific design 

requirements of the structural element being built. 

 1.2.1 Mechanical properties of a fiber reinforced lamina:        
      
           Composite materials have many mechanical characteristics, which are 

different from those of conventional engineering materials such as metals. More 

precisely, composite materials are often both inhomogeneous and non-isotropic. 

Therefore, and due to the inherent heterogeneous nature of composite materials, 

they can be studied from a micromechanical or a macro mechanical point of 

Fiber 

Matrix 

                Fig. 1.1 Structure of a fibrous composite 
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view. In micromechanics, the behaviour of the inhomogeneous lamina is defined 

in terms of the constituent materials; whereas in macro mechanics the material is 

presumed homogeneous and the effects of the constituent materials are detected 

only as averaged apparent macroscopic properties of the composite material. 

This approach is generally accepted when modeling gross response of composite 

structures. The micromechanics approach is more convenient for the analysis of 

the composite material because it studies the volumetric percentages of the 

constituent materials for the desired lamina stiffnesses and strengths, i.e. the aim 

of micromechanics is to determine the moduli of elasticity and strength of a 

lamina in terms of the moduli of elasticity, and volumetric percentage of the 

fibers and the matrix. To explain further, both the fibers and the matrix are 

assumed homogeneous, isotropic and linearly elastic. 

        Stiffness and strength of a lamina 

 
The fibers may be oriented randomly within the material, but it is also 

possible to arrange for them to be oriented preferentially in the direction 

expected to have the highest stresses. Such a material is said to be anisotropic 

(i.e. different properties in different directions), and control of the anisotropy is 

an important means of optimizing the material for specific applications. At a 

microscopic level, the properties of these composites are determined by the 

orientation and distribution of the fibers, as well as by the properties of the fiber 

and matrix materials. 

Consider a typical region of material of unit dimensions, containing a 

volume fraction, Vf of fibers all oriented in a single direction. The matrix volume 

fraction is then, fm VV 1  . This region can be idealized by gathering all the 

fibers together, leaving the matrix to occupy the remaining volume. If a stress l  

is applied along the fiber direction, the fiber and matrix phases act in parallel to 

support the load. In these parallel connections the strains in each phase must be 

the same, so the strain l  in the fiber direction can be written as: 

                                          mfl                                                                                   
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(Where: the subscripts L, f and m denote the lamina, fibers and matrix 

respectively). 

The forces in each phase must add to balance the total load on the material. 

Since the forces in each phase are the phase stresses times the area (here 

numerically equal to the volume fraction), we have  

                                mlmflfmmffl VEVEVV                                             

The stiffness in the fiber direction is found by dividing the stress by the strain: 

                                mmff

l

l
l VEVEE 




                                                                        

(Where: E is the longitudinal Young's modulus)  

This relation is known as a rule of mixtures prediction of the overall modulus in 

terms of the moduli of the constituent phases and their volume fractions. 

 Rule of mixtures estimates for strength proceed along lines similar to those 

for stiffness. For instance consider a unidirectional reinforced composite that is 

strained up to the value at which the fiber begins to fracture. If the matrix is 

more ductile than the fibers, then the ultimate tensile strength of the lamina in 

equation (     will be transformed to: 

                                     f

f

mf

u

f

u

l VV  1                                                                         

Where the superscript u denotes an ultimate value, and f

m  is the matrix stress 

when the fibers fracture as shown in fig.1. . 
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Fig .1.2 Stress-strain relationships for fiber and matrix 
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minf VV 0

 

 

It is clear that if the fiber volume fraction is very small, the behaviour of the 

lamina is controlled by the matrix.  

This can be expressed mathematically as follows: 

                                      f

u

m

u

l V 1                                                                                      

If the lamina is assumed to be useful in practical applications, then there is a 

minimum fiber volume fraction that must be added to the matrix. This value is 

obtained by equating equations (1.4) and (1.5) i.e. 

                              
f

m

u

m

u

f

f

m

u

m

minV 







                                                                                   

The variation of the strength of the lamina with the fiber volume fraction 

is illustrated in fig.    . It is obvious that when                               the strength of 

the lamina is dominated by the matrix deformation which is less than the matrix 

strength. But when the fiber volume fraction exceeds a critical value (i.e. Vf > 

VCritical ), Then the lamina gains some strength due to the fiber reinforcement. 

