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Nonlinear Analysis of Rectangular Laminated Plates Using
Large Deflection Theory

M. Mardi Osama*

Abstract

Dynamic Relaxation (DR) method is presented for the geometrically nonlinear
laterally loaded, rectangular laminated plates. The analysis uses the Mindlin plate
theory which accounts for transverse shear deformation. A FORTRAN program has
been compiled. The convergence and accuracy of the DR solutions for elastic large
deflection response are established by comparison with various exact and
approximate solutions. New numerical results are generated for uniformly loaded
square laminated plates which serve to quantify the effects of shear deformation,
material anisotropy, fiber orientation, and coupling between bending and stretching.
It was found that linear analysis seriously over predicts deflection of plates. The shear
deflection depends greatly on a number of factors such as length to thickness ratio,
degree of anisotropy, number of layers and aspect ratio. It was also found that
coupling between bending and stretching can increase or decrease the bending
stiffness of a laminate depending on whether it is positive or negative.
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1. Introduction

Many theories which account for the transverse shear and normal
stresses are classified according to Phan and Reddy [1] into two major
classes on the basis of the assumed fields as: (1) stress based theories, and
(2) displacement based theories. The stress based theories are derived from
stress fields, which are assumed to vary linearly over the thickness of the
plate, and the displacement based theories which are derived from an
assumed displacement field. The governing equations are derived using the
principle of minimum total potential energy. The theory used in the present
work comes under the class of displacement based theories. Extensions of
these theories which account for higher order variations and applied to
laminated plates, can be found in the work of Yang, Norris and Stavsky [2],
Whitney and Pagano [3] and Phan and Reddy [1]. In this theory which is
called first order shear deformation theory (FSDT), the transverse planes,
which are originally normal and straight to the mid plane of the plate, are
assumed to remain straight but not necessarily normal after deformation,
and consequently shear correction factors are employed in this theory to
adjust the transverse shear stress, which is constant through thickness.

Recently Reddy [4] and Phan and Reddy [1] presented refined plate theories
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that use the idea of expanding displacements in the powers of thickness
coordinate. Numerous studies involving the application of the first order
theory to bending and buckling analyses can be found in the works of Reddy
[5], Reddy and Chao [6], Prabhu Madabhusi — Raman and Julio F. Davalo
[7], and J. Wang, K.M. Liew, M.J. Tan, and S. Rajendran [8].

In the present work, a numerical method known as Dynamic
Relaxation (DR) coupled with finite differences is used. The DR method
was first proposed in 1960s, and then passed through a series of studies to
verify its validity by Turvey and Osman [9],[10],[11] and Rushton [12],
Cassell and Hobbs [13], and Day [14]. In this method, the equations of
equilibrium are converted to dynamic equations by adding damping and
intertia terms. These are then expressed in finite difference form and the
solution is obtained through iterations. The optimum damping coefficient
and time increment used to stabilize the solution depend on a number of
factors including the properties of the stiffness matrix of the structure, the
applied load, the boundary conditions and the size of the mesh used, etc...

Numerical techniques other than the DR include finite element
method, which is widely used in the studies of Damodar R. Ambur et al
[15], Ying Qing Huang et al [16], and Onsy L. Roufaeil et at [17]...etc. In a
comparison between the DR and the finite element method, Aalami [18]
found that computer time required for finite element method is eight times
greater than for DR analysis, whereas the storage capacity for finite element
method is ten times or more than for DR analysis. This fact is supported by
Putcha and Reddy [19] who noted that some of the finite element

formulations require large storage capacity and computer time. Hence, due
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to less computations and computer time involved in the present study, the
DR method is more efficient than the finite element method. In another
comparison Aalami [18] found that the difference in accuracy between one
version of finite element and another may reach a value of 10% or more,
whereas a comparison between one version of finite element method and
DR showed a difference of more than 15%. Therefore, the DR method can
be considered of acceptable accuracy. The only apparent limitation of DR
method is that it can only be applied to limited geometries. However, this
limitation is irrelevant to rectangular plates which are widely used in

engineering applications.

2. Large deflection theory

The equilibrium, strain, constitutive equations and boundary
conditions are introduced below without derivation.
2.1 Equilibrium equations
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2.2 Strain equations
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The large deflection strains of the mid — plane of the plate are as

given below:
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2.3 The constitutive equations
The laminate constitutive equations can be represented in the

following form:

Nil _[A Bij|]e;
{Mi}_ Bi; Dij|lx]
Qy| | A Ass |y,
{Qx}_[AAS A55:| Exs

Where N; denotes N, , N, and Nyy and M; denotes M ,M and

X !

M, - A, B, ad D (i, j =1,2,6) are respectively the membrane

Xy

rigidities, coupling rigidities and flexural rigidities of the plate. y; denotes

o¢ oy and 54 oy . ALAs and A, denote the stiffness
OX oy oy T ox

Coefficients and are calculated as follows:

A, =3k k, [c dz.(,j=45)
1 e
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Where C,; are the stiffness of a lamina referred to the plate principal axes

and k; , k, arethe shear correction factors.

