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Abstract 

Dynamic Relaxation (DR) method is presented for the geometrically nonlinear 

laterally loaded, rectangular laminated plates. The analysis uses the Mindlin plate 

theory which accounts for transverse shear deformation. A FORTRAN program has 

been compiled. The convergence and accuracy of the DR solutions for elastic large 

deflection response are established by comparison with various exact and 

approximate solutions. New numerical results are generated for uniformly loaded 

square laminated plates which serve to quantify the effects of shear deformation, 

material anisotropy, fiber orientation, and coupling between bending and stretching. 

It was found that linear analysis seriously over predicts deflection of plates. The shear 

deflection depends greatly on a number of factors such as length to thickness ratio, 

degree of anisotropy, number of layers and aspect ratio. It was also found that 

coupling between bending and stretching can increase or decrease the bending 

stiffness of a laminate depending on whether it is positive or negative. 

 

مستخمص 
 لمتحميل اللاخطي للألواح الشرائحية المسمط (DR)فى ىذه الورقة تم أستخدام أسموب الإسترخاء الديناميكي 

 التي (Mindlin plate theory)يستخدم التحميل نظرية مندلين للألواح . عمييا حمل عرضي موزع بإنتظام

. تم عمل برنامج حاسوب بمغة الفورتران لمحل العددي لممعادلات الرئيسية. تتضمن تأثيرات تشوه القص المستعرض

وقد تم التحقق من تقارب ودقة البرنامج بتحميل طيف واسع من الألواح ذات الانحرافات الكبيرة ومقارنتيا بحمول 

تم الحصول عمى نتائج عددية جديدة لشرائح مستطيمة . مماثمة وقد أعطي البرنامج نتائج جيدة موافقة لتمك الحمول
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مسمط عمييا حمل عرضي ساكن موزع بانتظام وذلك لمتحقق من تأثيرات تشوىات القص المستعرض ، تباين الخواص 

وجد فى ىذه الدراسة ان التحميل الخطي يعطي تقديراً . لممادة ، إتجاه الألياف ، والازدواج بين الانحناء والاستطالة

كما تم التوصل الى أن أنحراف القص يعتمد كثيراً عمى عدد من . زائداً لانحرافات الألواح مقارنة بالتحميل اللاخطي

كما وجد ان تأثير الازدواج . العوامل من بينيا نسبة طول الموح الى سمكو ، درجة تباين خواص المادة وعدد الطبقات

. بين الانحناء والاستطالة يمكن ان يزيد أو يقمل جساءة الانحناء لمشرائح اعتماداً عمى ما اذا كان موجباً أم سالباً 

 
1. Introduction  

Many theories which account for the transverse shear and normal 

stresses are classified according to Phan and Reddy [1] into two major 

classes on the basis of the assumed fields as: (1) stress based theories, and 

(2) displacement based theories. The stress based theories are derived from 

stress fields, which are assumed to vary linearly over the thickness of the 

plate, and the displacement based theories which are derived from an 

assumed displacement field. The governing equations are derived using the 

principle of minimum total potential energy. The theory used in the present 

work comes under the class of displacement based theories. Extensions of 

these theories which account for higher order variations and applied to 

laminated plates, can be found in the work of Yang, Norris and Stavsky [2], 

Whitney and Pagano [3] and Phan and Reddy [1]. In this theory which is 

called first order shear deformation theory (FSDT), the transverse planes, 

which are originally normal and straight to the mid plane of the plate, are 

assumed to remain straight but not necessarily normal after deformation, 

and consequently shear correction factors are employed in this theory to 

adjust the transverse shear stress, which is constant through thickness. 

Recently Reddy [4] and Phan and Reddy [1] presented refined plate theories 
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that use the idea of expanding displacements in the powers of thickness 

coordinate. Numerous studies involving the application of the first order 

theory to bending and buckling analyses can be found in the works of Reddy 

[5], Reddy and Chao [6], Prabhu Madabhusi – Raman and Julio F. Davalo 

[7], and J. Wang, K.M. Liew, M.J. Tan, and S. Rajendran [8]. 

