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ABSTRACT: The following assumptions were made in developing the
mathematical formulations of laminated deck plates:

1. All layers behave elastically;

2. Displacements are small compared with the plate thickness;

3. Perfect bonding exists between layers;

4. The laminate is equivalent to a single anisotropic layer;

5. The plate is flat and has a constant thickness;

6. The plate buckles in a vacuum and all kinds of damping are neglected.

Unlike homogeneous plates, where the coordinates are chosen solely based on
the plate shape, coordinates for laminated plates should be chosen carefully.
There are two main factors for the choice of the coordinate system. The first
factor is the shape of the plate. Where rectangular plates will be best represented
by the choice of rectangular (i.e. Cartesian) coordinates. It will be relatively
easy to represent the boundaries of such plates with coordinates. The second
factor is the fiber orientation or orthotropy. If the fibers are set straight within
each lamina, then rectangular orthotropy would result. It is possible to set the
fibers in a radial and circular fashion, which would result in circular orthotropy.
Indeed, the fibers can also be set in elliptical directions, which would result in
elliptical orthotropy.

KEYWORDS: Mathematical formulation, mathematical modeling, finite
element method, first order shear deformation theory, Fortran program, deck
plates

1 INTRODUCTION

The choice of the coordinate system is of critical importance for laminated deck
plates. This is because plates with rectangular orthotropy could be set on
rectangular, triangular, circular or other boundaries. Composite materials with
rectangular orthotropy are the most popular, mainly because of their ease in
design and manufacturing. The equations that follow are developed for
materials with rectangular orthotropy.
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Figure 1.1 below shows the geometry of a plate with rectangular orthotropy
drawn in the Cartesian coordinates X, Y, and Z or 1, 2, and 3. The parameters
used in such a plate are: (1) the length in the X-direction, (a); (2) the length in
the Y — direction (i.e. breadth), (b); and (3) the length in the Z — direction (i.e.
thickness), (h).
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Figure 1.1 The geometry of a laminated composite plate

2 MATHEMATICAL FORMULATIONS

A first — order shear deformation theory (FSDT) is selected to formulate the
problem. Consider a thin deck plate of length a, breadth b, and thickness h as
shown in figure 2.1(a), subjected to in — plane loads Rx, Ry and Rxy as shown
in figure 2.1(b). The in — plane displacements u (x,y,z) and v (x,y,z) can be
expressed in terms of the out of plane displacement w (x,y) as shown below:
The displacements are:

]

u(x,y,7) = Up(x,y) — 25

v(xy,z) = Vo(x,y) — Z%V (2.1)
w(x,y,2) = wo(x,y)

Where u,, v, and w, are mid — plane displacements in the direction of the x, y

and z axes respectively; z is the perpendicular distance from mid — plane to the

layer plane.
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Figure 2.2 Geometry of an n-Layered laminate

The plate shown in figure 2.1 (a) is constructed of an arbitrary number of
orthotropic layers bonded together as in figure 2.2 above. Refer to references
[1]-[7].

The strains are:

du, ’w 1 (0w
€& =—7—2Z—+-|—
ax ax2 2 \ 0x
_ov, 9w 1 (6w)2 29
€y = 3y Z o T2 | (2.2)

V=t a2+ () (5)

The virtual strains:

a 6 ow 0
Bey = 58Uy — 22— 8w +===—8w )
[3] 02 6w 6
8€y = B_ySVO - Z6_yZ6W+ B_ya_ySW (23)

a ow d
8y=£8vo+a—yé§uo 22—6 +—W—5 + 8w—

The virtual strain energy:
8U = [, 8e"odV (2.4)
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But, o= Ce
Where,
C=C;G,j=126)

~ 8U = [, 8€" C8edV (2.5)

If we neglect the in plane displacements u, and v, and considering only the
linear terms in the strain — displacement equations, we write:
62
| 5= |
62
ay?
62
dx dy

6e = —z Sw (2.6)

3 NUMERICAL MODELING

The finite element is used in this analysis as a numerical method to predict the
buckling loads and shape modes of buckling of laminated rectangular deck
plates. In this method of analysis, four — noded type of elements are chosen.
These elements are the four — noded bilinear rectangular elements of a plate.
Each element has three degrees of freedom at each node. The degrees of
freedom are the lateral displacement (w), and the rotations (¢) and (¢) about the
(X) and (Y) axes respectively.