 
 

Fig. 1.3 Variation of unidirectional lamina strength with the fiber volume fraction 
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 The micromechanical approach is not responsible for the many defects 

which may arise in fibers, matrix, or lamina due to their manufacturing. These 

defects, if they exist include misalignment of fibers, cracks in matrix, non-

uniform distribution of the fibers in the matrix, voids in fibers and matrix, 

delaminated regions, and initial stresses in the lamina as a result of its 

manufacture and further treatment.  The above mentioned defects tend to 

propagate as the lamina is loaded causing an accelerated rate of failure. The 

experimental and theoretical results in this case tend to differ. Hence, due to the 

limitations necessary in the idealization of the lamina components, the 

properties estimated on the basis of micromechanics should be proved 

experimentally. The proof includes a very simple physical test in which the 

lamina is considered homogeneous and orthotropic. In this test, the ultimate 

strength and modulus of elasticity in a direction parallel to the fiber direction 

can be determined experimentally by loading the lamina longitudinally. When 

the test results are plotted, as in fig.1.  below, the required properties may be 

evaluated as follows: - 

1212111 /    ;    /   ;   /    APE uu  
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Fig.1.4 Unidirectional lamina loaded in the fiber-direction 

1
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Similarly, the properties of the lamina in a direction perpendicular to the fiber 

direction can be evaluated in the same procedure. 

        Analytical modeling of composite laminates: 

 

 The properties of a composite laminate depend on the geometrical 

arrangement and the properties of its constituents. The exact analysis of such 

structure – property relationship is rather complex because of many variables 

involved. Therefore, a few simplifying assumptions regarding the structural 

details and the state of stress within the composite have been introduced. 

  It has been observed, that the concept of representative volume element 

and the selection of appropriate boundary conditions are very important in the 

discussion of micromechanics. The composite stress and strain are defined as the 

volume averages of the stress and strain fields, respectively, within the 

representative volume element. By finding relations between the composite 

stresses and the composite strains in terms of the constituent properties 

expressions for the composite moduli could be derived. In addition, it has been 

shown that, the results of advanced methods can be put in a form similar to the 

rule of mixtures equations. 

 Prediction of composite strengths is rather difficult because there are 

many unknown variables and also because failure critically depends on defects. 

However, the effects of constituents including fiber – matrix interface on 

composite strengths can be qualitatively explained. Certainly, failure modes can 

change depending on the material combinations.  Thus, an analytical model 

developed for one material combination cannot be expected to work for a 

different one. Ideally a truly analytical model will be applicable to material 

combination. However, such an analytical model is not available at present. 

Therefore, it has been chosen to provide models each of which is applicable only 

to a known failure mode. Yet, they can explain many of the effects of the 

constituents. (Refer to Ref. [2]). 
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    The objectives of the present study: 

 The present work involves a comprehensive study of the following 

objectives, which have been achieved over a period of five years: 

   A survey of various plate theories and techniques used to predict the 

response of laminated plates under buckling loads. 

   The development of a theoretical model capable of predicting buckling loads 

in a laminated plate in which the shear deformation is considered. 

   The development and application of the finite element technique for the 

analysis of rectangular laminated plates subjected to a buckling load. 

   Investigation of the accuracy of the theoretical model through a wide range 

of theoretical and experimental comparisons. 

   Further investigations on the influence of coupling between bending and 

extension and/or twisting on the response of laminated plates could be 

carried out. 

   Generation of   new results based on first order shear deformation theory 

(FSDT). 
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Chapter (2) 

Literature review   

2.1 Developments in the theories of laminated plates: 

 From the point of view of solid mechanics, the deformation of a plate 

subjected to transverse and / or in plane loading consists of two components: 

flexural deformation due to rotation of cross – sections, and shear deformation 

due to sliding of section or layers. The resulting deformation depends on two 

parameters: the thickness to length ratio and the ratio of elastic to shear moduli. 

When the thickness to length ratio is small, the plate is considered thin, and it 

deforms mainly by flexure or bending; whereas when the thickness to length and 

the modular ratios are both large, the plate deforms mainly through shear. Due 

to the high ratio of in – plane modulus to transverse shear modulus, the shear 

deformation effects are more pronounced in the composite laminates subjected 

to transverse and / or inplane loads than in the isotropic plates under similar 

loading conditions. 

 The three – dimensional theories of laminates, in which each layer is 

treated as homogeneous anisotropic medium, (see Reddy [6]) are intractable. 

Usually, the anisotropy in laminated composite structures causes complicated 

responses under different loading conditions by creating complex couplings 

between extensions and bending, and shears deformation modes. Expect for 

certain cases, it is inconvenient to fully solve a problem in three dimensions due 

to the complexity, size of computation, and the production of unnecessary data 

specially for composite structures. 