In the present work, a numerical method known as Dynamic 

Relaxation (DR) coupled with finite differences is used. The DR method 

was first proposed in 1960s, and then passed through a series of studies to 

verify its validity by Turvey and Osman [9],[10],[11] and Rushton [12], 

Cassell and Hobbs [13], and Day [14]. In this method, the equations of 

equilibrium are converted to dynamic equations by adding damping and 

intertia terms. These are then expressed in finite difference form and the 

solution is obtained through iterations. The optimum damping coefficient 

and time increment used to stabilize the solution depend on a number of 

factors including the properties of the stiffness matrix of the structure, the 

applied load, the boundary conditions and the size of the mesh used, etc… 

Numerical techniques other than the DR include finite element 

method, which is widely used in the studies of Damodar R. Ambur et al 

[15], Ying Qing Huang et al [16], and Onsy L. Roufaeil et at [17]…etc. In a 

comparison between the DR and the finite element method, Aalami [18] 

found that computer time required for finite element method is eight times 

greater than for DR analysis, whereas the storage capacity for finite element 

method is ten times or more than for DR analysis. This fact is supported by 

Putcha and Reddy [19] who noted that some of the finite element 

formulations require large storage capacity and computer time. Hence, due 
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to less computations and computer time involved in the present study, the 

DR method is more efficient than the finite element method. In another 

comparison Aalami [18] found that the difference in accuracy between one 

version of finite element and another may reach a value of 10% or more, 

whereas a comparison between one version of finite element method and 

DR showed a difference of more than 15%. Therefore, the DR method can 

be considered of acceptable accuracy. The only apparent limitation of DR 

method is that it can only be applied to limited geometries. However, this 

limitation is irrelevant to rectangular plates which are widely used in 

engineering applications. 

 

2. Large deflection theory  

The equilibrium, strain, constitutive equations and boundary 

conditions are introduced below without derivation. 

2.1 Equilibrium equations 
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2.2 Strain equations 
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 The large deflection strains of the mid – plane of the plate are as 

given below: 
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2.3 The constitutive equations 

The laminate constitutive equations can be represented in the 

following form: 
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Where iN  denotes xN  , yN  and yxN  and 
iM  denotes 

x
M ,

y
M  and 

yx
M . 
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Where 
ji

c  are the stiffness of a lamina referred to the plate principal axes 

and 
ik  , 

j
k  are the shear correction factors. 

 

2.4 Boundary conditions 

Five sets of simply supported boundary conditions are used in this 

paper, and are denoted as SS1, SS2, SS3, SS4 and SS5 as has been shown in 

figure (1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Dynamic Relaxation of the plate equations 
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Figure (1):  Simply supported boundary conditions 

 

 



 2012                                                                                           -العددالسادس - مجلة العلوم الهندسية

 55 

An exact solution of the plate equations is obtained using finite 

differences coupled with dynamic relaxation method. The damping and 

inertia terms are added to equations (1). Then the following approximations 

are introduced for the velocity and acceleration terms: 
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In which  ,,,, wvu . Hence equations (1) become: 
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The superscripts a and b in equations (4) and (5) refer respectively to 

the values of velocities after and before the time increment t , 

and 1

2

1*    tkk . The displacements at the end of each time 

increment, t , are evaluated using the following integration procedure:  
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Thus equations (5), (6), (2) and (3) constitute the set of equations for 

solution. The DR procedure operates as follows: 

(1) Set initial conditions. 

(2) Compute velocities from equations (5). 

(3) Compute displacement from equation (6). 

(4) Apply displacement boundary conditions. 

(5) Compute strains from equations (2). 

(6)  Compute stress resultants and stress couples from equations (3). 

(7) Apply stress resultants and stress couples boundary conditions. 

(8) Check if velocities are acceptably small (say 610 ). 

(9) Check if the convergence criterion is satisfied, if it is not repeat the 

steps from 2 to 8. 