The secondary effects of shear deformation are also considered in the present
method. The shear deformation is formulated by the first — order shear
deformation theory (FSDT). The finite element method is formulated by the
energy method. The numerical method can be summarized in the following
procedures:

The choice of the element and its shape functions.

Formulation of finite element model by the energy approach to develop both
element stiffness and differential matrices.

Employment of the principles of non — dimensionality to convert the element
matrices to their non — dimensionalized forms.

Assembly of both element stiffness and differential matrices to obtain the
corresponding global matrices.

Introduction of boundary conditions as required for the plate edges.

Suitable software can be used to solve the problem. (here FORTRAN program
was used).

For an n noded element, and 3 degrees of freedom at each node.

Now express w in terms of the shape functions N (give in Appendix (B)) and
noded displacements a¢, equation (2.6) can be written as:

e = —zBd&a® (3.1)
Where,
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BT:[aZNi 9°N; aZNi]

ox?  0y? Zaxay
and

ae

The stress — strain relation is:

= [Wl] i=1,n

o=Ce

Where c are the material properties which could be written as follows:

C=|Cz Cpz Cy
Cie C26 Ces

Where C; are given in Appendix (A).

Ci1 Cpz C16‘

5U = f (B5a®)T(Cz2)BacdV
\%
Where V denotes volume.
8U = 8a°T [, BTDBa®dx dy = 8a°TK®a®

29

(3.2)

Where Dy = Y-, fZZkk_l CijZ? dZ is the bending stiffness, and K¢ is the element

stiffness matrix which could be written as:
Ke = [ BTDB dxdy

(3.3)

The virtual work done by external forces can be expressed as follows: Refer to

Fig. (3.4).
Denoting the nonlinear part of strain by &€’

W = [[ 8€'To’dV = [ 8¢'TN dxdy

Where
NT = [NyNyN,y | = [ox0y 1] dZ
d
Sey [ESW 0| ow
d
§€' = [564 :! 0 a—ySw! gv’f/
oy 0 a 3y
Hence
T
‘Z—‘:: %SW 0 %SW Ny
W= |f aw 5 5 Ny | dx dy
dy 0 a—ySW &SW ny

(3.4)

(3.5)
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Figure 3.1 External forces acting on an element
This can be written as:
iESW-T N N W]
_ 0x X Xy || ox
RN I el | F
3y oW y y &
Now w = Nia'f
Ty N [y
— s,eT 28 X Xyl ox| e
oW =82 ff | % [ny Ny] o |a¢ dx dy
dy | [ 0y |
Substitute P, = =Ny, P, = =Ny, Py, = =Ny,
Ty Y
_ T ax X Xy || 0x
ow =52 [ [;u | [ 3] [ow [ dxay
—_— Xy y —_—

ay

Therefore, equation (3.15) could be written in the following form:

8W = —8a°TKPa®
Where,
]T [aNi

P. Pyl ox
} ey 7 [61] e

ay

[

oN;
D _ 0x
Ko = H laNi
ady

(3.7)

(3.8)

(3.9)

(3.10)