Many theories which account for the transverse shear and normal stresses 

are available in the literature (see, for example Mindlin [7]). These are too 

numerous to review here. Only some classical papers and those which constitute 

a background for the present thesis will be considered. These theories are 

classified according to Phan and Reddy [8] into two major classes on the basis 
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of the assumed fields as: (1) stress based theories, and (2) displacement based 

theories. The stress – based theories are derived from stress fields which are 

assumed to vary linearly over the thickness of the plate: 

   
   1.26,2,1

26

2
 i

h

z

h

M i
i

 

(Where iM  is the stress couples, h is the plate thickness, and z is the distance of 

the lamina from the plate mid – plane). 

The displacement – based theories are derived from an assumed displacement 

field as: 

.....3

3

2

2

1  uzuzuzuu   

.....3

3

2

2

1  vzvzvzvv   

                               
....3

3

2

2

1  wzwzwzww   

Where: u  , v  and w are the displacements of the middle plane of the plate. The 

governing equations are derived using principle of minimum total potential 

energy. The theory used in the present work comes under the class of 

displacement – based theories. Extensions of these theories which include the 

linear terms in z  in u  and v and only the constant term in w , to account for 

higher – order variations and to laminated plates, can be found in the work of 

Yang, Norris and Stavsky [9] , Whitney and Pagano [10] and Phan and Reddy 

     

 Based on different assumptions for displacement fields, different theories 

for plate analysis have been devised. These theories can be divided into three 

major categories, the individual layer theories (IL), the equivalent single layer 

(ESL) theories, and the three dimensional elasticity solution procedures. These 

categories are further divided into sub – theories by the introduction of different 

assumptions. For example the second category includes the classical laminated 

plate theory (CLPT), the first order and higher order shear deformation theories 

(FSDT and HSDT) as stated in Refs.{    ]–[   }. 
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 In the individual layer laminate theories, each layer is considered as a 

separate plate. Since the displacement fields and equilibrium equations are 

written for each layer, adjacent layers must be matched at each interface by 

selecting appropriate interfacial conditions for displacements and stresses. In the 

ESL laminate theories, the stress or the displacement field is expressed as a 

linear combination of unknown functions and the coordinate along the thickness. 

If the in – plane displacements are expanded in terms of the thickness co – 

ordinate up to the n
th

 power, the theory is named n
th

 order shear deformation 

theory. The simplest ESL laminate theory is the classical laminated plate theory 

(CLPT). This theory is applicable to homogeneous thin plates (i.e. the length to 

thickness ratio a / h > 20). The classical laminated plate theory (CLPT), which is 

an extension of the classical plate theory (CPT) applied to laminated plates was 

the first theory formulated for the analysis of laminated plates by Reissner and 

Stavsky [15] in 1961 , in which the Kirchhoff and Love assumption that normal 

to the mid – surface before deformation remain straight and normal to the mid – 

surface after deformation is used (see fig.2.1) , but it is not adequate for the 

flexural analysis of moderately thick laminates. However, it gives reasonably 

accurate results for many engineering problems i.e. thin composite plates, as 

stated by Srinivas and Rao [16], Reissner and Stavsky [15]. This theory ignores 

the transverse shear stress components and models a laminate as an equivalent 

single layer. The classical laminated plate theory (CLPT) under – predicts 

deflections as proved by Turvey and Osman [17        ] and Reddy [6] due to 

the neglect of transverse shear strain. The errors in deflection are even higher for 

plates made of advanced filamentary composite materials like graphite – epoxy 

and boron – epoxy whose elastic modulus to shear modulus ratios are very large 

(i.e. of the order of 25 to 40 , instead of 2.6 for typical isotropic materials). 

However, these composites are susceptible to thickness effects because their 

effective transverse shear moduli are significantly smaller than the effective 

elastic modulus along the fiber direction. This effect has been confirmed by 

Pagano [20] who obtained analytical solutions of laminated plates in bending 



 14 

based on the three – dimensional theory of elasticity. He proved that classical 

laminated plate theory (CLPT) becomes of less accuracy as the side to thickness 

 

Assumed deformation of 

normals (HSDT) (parabolic 

shear stress distribution) 

Assumed deformation of normals 

(CLPT) (Shear stress neglected) 

z,w 

x,u Undeformed 
y 

dx

dw
 

dx

dw
 

  

dx

dw
 

  

dx

dw
 

Fig. 2.1    Assumed deformation of the transverse normal in various displacement base plate theories. 