It is obvious that this method requires five fictitious densities and a 

similar number of damping coefficients so as the solution will be converged 

correctly. 

 

4. Verification of the Dynamic Relaxation (DR) Method Using Large 

Deflection Theory 

Table (1) shows deflections, stress resultants and stress couples in 

simply supported in plane free (SS3) isotropic plate. The present results 

have been computed with 66  uniform meshes. These results are in a fairly 

good agreement with those of Aalami et al [22] using finite difference 

method (i.e. for deflections, the difference ranges between 0.35% at 

8.20q  and 0.0 % as the pressure is increased to 97). A set of thin plate 
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results comparisons presented here with Rushton [12] who employed the 

DR method coupled with finite differences. The present results for simply 

supported (SS5) square plates were computed for two thickness ratios using 

an 88  uniform mesh are listed in table (2). In this instant, the present 

results differ slightly from those found in [12]. A large deflection 

comparison for orthotropic plates was made with the DR program. The 

results are compared with DR results of Turvey and Osman [10], Reddy’s 

[23], and Zaghloul et al results [20]. For a thin uniformly loaded square 

plate made of material I which its properties are stated in table (3) and with 

simply supported in plane free (SS3) edges. The center deflections are 

presented in table (4) where DR showed a good agreement with the other 

three. A large deflection comparison for laminated plates was made by 

recomputing Sun and Chin’s results [21] for [ 

44
0/90 ] using the DR 

program and material II which its properties are cited in table (3). The 

results were obtained for quarter of a plate using a 55  square mesh, with 

shear correction factors 6/52
5

2
4

kk . The analysis was made for different 

boundary conditions and the results were shown in table (5) as follows: The 

present DR deflections of two layered anti symmetric cross ply simply 

supported in plane fixed (SS5) plates are compared with DR results of 

Turvey and Osman [11] and with Sun and Chin’s values for a range of loads 

as shown in table (5). The good agreement found confirms that for simply 

supported (SS5) edge conditions, the deflection depends on the direction of 

the applied load or the arrangement of the layers.  

The comparison made between DR and alternative techniques show a 

good agreement and hence the present DR large deflection program using 



Nonlinear Analysis of Rectangular Laminated Plates....                       M. Mardi Osama 

 58 

uniform finite difference meshes can be employed with confidence in the 

analysis of moderately thick and thin flat isotropic, orthotropic or laminated 

plates under uniform loads. The program can be used with the same 

confidence to generate small deflection results. 

 

Table (1): Comparison of present DR, Aalami and Chapman’s [22] 

large deflection results for simply supported (SS3) square isotropic 

plate subjected to uniform pressure  3.0,02.0/  vah  
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S (1): present DR results ( 66  uniform mesh over quarter of the plate) 

S (2): Ref. [22] results ( 66 graded mesh over quarter of the plate) 
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Table (2): Comparison of present DR, and Rushton’s [12] large deflection 

results for simply supported (SS5) square isotropic plate subjected to uniform 

pressure  3.0v  
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S (1): present DR results ( 88;02.0/ ah  uniform mesh over quarter of 

the plate) 

S (2): present DR results ( 88;01.0/ ah uniform mesh over quarter of the 

plate)  

S (3): Ref. [12] results (thin plate 88  uniform mesh over quarter of the 

plate). 
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Table (3):  Material properties used in the orthotropic and laminated 

plate comparison analysis. 

Material 
yx EE /  yy EG /  yxz EG /  yyz EG /  xy   2

5

2

4
kkSCF   

I 2.345 0.289 0.289 0.289 0.32 6/5  

II 14.3 0.5 0.5 0.5 0.3 6/5  

 

Table (4): Comparison of present DR, DR results of Ref. [10], finite 

element results [23] and experimental results [20] for a uniformly 

loaded simply supported (SS3) square orthotropic plate made of 

material I  0115.0/ ah  

 

 

 

 

(1): present DR results ( 55  uniform noninterlacing mesh over quarter of 

the plate). 

(2): DR results of Ref. [10]. 