KP is the differential stiffness matrix known also as geometric stiffness matrix,

initial stress matrix, and initial load matrix.
The total energy:
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SU+ W =0 (3.11)
Since &a°® is an arbitrary displacement which is not zero, then
Kéa® — KPa® =0 (3.12)
Now let us compute the elements of the stiffness and the differential matrices.
Ké = H BTDB dx dy
T 92N, 1 T 92N; T
0x? 0x?
0N, D11 Diz Dys 62Ni
Ke — ff a_yz D12 D22 D26 a_yz dX dy
2 Dis D26 Des 2
0°N; 5 0°N;
| 0x dy | 0x dy!
The elements of the stiffness matrix can be expressed as follows:
e = ([ o 02N; 0°N; 5 02N; 0°N; 2D 92N; 0°N; D 92N; 0°N;
i ﬂ. 1 9x2 9x2 TP dy? 0x? 16 9x dy 0x2 12 9x2 9y?
02N; 0°N; oD 92N; 0%N; 2D 92N; 0°N; 2D 92N; 0°N;
22 gy2 Qy2 26 9x dy dy? 16 9x2 9x dy 26 9y2 9x dy
9%N; 02N
+4Dge 5ot o ay] x dy (3.13)

The elements of the differential stiffness matrix can be expressed as follows;
D _ ON; ON; ON; ON; | ON; ON; ON; 9N;
Kij a ff[ X 9x ox + ny(ay ox + ox ay) Y ay 6y]dXdy (3.14)
The integrals in equations (3.13) and (3.14) are given in Appendix (C).
The shape functions for a 4 — noded element is shown below in figure 3.2.
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Figure 3.2 A four noded element with local and global co—ordinates
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The shape functions for the 4-noded element expressed in global co-ordinates
(x,y) are as follows:

w = N;w; + Nydg + N3y + Nyw, + Nsd, + Neli,
+N;w3 + Ngds + Nog + Nygwy + Nyjdy + Nypry

Where,
ow ow

b= ox ’ b= dy
The shape functions in local co — ordinates are as follows:
N; = aj; + ajor + aj3S + aj4r? + ajsrs + aj65% + aj;r3 + ajgr?s + ajors?
+aj1083 + aj1113s + ajqrs®
— 2 2 3 2 2
N; = aj; + ajpr + aj3s + @j,r° + ajsrs + aj6s” + aj71° + ajgr”s + ajor's
3 3 3
+2j10S” + 2j11I'7S + Qjq2I'S
The values of the coefficients a;; are given in the table in Appendix (B).

9N; 0°N; 1
q. = ffﬁ 2 drds =16 [ai4aj4 + 3ajza57 + §ai8aj8 + 311131'11]

92N; 0°N; 1
42 = ﬂ 0s? 0s? drds =16 [ai6aj6 + 3300 + 3ai10aj10 + auzajlz]

02N; 0°N;
qsz = ff 67 asz drds = 16[ai4a]‘6 + ai7aj9 + aigajlo + aillajlz]

92N; 82N;
s = Jf ds? 0r? drds = 16[ajeajs + ajodj7 + Air0ajs + Ai123j11]

92N, aZN,-
qs = J drds = 8[ai4aj5 + aj,3511 + 2ai73j5 + 2143512

or? Ords
2
+ §ai4aj5]
92N; 0°N; 5
A6 = ff ords Or? drds =8 [ai5a}'4 + 2ajgaj; +aj113j4 + 3 2iodjs
+ailzaj4]
%N, BZN]- 2
47 = .U ds? Ords drds =8 [aiﬁais +aj63j11 + §ai9aj8]
azNi azN] 2
gg = ff 3195 952 drds =8 [ai5aj6 + §aigaj9 + aillaj6]

9%N; 9°N; 4
9o = ff Ordsdr ds drds=4 [ai5ai5 + aisaj11 + §ai83j8 + aj53j12
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+§ai9aj9 +aj11aj12 + 12311 + gai1zaj12]
8N aN] 1
———drds = [aizajz + 3 (3ajzaj7 + 4aj,aj, + 3aj73j;
+aj7aj9 + ajsajs + Aj53aj5 T Aj9dj2 * Aj53dj11 T Aj7Aj9 + 3 isdjs + ajodj7
1
aj11a5) + 3 (aisaj12 + Ajodjo + aj123j5 + 93a73j7 + 35113511 + Aj113j12
1
+aj128j11) + 7ai1zaj12]
oN; N 1
ga— drds =4 [ai3aj3 + § (ai3aj8 + aiSajS + aigaj3 + 331331'10