Assumed deformation of normals 

(FSDT) (shear stress assumed uniform) 
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ratio decreases. In particular, the deflection of a plate predicted by CLPT is 

considerably smaller than the analytical value for side to thickness ratio less than 

10. These high ratios of elastic modulus to shear modulus render classical 

laminate theory as inadequate for the analysis of composite plates. In the first 

order shear deformation theory (FSDT) , the transverse planes , which are 

originally normal and straight to the mid – plane of the plate , are assumed to 

remain straight but not necessarily normal after deformation , and consequently 

shear correction factors are employed in this theory to adjust the transverse shear 

stress , which is constant through thickness (see fig.2.1). Recently Reddy [6] and 

Phan and Reddy [8] presented refined plate theories that used the idea of 

expanding displacements in the powers of thickness coordinate. The main 

novelty of these works is to expand the in – plane displacements as cubic 

functions of the thickness coordinate, treat the transverse deflection as a function 

of the x  and y coordinates, and eliminate the functions 2u  , 3u , 2v  and 3v from 

equation (2.2) by requiring that the transverse shear stress be zero on the 

bounding planes of the plate. Numerous studies involving the application of the 

first – order theory to bending, vibration and buckling analyses can be found in 

the works of Reddy [20], and Reddy and Chao [21].  

 In order to include the curvature of the normal after deformation, a 

number of theories known as higher – order shear deformation theories (HSDT) 

have been devised in which the displacements are assumed quadratic or cubic 

through the thickness of the plate. In this aspect, a variationally consistent higher 

– order theory which not only accounts for the shear deformation but also 

satisfies the zero transverse shear stress conditions on the top and bottom faces 

of the plate and does not require correction  factors was suggested by Reddy [6]. 

Reddy's modifications consist of a more systematic derivation of displacement 

field and variationally consistent derivation of the equilibrium equations. The 

refined laminate plate theory predicts a parabolic distribution of the transverse 
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shear stresses through the thickness, and requires no shear correction 

coefficients. 

 In the non – linear analysis of plates considering higher – order shear 

deformation theory (HSDT), shear deformation has received considerably less 

attention compared with linear analysis. This is due to the geometric non – 

linearity which arises from finite deformations of an elastic body and which 

causes more complications in the analysis of composite plates. Therefore, fiber – 

reinforced material properties and lamination geometry have to be taken into 

account. In the case of anti – symmetric and unsymmetrical laminates, the 

existence of coupling between stretching and bending complicates the problem 

further. Non – linear solutions of laminated plates using higher – order theories 

have been obtained through several techniques, i. e. perturbation method as in 

Ref.[22], finite element method as in Ref.[23], the increment of lateral 

displacement method as in Ref.[24],and the small parameter method as in 

Ref.[25]. 

2.2 Numerical techniques: 

Several numerical methods could be used in this study, but the main ones 

are finite difference method (FDM), dynamic relaxation coupled with finite 

difference method (DR), and finite element method (FEM). 

In the finite difference method, the solution domain is divided into a grid 

of discrete points or nodes. The partial differential equation is then written for 

each node and its derivatives are replaced by finite divided differences. 

Although such point – wise approximation is conceptually easy to understand, it 

becomes difficult to apply for system with irregular geometry, unusual boundary 

conditions, and heterogeneous composition. 

 The DR method was first proposed in 1960
th

; see Rushton [26], Cassel 

and Hobbs [27], and Day [28]. In this method, the equations of equilibrium are 

converted to dynamic equations by adding damping and inertia terms. These are 

then expressed in finite difference form and the solution is obtained through 
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iterations. The optimum damping coefficient and the time increment used to 

stabilize the solution depend on the stiffness matrix of the structure, the applied 

load, the boundary conditions and the size of mesh used. 

 In the present work, a numerical method known as finite element method 

(FEM) is used. It is a numerical procedure for obtaining solutions to many of the 

problems encountered in engineering analysis. It has two primary subdivisions. 

The first utilizes discrete elements to obtain the joint displacements and member 

forces of a structural framework. The second uses the continuum elements to 

obtain approximate solutions to heat transfer, fluid mechanics, and solid 

mechanics problem. The formulation using the discrete element is referred to as 

matrix analysis of structures and yields results identical with the classical 

analysis of structural frameworks. The second approach is the true finite element 

method. It yields approximate values of the desired parameters at specific points 

called nodes. A general finite element computers program, however, is capable 

of solving both types of problems and the name" finite element method" is often 

used to denote both the discrete element and the continuum element 

formulations. 