(3): Reddy’s finite element results [23]. 

(4): Zaghloul’s and Kennedy’s Ref. [20] experimental results as read from 

graph. 
 

 

 

q   1cw   2cw   3cw   4cw  

17.9 0.5859 0.5858 0.58 0.58 

53.6 1.2710 1.2710 1.30 1.34 

71.5 1.4977 1.4977 1.56 1.59 

89.3 1.6862 1.6862 1.74 1.74 
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Table (5) Deflection of the center of a two layered anti symmetric cross ply 

simply supported in plane fixed (SS5) strip under uniform 

pressure  01.0/,5/  ahab . 

q  S    90/01w    0/902w   0jiBw   1%   2%   3%  
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S (1): present DR results  

S (2): DR results Ref. [11]. 

S (3): Values determined from sun and chin’s results Ref. [21]. 

(1):    www /100 1   

(2):    www /100 2   

(3):   221 /100 www   

 

5. New Numerical Results 

With confidence in the DR program proved through the various 

verification exercises undertaken, it was decided to undertake some study 

cases and generate results for uniformly loaded laminated rectangular plates. 

The plates were assumed to be simply supported on all edges. The effects of 

transverse shear deformation, material anisotropy, orientation, and coupling 

between stretching and bending on the deflections of laminated plates are 

investigated. The material chosen has the following properties: 

3.0,/8265.4,/653.9,/9.137 222  xyxyyx mmkNGmmkNEmmkNE  . 

It is assumed that yzxzxy GGG  . 
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5.1 Effect of load 

The variations of the center deflections, 
c

w


 with load, q


 for thin 

 02.0/ ah  and thick  2.0/ ah  isotropic plates of simply supported in 

plane fixed (SS5) condition are given in table (1). It is observed that, the 

center deflections of thin and thick plates increase with the applied load, and 

that the deflections of thick plates are greater than those of thin plates under 

the same loading conditions. The difference in linear deflection is due to 

shear deformation effects which are significant in thick plates. Whereas, the 

nonlinear difference of thin and thick plates, which are coincident, implies 

that the shear deformation effect vanishes as the load is increased. 

 

5.2 Effect of Length to Thickness Ratio 

 Table (2) contains numerical results of center deflection versus 

length to thickness ratio of antisymmetric cross ply   90/0/90/0  and 

angle ply   45/45/45/45   square plates under lateral load  0.1q


 

for simply supported (SS1) boundary condition. The maximum percentage 

difference in deflections for a range of length to thickness ratio between 10 

and 100 fluctuates between 35% for simply supported (SS1) cross ply 

laminate and 73.3% for angle ply laminate as the length to thickness ratio 

increases to a value of  a/h = 40.0, and then becomes fairly constant. It is 

evident that shear deformation effect is significant for a/h < 40.0. It is 

obvious that shear deformation reduces as the length to thickness ratio 

increases. 
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5.3 Effect of Number of Layers 

The maximum deflections of a simply supported (SS5) antisymmetric 

cross ply   
n

 90/0   8,4,3,2,1n  square plates under uniformly 

distributed load of a moderately thick plate (h/a = 0.1) are given in table (3). 

Two, four, six, eight, and sixteen layered laminates are considered. The 

results show that as the number of layers increases, the plate becomes stiffer 

and deflection becomes smaller. This is mainly due to the existence of 

coupling between bending and stretching which generally increases the 

stiffness of the plate as the number of layers is increased. When the number 

of layers exceeds 8, the deflection becomes independent on the number of 

layers. This is because the effect of coupling between bending and 

stretching does not change as the number of layers increases beyond 8 

layers. 