4
+4a;63j6 + 3aj103j3 + Aj53j12 T+ Ajgdjro + 3939 + aj103jg + Qi123j5)

+§(aisaj11 + ajgajg + aj113j5 + 92j103j10 + Aj113j12 + Aj128j11 + 32528j12)

1
+ 7ai113j11]
ON; 0N; 1
Q12 = EO_ drds = [aizajg + 3 (3ajzaj5 + 2aj43j5 + 3aj73;g
+3a12a]—10 + 231531'6 + aigaj3 + 2314,3]'12 + 331731'10 + 5318319 + §a19a]-8

+2aj5126) ]
oN; ON 1
f —_—— dr ds = [ai3a1-2 + 3 (3ajzaj7 + 2ajsaj,s + ajgaj

+ai3aj9 + 231631'5 + 3ailoajz + 2ai6aj11 + aigajg + —aigajg + 3311031'7

3 3
1
+2aj1aj,) + 3 (2aj6aj12 + 3aj103j0 + 3ajgaj7 + 23111314)]

The values of the integrals are converted from local co-ordinates (r, s) to global
co-ordinates as follows:

0%N; ON; 4hy 4n3b
_U 9x2 ax2 Y=<h_§>‘h=m<h
9%N; 0°N; 4h, 4am3
ﬂ 3y2 ay dy=<h;>qz=qu

-U 02N; 0°N; v = 4 __4mn
o ay? W= hyhy )~ ab B3
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ffazN 0°N; ( 4 ) 4mn
dy = |{-——]da = ——q
dy2 ax2 hyh,/** "~ ab *
ﬂaZN 0%N; d _(4 _4n?
ox? axay = h2 5=z s

92N; 0°N; 4 4n?
rész dXdy=<p)%=—%
X

0x 0y 0x? a?
r —f O°N; 62N]- dx dy = <i) _4_mZ
7= dy? 9xdy y = h)z] q7 = 22 q7
<4> 4m?

9%N; 0°N; v =
8_,Uaxay dy? Y=

q
02N; 0%N; 4 4mn
r =f 1 O dx dy = qo = q
? 0x dy 0x dy hyhy 7 ab *°

ff ON; aN _ hy _ bn
o = P ax = h, di0 = am‘ho
ON; 6N hy am
ff dxdy = h_y Q11=b_nCI11
dN; 6N]
ff dxdy = qq;
BN aN
dxdy = q13

In the previous equations hy, = H and hy = ;, where a and b are the lengths of

the plate along the x — and y — axis respectively, n and m are the number of
elements in the x — and y — directions respectively. The elements of the stiffness
matrix and the differential matrix can be written as follows:

Kij = Dq1r1 + Dypry 4 2Dyr3 + Dypr’ + Dy 4 2Dgerg + 2Dy4Ts
+2Dy615 4+ 4Dgerg
KE = Pyryg + Pyy(r1z + 113) + Byryy
or in the non — dimensional form
4n3

by , ay 2 ay
Kjj = o (5) Di;9; +4mn (B) Di1,94 + 4n“D36qe + 4mn (B) Di2q3

+ 4TmS (%) D’,q, + 4m? (%)2 D}¢qg + 4n%D/¢qs + 4m? (%)2 D%¢qy

+4mn (%) Dgedo
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D ’ n (b I 'm a
Kjj = an(a) d10 + Pyy(q12 + q13) + Py; (B) v
Where

D! = (L) D:: P = (L) P
ij E2h3 ij i E2h3 i
The transformed stiffness are as follows:
Cqq = Ciqc* + 2¢2s2(Cq + 2Cgg) + Chpst
Cqp = c%s2(Cyy + Chy + 4Cg) + Chp(c* + 5%
Ci6 = cs[Ciyc* + Cpp5% — (€l + 2Cg6) (c? — 5]
Cyp = Ciys* + 2¢%s2(Cl, + 2Cgg) + Chyc?
Cz6 = cs[Cq15% + Cppc® — (Cip + 2Cg6) (c? — 52)]
Cos = (C11 + Cpp + 2C15)c?s? + Cho(c? — 52)2

Where
DL
11 =
1—vyvy
C. = va1Er VK
12 = =
1—vivy 1 —vypvy
=2
22 =
1—vypvyy
Cy4q = Go3, Css = GizandCeq = Gq3

E; and E, are the elastic moduli in the direction of the fiber and the transverse
directions respectively, v is the Poisson's ratio. G;,, Gy3, and G5 are the shear
moduli in the x - y plane, y - z plane, and x - z plane respectively, and the
subscripts 1 and 2 refer to the direction of fiber and the transverse direction
respectively.