 The finite element method combines several mathematical concepts to 

produce a system of linear and non – linear equations. The number of equations 

is usually very large, anywhere from 20 to 20,000 or more and requires the 

computational power of the digital computer. 

 It is impossible to document the exact origin of the finite element method 

because the basic concepts have evolved over a period of 150 or more years. 

The method as we know it today is an outgrowth of several papers published in 

the 1950
th

 that extended the matrix analysis of structures to continuum bodies. 

The space exploration of the 1960
th

 provided money for basic research, which 

placed the method of a firm mathematical foundation and stimulated the 

development of mulit – purpose computer programs that implemented the 

method. The design of airplanes, unmanned drones, missiles, space capsules, 

and the like, provided application areas. 
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 The finite element method (FEM) is a powerful numerical method, which 

is used as a computational technique for the solution of differential equations 

that arise in various fields of engineering and applied sciences. The finite 

element method is based on the concept that one can replace any continuum by 

an assemblage of simply shaped elements, called finite elements with well 

defined force, displacement, and material relationships. While one may not be 

able to derive a closed – form solution for the continuum, one can derive 

approximate solutions for the element assemblage that replaces it. The 

approximate solutions or approximation functions are often constructed using 

ideas from interpolation theory, and hence they are also called interpolation 

functions. For more details refer to Refs. {[  ] – [   }. 

 In a comparison between the finite element method (FEM) and dynamic 

relaxation method (DR), Aalami [32] found that the computer time required for 

the finite element method is eight times greater than for DR analysis, whereas 

the storage capacity for FEM is ten times or more than that for DR analysis. This 

fact is supported by putcha and Reddy [23], and Turvey and Osman {   ] – 

[  ]} who noted that some of the finite element formulations require large 

storage capacity and computer time. Hence due to the large computations 

involved in the present study, the finite element method (FEM) is considered 

more efficient than the DR method. In another comparison, Aalami [32] found 

that the difference in accuracy between one version of FEM and DR may reach a 

value of more than 15 % in favour of FEM. Therefore, the FEM can be 

considered of acceptable accuracy. The apparent limitation of the DR method is 

that it can only be applied to limited geometries, whereas the FEM can be 

applied to different intricate geometries and shapes. 

2.3 The past work of buckling analysis: 

 Composite materials are widely used in a broad spectrum of modern 

engineering application fields ranging from traditional fields such as 

automobiles, robotics, day to day appliances, building industry etc. This is due 



 19 

to their excellent high strength to weight ratio, modulus to weight ratio, and the 

controllability of the structural properties with the variation of fiber orientation, 

stacking scheme and the number of laminates. Among the various aspects of the 

structural performance of structures made of composite materials is the 

mechanical behaviour of rectangular laminated plates which has drawn much 

attention. In particular, consideration of the buckling phenomena in such plates 

is essential for the efficient and reliable design and for the safe use of the 

structural element. Due to the anisotropic and coupled material behaviour, the 

analysis of composite laminated plates is generally more complicated than the 

analysis of homogeneous isotropic ones. 

The members and structures composed of laminated composite material 

are usually very thin, and hence more prone to buckling. Buckling phenomenon 

is critically dangerous to structural components because the buckling of 

composite plates usually occurs at a lower applied stress and generates large 

deformations. This led to a focus on the study of buckling behaviour in 

composite materials. General introductions to the buckling of elastic structures 

and of laminated plates can be found in e.g. Refs. {[  ] – [   }. However, these 

available Curves and data are restricted to idealized loading, namely, uniaxial or 

biaxial uniform compression. 

Due to the importance of buckling considerations, there is an 

overwhelming number of investigations available in which corresponding 

stability problems are considered by a wide variety of analysis methods which 

may be of a closed – form analytical nature or may be sorted into the class of 

semi – analytical or purely numerical analysis method. 

Closed – form exact solutions for the buckling problem of rectangular 

composite plates are available only for limited combinations of boundary 

conditions and laminated schemes. These include cross – ply symmetric and 

angle – ply anti – symmetric rectangular laminates with at least two opposite 

edges simply supported, and similar plates with two opposite edges clamped but 

free to deflect (i.e. guided clamp) or with one edge simply supported and the 
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opposite edge with a guided clamp. Most of the exact solutions discussed in the 

monographs of Whitney [47] who developed an exact solution for critical 

buckling of solid rectangular orthotropic plates with all edges simply supported , 

and of Reddy {   ] – [   } and Leissa and Kang [52],and that of Refs.[39] and 

[53]. Bao et al. [54] developed an exact solution for two edges simply supported 

and two edges clamped, and Robinson [55] who developed an exact solution for 

the critical buckling stress of an orthotropic sandwich plate with all edges 

simply supported. 