 

5.4 Effect of Material Anisotropy 

According to Whitney and Pagano [3], the severity of shear 

deformation effects depends on the material anisotropy, yx EE /  of the 

layers. The exact maximum deflections of simply supported (SS5) four 

layered symmetric cross ply   0/90/90/0  and angle ply 

  45/45/45/45   laminates are compared in table (4) For various 

degrees of anisotropy. It is observed that, when the degree of anisotropy is 

small the deflection is large. As the degree of the anisotropy increases, the 

plate becomes stiffer. This may be attributed to the shear deformation effect 

which increases as the material anisotropy decreases. When the degree of 

anisotropy becomes greater than 40.0, the deflection becomes approximately 
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independent on the degree of anisotropy. This is due to the diminishing of 

the shear deformation effects and the dominance of bending effects. 

 

5.5 Effect of Fiber Orientation 

The variation of the maximum deflection, 
c

w


 with fiber orientation of   

a square laminated plate is shown in table (5) for q


= 120.0, and h/a = 0.1. 

Four simply supported boundary conditions SS2, SS3, SS4 and SS5 are 

considered in this case. The nonlinear results of SS2 and SS3 conditions 

show minimum deflection at  = 45
o
. However, this trend is different for a 

plate under SS4 and SS5 conditions in which the nonlinear deflection 

increases with . This is due to the in plane fixed edges in the latter case. 

Another set of results showing the variation of center deflections, 
c

w


 with 

load q


 for a range of orientations is given in table (6). They show the 

variations in the center deflection of thick laminates  2.0/ ah  with load 

ranges between 0.20q


 and 0.200q


 for a simply supported (SS4), 4 

layered anti symmetric square plate of orientation [  ,  ,  ,  ]. It is 

noticed that the deflection of thick laminates increases with the applied load 

as the angle of orientation is decreased (i.e. from 45  to 0 ) to a point where 

7060  q  and then increases as the angle of orientation is increased 

beyond that point. This results in the inflection of the deflection curves at a 

point where 7060  q . This behavior is caused by coupling between 

bending and stretching which arises as the angle of orientation increases.  
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5.6 Effect of reversing lamination order  

 The DR deflections of two layered anti symmetric cross ply [0
o
 / 

90
o
] simply supported in plane fixed (SS5) rectangular laminates are given 

in table (7). The deflection of the plate with coupling stiffness (Bij=0) is also 

shown for the sake of comparison. The percentage differences between the 

center deflections   90/01w  and   0/902w  at 0.20q is 146.5% whilst 

when q


= 200.0, it is 54.1%. It is obvious that the deflection depends on the 

direction of the applied load or the arrangement of the layers. The coupling 

stiffness (Bij =0) serves as the limit between positive and negative coupling. 

For a positive coupling the deflection increases as the magnitude of 

coupling increases. In other words, the apparent laminate bending stiffness 

decreases as the bending extension coupling increases. Whereas, negative 

coupling is seen to stiffen the laminate. This contradicts the common notion 

that the bending extension coupling lowers bending stiffness. 

 

5.7 Effect of Aspect Ratio 

Table (8) shows the variations in the maximum deflection of a two 

layered anti symmetric cross ply and angle ply   4545 l  simply 

supported in plane fixed (SS5) rectangular laminate under uniform load and 

with different aspect ratios  0.200q


, and (h/a = 0.1). It is noticeable that, 

when the aspect ratio is small the deflection is small, and as the aspect ratio 

increases further beyond 2.0, the deflection becomes independent on the 

aspect ratio. This is due to coupling between bending and stretching which 

becomes farily constant beyond b /a = 2.0 and therefore the plate behaves as 

a beam. 
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Table (1) Variation of central deflection 
c

w with load, q  of thin (h/a = 

0.02) and thick (h/a = 0.2) isotropic plates of simply supported (SS5) 

condition  3.0v  

q  S  c
w  

h /a = 0.02 h /a = 0. 2 

20 
1 

2 

0.8856 

0.5846 

1.0635 

0.6159 

40 
1 

2 

1.7708 

0.8432 

2.1271 

0.8626 

60 
1 

2 

2.6562 

1.0138 

3.1906 

1.0262 

80 
1 

2 

3.5416 

1.1447 

4.2542 

1.1526 

100 
1 

2 

4.4270 

1.2527 

5.3177 

1.2573 

S (1): Linear 

S (2): Nonlinear 

 