4 CONCLUSIONS

Finite element method (FEM) was used so as to predict the buckling loads and
shape modes of laminated rectangular deck plates. A suitable element type is
chosen and its shape functions are determined. Energy approach is used to
formulate the finite element model and develop both element stiffness and
differential matrices. These matrices are assembled to give the corresponding
global matrices, the required boundary conditions are introduced and a suitable
software (i.e. Fortran) is used to solve the problem.
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APPENDICES
Appendix (A)
The transformed material properties are:
Cy1 = C11c05%0 + Cy,5in*0 + 2(Cy, + 2C6)sinZ0cos?0
C12 = (Ci1 + C3y — 4Cgg)sin?Bcos?0 + C1,(cos*B + sin*6)
Cyp = C115in*0 + C5,c05%0 + 2(Cy, + 2C44)sin?0cos?0
Ci6 = (Cy1 — Ci3 — 2Cgg)cos30sind — (C; — Cy5 — 2Cgq)sinOcos
Co6 = (C11 — Ciy — 2C4g)cosBsin®0 — (C;, — €15 — 2Cq6)sinOcos®0
Ces = (C11 + C33 — 2Cy5 — 2Cgq)sin?0c0s20 + Co(sin*6 + cos*0)
E, , E, ! viEy

whereC'll =— ,Cp=7—"7—,Cp =— :C,16 =Gy
—Vi12V21 1—vy3vy 1—vy3vy
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Appendix (B)

a;;/8
i|i1 |62 64364 |45 )|6,6|L,7|L,8]|i,9]|i10 ]| i,11 |12

N;

N, 2 | -3 3 0| 4|0 1 0 0 -1 1 1
N, 1] -1 1 /-1]-1]0 1 110 0 1 0
N; -1 1 110 1 1 0 0 | -1 1 0 -1
N, 2 | -3]-3]0 4 0 1 0 0 1 -1 -1
N; 1 |-1]-1]-1 1 0 1 1 0 0 -1 0
Ng 1 |-1]-1]0 1 |-1]0 0 1 1 0 -1
N, 2 3 3 0 4 0 | -1 0 0 -1 -1 -1
Ng | -1 ]| -1 -1 1 ]-1]0 1 1 0 0 1 0
Ny | -1 ] -1]-1] 0| -1 1 0 0 1 1 0 1
Nio 2 3 3,10 ] -4]0 (-1 0 0 1 1 1
Ny | -1 ] -1 1 1 1 0 1 110 0 -1 0
Ny, 1 1 110 | -1]-1]0 0 | -1 1 0 1

Appendix (C)
The integrals in equations (13) and (14) are given in nondimensional form as
follows (limits of integration r,s = —1 to1):

02N; 0°N; 4hy ( 0°N; 0°N; drd
ff 52 a2 X = _3H arz orz o
= —(16a14a]4 + 48a;7a;, + 16a;539/3 + 16a;112j11)

9°N; 62 4h 02N; 0%N;
ff ﬂ 57 g2 4rds

4m3R3

(16a;6aj6 + 16a;9a59/3 + 48a;10aj10 + 162;123)12)

62N 0°N; 4 02N; 0°N;

U ox? a2 Y= fn ﬂ o2 gs2 AT

= 4mnR(16ail4a]-’6 + 16a;7aj9 + 16ai8aj 10t 16ai,11a]-,12)
02N; 0°N; 4 ([ 9%N;9*°N

f dy? 0x? Xy = hyhxf

= 4mnR(16aiéaj 4+ 16a;93;7 + 163035 + 16aijlza]-,11)