For all other configurations, for which only approximated results are 

available, several semi – analytical and numerical techniques have been 

developed. The Rayleigh – Ritz method [53] and [56], the finite strip method 

(FSM) [36] and [   , the element free Galerkin method (EFG) [58], the 

differential quadrature technique [59], the moving least square differential 

quadrature method [    and the most extensively used finite element method 

(FEM) [61] are the most common ones. 

The Kantorovich method (KM) {   ] – [   }, which is a different and in 

most cases advantageous semi – analytical method, combines a variation 

approach of closed – form solutions and an iterative procedure. The method 

assumes a solution in the form of a sum of products of functions in one direction 

and functions in the other direction. Then, by assuming the function in one 

direction, the variation problem of the plate reduces to a set of ordinary 

differential equations. In the case of buckling analysis, the variation problem 

reduces to an ordinary differential eigenvalue and eigenfunction problem. The 

solution of the resulting problem is an approximate one, and its accuracy 

depends on the assumed functions in the first direction. The extended 

Kantorovich method (EKM), which was proposed by Kerr [     is the starting 

point for an iterative procedure, where the solution obtained in one direction is 

used as the assumed functions in the second direction. After repeating this 

process several times, convergence is obtained. The single term extended 

Kantorovich method was employed for a buckling analysis of rectangular plates 
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by several researches. Eienberger and Alexandrov [66] used the method for the 

buckling analysis of isotropic plates with variable thickness. Shufrin and 

Eisenberger [67] and [68] extended the solution to thick plates with constant and 

variable thickness using the first and higher order shear deformation theories. 

Ungbhakorn and Singhatanadgid [69] extended the solution to buckling of 

symmetrically cross – ply laminated rectangular plates. The multi – term 

formulation of the extended Kantorovich approach to the simplest samples of 

rectangular isotropic plates was presented by Yuan and Jin [70]. This study 

showed that the additional terms in the expansion can be used in order to 

improve the solution. 

March and Smith [71] found an approximate solution for all edges 

clamped. Also, Chang et al. [72] developed approximate solution to the buckling 

of rectangular orthotropic sandwich plate with two edges simply supported and 

two edges clamped or all edges clamped using the March – Erickson method 

and an energy technique. Jiang et al. [73] developed solutions for local buckling 

of  rectangular orthotropic hat – stiffened plates with edges parallel to the 

stiffeners were simply supported or clamped and edges parallel to the stiffeners 

were free, and Smith [74] presented solutions bounding the local buckling of hat 

stiffened plates by considering the section between stiffeners as simply 

supported or clamped plates. 

Many authors have used finite element method to predict accurate in – 

plane stress distribution which is then used to solve the buckling problem. 

Zienkiewicz [75] and Cook [76] have clearly presented an approach for finding 

the buckling strength of plates by first solving the linear elastic problem for a 

reference load and then the eigenvalue problem for the smallest eigenvalue 

which then multiplied by the reference load gives the critical buckling load of 

the structure. An excellent review of the development of plate finite elements 

during the past 35 years was presented by Yang et al. [77]. 

Many buckling analysis of composite plates available in the literature are 

usually realized parallel with the vibration analyses, and are based on two – 
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dimensional plate theories which may be classified as classical and shear 

deformable ones. Classical plate theories (CPT) do not take into account the 

shear deformation effects and over predict the critical buckling loads for thicker 

composite plates, and even for thin ones with a higher anisotropy. Most of the 

shear deformable plate theories are usually based on a displacement field 

assumption with five unknown displacement components. As three of these 

components corresponded to the ones in CPT, the additional ones are multiplied 

by a certain function of thickness coordinate and added to the displacements 

field of CPT in order to take into account the shear deformation effects. Taking 

these functions as linear and cubic forms leads to the so – called uniform or 

Mindlin shear deformable plate theory (USDPT) [78], and parabolic shear 

deformable plate theories (PSDPT) [79] respectively. Different forms were also 

employed such as hyperbolic shear deformable plate theory (HSDPT) [80], and 

trigonometric or sine functions shear deformable plate theory (TSDPT) [81] by 

researchers. Since these types of shear deformation theories do not satisfy the 

continuity conditions among many layers of the composite structures, the zig – 

zag type of the plate theories introduced by Di Sciuva [82], and Cho and 

Parmeter [83] in order to consider interlaminar stress continuities. Recently, 

Karama et al. [84] proposed a new exponential function{i.e. exponential shear 

deformable plate theory (ESDPT)} in the displacement field of the composite 

laminated structures for the representation of the shear stress distribution along 

the thickness of the composite structures and compared their result for static and 

dynamic problem of the composite beams with the sine model. 