Table (2) A comparison of dimensionless center deflections vs side to 

thickness ratio of a four layered anti symmetric cross ply [0
o
 / 90

o
 / 0

o
 / 

90
o
] and angle ply [ 45

o
 / - 45

o
 / 45

o
 / 45

o
] simply supported (SS1) square 

laminates under uniform lateral load  0.1q  

ha /  c
w  

  90/0/90/0    45/45/45/45   

10 0.0148 0.0115 

20 0.0134 0.0097 

30 0.0132 0.0094 

40 0.0131 0.0092 
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Table (3): Number of layers effect on a simply supported (SS5) anti 

symmetric cross ply   
n

 90/0  square plate under uniformly 

distributed loads (h/a = 0.1) 

q  
c

w  

  90/0

 

 290/0 

 

 
3

90/0 

 

 
4

90/0 

 

 
8

90/0 

 

20 0.2953 0.2278 0.2250 0.2241 0.2232 

40 0.4323 0.3769 0.3728 0.3714 0.3702 

60 0.5287 0.4807 0.4458 0.4742 0.4727 

80 0.6057 0.5605 0.5551 0.5533 0.5517 

100 0.6725 0.6258 0.6201 0.6182 0.6165 

Subscripted values 2, 3, 4, and 8: No. of the arrangement of a two of layered laminate. 

Table (4): Effect of material anisotropy on the dimensionless center 

deflection of a four layered symmetric cross ply and angle ply simply 

supported laminates (SS5) under uniform lateral 

load  1.0/,0.100  ahq . 

 

 

 

 

 

 

 

 

 

 

Table (5): Effects of fiber orientation   on the deflection of a simply 

supported square plate  1.0/,0.120  ahq  

  cw  

SS2 SS3 SS4 SS4 
0 1.3706 1.2346 0.6511 0.6513 

10 1.3560 1.2074 0.7011 0.6606 

20 1.3070 1.1366 0.7805 0.6843 

30 1.2438 1.0321 0.8173 0.7101 

40 1.1898 0.9259 0.8089 0.7249 

50 1.1898 0.9259 0.8089 0.7249 

60 1.2438 1.0321 0.8173 0.7101 

yx EE /  c
w  

[ 0
o
 /  90

o
 / 0

o
 / 90

o
] [ 45

o
 / - 45

o
 / 45

o
 / 45

o
] 

2 1.1114 1.1114 

6 0.8362 0.8272 

10 0.7041 0.6851 

14 0.6218 0.5962 

20 0.5410 0.5098 

25 0.4944 0.4609 

30 0.4589 0.4242 

50 0.3718 0.3374 
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Table (6): Variation of central deflection cw  with a high pressure range 

q  of a simply supported (SS4) four layered anti symmetric square plate 

of the arrangement     ///  with different orientations (h/a 

= 0.2). 

q  c
w  

900or   7515 or   6030 or  45  

20 0.2922 0.2799 0.2568 0.2466 

60 0.5150 0.5141 0.5142 0.5135 

100 0. 6382 0. 6438 0. 6603 0. 6685 

140 0. 7218 0. 7382 0. 7667 0. 7816 

180 0.8007 0.8141 0.8521 0.8725 

200 0.8326 0.8475 0.8896 0.9124 

Table (7): Central deflection of a two layered anti symmetric cross ply 

simply supported in plane fixed (SS5) rectangular plate under uniform 

pressure ( b /a = 5.0 h/a = 0.1). 

q    90/01w    0/902w   0jiBw   1%S   2%S   3%S  

20 0.7051 0.2860 0.3387 108.2 - 15.0 146.5 

30 0.8052 0.3616 0.4303 87.1 - 16.0 122.9 

40 0.8787 0.4221 0.5013 75.3 - 15.8 108.2 

50 0.9380 0.4738 0.5599 67.5 - 15.4 98.0 

60 0.9884 0.5191 0.6103 62.0 - 14.9 90.4 

80 1.0721 0.5966 0.6945 54.4 - 14.1 97.7 

100 1.1422 0.6620 0.7641 49.4 - 13.4 72.4 

S (1): 100 x (  
 www /

1
  S (2):  100 x (  

 www /
2
 , S (3): 100 x 

(  
221

/ www   

Table (8) Central deflection of a two layered anti symmetric cross ply 

and angle ply simply supported in plane fixed (SS5) rectangular plate 

under uniform pressure and with different aspect ratios 

 0.200,1.0/  qah . 