U 02N; 0°N; d 4 ﬂaZN R\ ’d 4
axayaxay Y= hyhgJ) rasaras O
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4mnR[4ai_5aj15 + 4(3ai’saj’11 + 4‘ai’ga]"8)/3
+4(3ajaj1, + 4’ai9aj 0)/3 +4(aj113j12 + aj123j11)+ 3631,123j,12/5]

f ON; ON; ﬁ ON; N,

0x ax
= iR [431,231',2 + 4(331,231',7 + 4aj4aj4 + 3ai_7aj72)/3
+4(aj2aj0 + aj5aj5 + aj03j2)/3 + 4(3a53j,11 + 3a730 + 4ajgajg
+3a;0aj7 + 3a;113j5)/9 + 4(aj53j12 + Aj0aj,9 + aj12aj5)/5
+36a;7a7/5 + 12a;112j11/5 + 4(aj113j12 + aj12aj11)/5 + 4ai,1zaj,12/7]

aN N B oN; ON;
- _ﬂ ds 0s

= [431 3dj3 T 4(31 3dj,8 T Aj53j,5 T Aj83;, 3)/3

+4(3ai,3aj,1o + 4a;6aj6 + 32i103j3)/3 + 4(3ai53j11 + aigajg + aj113j5)/5
+4(3ai’5aj’12 + 3ailgaj,10 + 4ai'9aj'9 + 3ai'103j’8 + Bairlzaj,S)/‘B
+36aj103j,10/5 + 4(ai113j,12 + aj1285,11)/5 + 122 1225,12/5 + 4a; 112,11 /7]

aNaN _[foNioN
155 axar= | 55 ares

= 431‘281"3 + 4(ai'2aj,8 + 231'4,3]"5 + 3ai,7aj,8)/3 + 4(3 ailzaj,w + 231’53]"6
+aj0aj3)/3 + 4(2ai43j11 + 3ai73j8)/5 + 4(6a; 435,12 + 93;73j,10
+4a;gajo + ajoajg + 6a;11j,6)/9 + 4(3a;0aj19 + 22 12aj6)/5

ﬂ‘ aNif)N B aN 6N
dy ax dy =

= 4‘31_331',2 + 4(331,331',7 + 231,531"4, + ai'sajlz)/S + 4‘( ailgajlg + Zai,6aj,5
+3ai‘10aj‘2)/3 + 4(631'63]"11 + ai'gaj'g + 4airgaj,8 + 9ai’103j,7 + 6ai,2aj,4)/9
+4(2aj 62512 + 325103, 9)/5 + 4‘(3aisaj 7 +2a;113j4)/5

U 92N; 0°N; ﬂ 02N; 0°N; o
0x? Oxay B or? or E) S

= 4'n [83114(aj 5 + aj 11 + a]' 12) + 16(ai 7aj 8 + aijsaj’g/?))]
U 9°N; 0°N; jf 92N; 0%N; o
0x dy 6X2 B ords 6r2 S

= 4n2 [Saj’4(ai,5 + ai,11 + aijlz) + 1631,831,7 + 16ai’gaj,8/3]
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ﬂazNiazNj dedy = 2 HGZN R\ ]d 4
dy? dxdy Xy = hyz ds2 aras 0

= 4'm2R2 [8ai 6(a]' 5 + a]' 11 + a]' 12) + 16ai 10aj,9 + 1631}931',8/3]
92N; 92N, 92N 82N,

Il ndlErrt
oxdy ay ords as

= 4'm2R2 [Saj'6(ai'5 + ailll + aillz) + 16airgaj’10 + 16ailgaj’9/3]

In the above expressions h, = % h, = % where a and b are the dimensions of
the plate in the x — and y — directions respectively. n and m are the number of
elements in the x — and y — directions respectively. Note that dx = %dr and

h . .
dy = 7yds where r and s are the normalized coordinates, and R = a/b.