Within the classical lamination theory, Jones [85] presented a closed – 

form solution for the buckling problem of cross – ply laminated plates with 

simply supported boundary conditions. In the case of multi – layered plates 

subjected to various boundary conditions which are different from simply 

supported boundary conditions at all of their four edges, the governing equations 

of the buckling of the composite plates do not admit an exact solution, except 

for some special arrangements of laminated plates. Thus, for the solution of 
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these types of problems, different analytical and / or numerical methods are 

employed by various researchers. Baharlou and Leissa [56] used the Ritz 

method with simple polynomials as displacement functions, within the classical 

theory, for the problem of buckling of cross and angle – ply laminated plates 

with arbitrary boundary conditions and different in – plane loads. Narita and 

Leissa [86] also applied the Ritz method with the displacement components 

assumed as the double series of trigonometric functions for the buckling 

problem of generally symmetric laminated composite rectangular plates with 

simply supported boundary conditions at all their edges. They investigated the 

critical buckling loads for five different types of loading conditions which are 

uniaxial compression (UA – C), biaxial compression (BA – C), biaxial 

compression – tension (BA – CT), and positive and negative shear loadings. 

The higher – order shear deformation theories can yield more accurate 

inter – laminate stress distributions. The introduction of cubic variation of 

displacement also avoids the need for shear correction displacement. To achieve 

a reliable analysis and safe design, the proposals and developments of models 

using higher order shear deformation theories have been considered. Lo et al. 

   ] and [   ] reviewed the pioneering work on the field and formulated a theory 

which accounts for the effects of transverse shear deformation, transverse strain 

and non – linear distribution of the in – plane displacements with respect to the 

thickness coordinate. Third – order theories have been proposed by Reddy {[  ] 

– [   }, Librescu [93], Schmidt [94], Murty [95], Levinson [96], Seide [97], 

Murthy [98] , Bhimaraddi [99], Mallikarjuna and Kant [100] , Kant and Pandya 

[101] , and Phan and Reddy [8], among others. Pioneering work and overviews 

in the field covering closed – form solutions and finite element models can be 

found in Reddy [90,102,103], Mallikarjuna and Kant     ], Noor and Burton 

    ], Bert [105], Kant and Kommineni [106], and Reddy and Robbins [107] 

among others. 

 For the buckling analysis of the cross – ply laminated plates 

subjected to simply supported boundary conditions at their opposite two edges 
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and different boundary conditions at the remaining ones Khdeir [108] and 

Reddy and Khdeir [51] used a parabolic shear deformation theory and applied 

the state – space technique. Hadian and Nayfeh [109], on the basis of the same 

theory and for the same type of problem, needed to modify the technique due to 

ill – conditioning problems encountered especially for thin and moderately thick 

plates. The buckling analyses of completely simply supported cross – ply 

laminated plates were presented  by Fares and Zenkour [110], who added a non 

– homogeneity coefficient in the material stiffnesses within various plate 

theories , and by Matsunaga [111] who employed a global higher order plate 

theory. Gilat el al. [112] also investigated the same type of problem on the basic 

of a global – local plate theory where the displacement field is composed of 

global and local contributions, such that the requirement of the continuity 

conditions and delaminations effects can be incorporated into formulation.  

 Many investigations have been reported for static and stability analysis of 

composite laminates using different traditional methods. Pagano [113] 

developed an exact three – dimensional (3 – D) elasticity solution for static 

analysis of rectangular bi – directional composites and sandwich plates. Noor 

[114] presented a solution for stability of multi – layered composite plates based 

on 3 – D elasticity theory by solving equations with finite difference method. 

Also, 3 – D elasticity solutions are presented by GU and Chattopadhyay [115] 

for the buckling of simply supported orthotropic composite plates. When the 

problem is reduced from a three – dimensional one (3 – D) to a two dimensional 

case to contemplate more efficiently the computational analysis of plate 

composite structures, the displacement based theories and the corresponding 

finite element models receive the most attention [116]. 