ab /  cw  

[ 0
o
 / 90

o
] [45

o
 / - 45

o
] 

5.00 1.3846 1.2445 

4.00 1.3848 1.2448 

3.00 1.3854 1.2431 

2.00 1.3679 1.2145 

1.25 1.1394 1.0471 

1.00 0.9009 0.8952 
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6. Conclusions 

A Dynamic relaxation (DR) program based  on finite differences has 

been developed for large deflection analysis of rectangular laminated plates 

using first order shear deformation theory (FSDT). The plate, which is 

assumed to consist of a number of orthotropic layers, is replaced by a single 

anisotropic layer and the displacements are assumed linear through the 

thickness of the plate. A series of numerical comparisons have been 

undertaken to demonstrate the accuracy of the DR program. Finally, a series 

of new results for uniformly loaded thin, moderately thick, and thick plates 

with simply supported edges have been presented. These results show the 

following:- 

1. The linear theory seriously over predicts the deflection of plates. 

2. The deformations of a plate are dependent on bending and extension in 

the nonlinear theory, whereas they are dependent on bending alone in the 

linear theory. 

3. Convergence of the DR solution depends on several factors including 

boundary conditions, mesh size, fictitious densities and applied load. 

4. Deflection is greatly dependent on plate length to thickness ratio  ha /  at 

small loads, and it becomes almost independent on that when the load is 

large. 

5. As the number of layers in a plate increases, the plate becomes 

increasingly stiffer. 

6. As the degree of anisotropy increases, the plate becomes stiffer and when 

it is greater than 40.0, the deflection becomes virtually independent on the 

degree of anisotropy. 
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7. Deflection of plates depends on the angle of orientation of individual 

plies. An increase of angle of orientation results in a decrease in the 

deflection at small loads and an increase in deflection at large loads. 

8. Coupling between bending and stretching increases the deflection of  [0
o
 

/90
o
] and decreases the deflection of [90

o
 /0

o
] plates depending on whether it 

is positive or negative. 

9. Deflection depends on the aspect ratio of plate. When the aspect ratio 

becomes greater than 2.0, the plate behaves as a beam, and therefore the 

deflection becomes independent on the aspect ratio. 

Notations 

a, b   plate side lengths in x and y directions respectively. 

 6,2,1, jijiA  Plate in plane stiffness. 

5544
, AA    Plate transverse shear stiffness. 

 6,2,1, jijiD  Plate flexural stiffness. 


yxyx  ,,  Mid – plane direct and shear strains 



zyzx
 ,   Mid – plane transverse shear strains. 

xyyx GEE ,,  In – plane elastic longitudinal, transverse and shear moduli. 

yzxz GG ,  Transverse shear moduli in the x – z and y – z planes respectively. 

yxMyMxM ,,  Stress couples. 

  yxyyxx MMhEaMM ,,412   Dimensionless stress couples. 

yxyx
NNN ,,  Stress resultants. 

  yxyyxx NNhEaNN ,,312   Dimensionless stress resultants. 

q  Transverse pressure. 

q  Dimensionless transverse pressure. 

yx QQ ,  Transverse shear resultants. 

vu,  In – plane displacements. 

w  Deflections 
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 1 whw Dimensionless deflection 

zyx ,,  Cartesian co – ordinates. 

 t Time increment 

,  Rotations of the normal to the plate mid – plane  

yx
  Poisson’s ratio 

  ,,,, wvu In plane, out of plane and rotational fictitious densities. 


yxyx  ,,  Curvature and twist components of plate mid – plane 
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