Bifurcation buckling of laminated structures has been investigated by 

many researchers without considering the flatness before buckling [117]. This 

point was first clarified for laminated composite plates for some boundary 

conditions and for some lamina configurations by Leissa [117]. Qatu and Leissa 

[118] applied this result to identify true buckling behaviour of composite plates. 
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Elastic bifurcation of plates have been extensively studied and well documented 

in standard texts e.g. [33] and [    , research monographs {    ] – [    } and 

journal papers {    ] – [    }. 

It is important to recognize that, with the advent of composite media, 

certain new material imperfections can be found in composite structures in 

addition to the better – known imperfections that one finds in metallic structures. 

Thus, broken fibers, delaminated regions, cracks in the matrix material, as well 

as holes, foreign inclusions and small voids constitute material and structural 

imperfections that can exist in composite structures. Imperfections have always 

existed and their effect on the structural response of a system has been very 

significant in many cases. These imperfections can be classified into two broad 

categories: initial geometrical imperfections and material or constructional 

imperfections. 

The first category includes geometrical imperfections in the structural 

configuration (such as a local out of roundness of a circular cylindrical shell, 

which makes the cylindrical shell non – circular; a small initial curvature in a 

flat plate or rod, which makes the structure non – flat, etc.), as well as 

imperfections in the loading mechanisms (such as load eccentricities; an axially 

loaded column is loaded at one end in such a manner that a bending moment 

exists at that end). The effect of these imperfections on the response of structural 

systems has been investigated by many researchers and the result of these efforts 

can be easily found in books [3], as well in published papers [127] – [      

The second class of imperfections is equally important, but has not 

received as much attentions as the first class; especially as far as its effect on the 

buckling response characteristics is concerned. For metallic materials, one can 

find several studies which deal with the effect of material imperfections on the 

fatigue life of the structural component. Moreover, there exist a number of 

investigations that deal with the effect of cut – outs and holes on the stress and 

deformation response of thin plates. Another material imperfection is the rigid 

inclusion. The effect of rigid inclusions on the stress field of the medium in the 
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neighborhood of the inclusion has received limited attention. The interested 

reader is referred to the bibliography of Professor Naruoka [127]. 

There exists two important classes of material and constructional – type 

imperfections, which are very important in the safe design, especially of aircraft 

and spacecraft. These classes consist of fatigue cracks or cracks in general and 

delaminations in systems that employ laminates (i.e. fiber – reinforced 

composites). There is considerable work in the area of stress concentration at 

crack tips and crack propagation. Very few investigations are cited, herein, for 

the sake of brevity. These include primarily those dealing with plates and shells 

and non – isotropic construction. Some deal with cracks in metallic plates and 

shells {    ] – [    }. Others deal with non – isotropic construction and 

investigate the effects of non – isotropy {[   ] – [    }. In all of these studies, 

there is no mention of the effect of the crack presence on the overall stability or 

instability of the system. 

Finally, delaminations are one of the most commonly found defects in 

laminated structural components. Most of the work found in the literature deals 

with flat configurations. 

Composite structures often contain delaminations. Causes of delamination 

are many and include tool drops, bird strikes, runway debris hits and 

manufacturing defects. Moreover, in some cases, especially in the vicinity of 

holes or close to edges in general, delaminations start because of the 

development of interlaminar stresses. Several analyses have been reported on 

the subject of edge delamination and its importance in the design of laminated 

structures. A few of these works are cited {    ] – [    }. These and their cited 

references form a good basis for the interested reader. The type of delamination 

that comprises the basic and primary treatise is the one that is found to be 

present away from the edges (internal). This delaminating could be present 

before the laminate is loaded or it could develop after loading because of foreign 

body (birds, micrometer, and debris) impact. This is an extremely important 

problem especially for laminated structures that are subject to destabilizing loads 
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(loads that can induce instability in the structure and possibly cause growth of 

the delamination; both of these phenomena contribute to failure of the laminate). 

The presence of delamination in these situations may cause local buckling and / 

or trigger global buckling and therefore induce a reduction in the overall load – 

bearing capacity of the laminated structure. The problem, because of its 

importance, has received considerable attention. 

 In the present study, the composite media are assumed free of 

imperfections i.e. initial geometrical imperfections due to initial distortion of the 

structure, and material and / or constructional imperfections such as broken 

fibers, delaminated regions, cracks in the matrix material, foreign inclusions and 

small voids which are due to inconvenient selection of fibers / matrix materials 

and manufacturing defects. Therefore, the fibers and matrix are assumed 

perfectly bonded. 
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