2.4 Boundary conditions

Five sets of simply supported boundary conditions are used in this
paper, and are denoted as SS1, SS2, SS3, SS4 and SS5 as has been shown in
figure (1).
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Figure (1): Simply supported boundary conditions
3. Dynamic Kelaxation OT the plate equations
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An exact solution of the plate equations is obtained using finite
differences coupled with dynamic relaxation method. The damping and
inertia terms are added to equations (1). Then the following approximations

are introduced for the velocity and acceleration terms:
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In which ¢ =u, v, w, ¢, . Hence equations (1) become:
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The superscripts a and b in equations (4) and (5) refer respectively to

the wvalues of wvelocities after and before the time incrementot,
andk::%ka&pj. The displacements at the end of each time

increment, 5t , are evaluated using the following integration procedure:
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aazab+5taab (6)
ot
Thus equations (5), (6), (2) and (3) constitute the set of equations for
solution. The DR procedure operates as follows:
(1) Set initial conditions.
(2) Compute velocities from equations (5).
(3) Compute displacement from equation (6).
(4) Apply displacement boundary conditions.
(5) Compute strains from equations (2).
(6) Compute stress resultants and stress couples from equations (3).
(7) Apply stress resultants and stress couples boundary conditions.
(8) Check if velocities are acceptably small (say10-°).
(9) Check if the convergence criterion is satisfied, if it is not repeat the
steps from 2 to 8.
It is obvious that this method requires five fictitious densities and a
similar number of damping coefficients so as the solution will be converged

correctly.

4. Verification of the Dynamic Relaxation (DR) Method Using Large
Deflection Theory

Table (1) shows deflections, stress resultants and stress couples in
simply supported in plane free (SS3) isotropic plate. The present results
have been computed with 6 x 6 uniform meshes. These results are in a fairly
good agreement with those of Aalami et al [22] using finite difference
method (i.e. for deflections, the difference ranges between 0.35% at
g =20.8 and 0.0 % as the pressure is increased to 97). A set of thin plate
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results comparisons presented here with Rushton [12] who employed the
DR method coupled with finite differences. The present results for simply
supported (SS5) square plates were computed for two thickness ratios using
an 8x8 uniform mesh are listed in table (2). In this instant, the present
results differ slightly from those found in [12]. A large deflection
comparison for orthotropic plates was made with the DR program. The
results are compared with DR results of Turvey and Osman [10], Reddy’s
[23], and Zaghloul et al results [20]. For a thin uniformly loaded square
plate made of material | which its properties are stated in table (3) and with
simply supported in plane free (SS3) edges. The center deflections are
presented in table (4) where DR showed a good agreement with the other
three. A large deflection comparison for laminated plates was made by

recomputing Sun and Chin’s results [21] for [ 90 70:] using the DR

program and material 1l which its properties are cited in table (3). The
results were obtained for quarter of a plate using a 5x5 square mesh, with

shear correction factorsk?=k2=5/6. The analysis was made for different

boundary conditions and the results were shown in table (5) as follows: The
present DR deflections of two layered anti symmetric cross ply simply
supported in plane fixed (SS5) plates are compared with DR results of
Turvey and Osman [11] and with Sun and Chin’s values for a range of loads
as shown in table (5). The good agreement found confirms that for simply
supported (SS5) edge conditions, the deflection depends on the direction of
the applied load or the arrangement of the layers.

The comparison made between DR and alternative techniques show a

good agreement and hence the present DR large deflection program using
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uniform finite difference meshes can be employed with confidence in the
analysis of moderately thick and thin flat isotropic, orthotropic or laminated
plates under uniform loads. The program can be used with the same
confidence to generate small deflection results.

Table (1): Comparison of present DR, Aalami and Chapman’s [22]
large deflection results for simply supported (SS3) square isotropic
plate subjected to uniform pressure (h/a=0.02,v=0.3)

q < W My (1) Ny (1)

c My (2) Ny(2)
208 1 0.7360 0.7357 0.7852
: 2 0.7386 0.7454 0.8278
L6 1 1.1477 1.0742 1.8436
: 2 1.1507 1.0779 1.9597
537 1 1.4467 1.2845 2.8461
: 2 1.4499 1.2746 3.0403

S (1): present DR results (6 x 6 uniform mesh over quarter of the plate)
S (2): Ref. [22] results (6 x 6 graded mesh over quarter of the plate)

g1 0 Qx=Za,y=z=0
(1)x_y_§a,z_01() y &Y

Table (2): Comparison of present DR, and Rushton’s [12] large deflection
results for simply supported (SS5) square isotropic plate subjected to uniform

pressure (v =0.3)

q S W, 0'1(1)
1 0.3172 2.3063
8.2 2 0.3176 2.3136
3 0.2910 2.0900
1 0.7252 5.9556
29.3 2 0.7249 5.9580
3 0.7310 6.2500
1 1.2147 11.3180
91.6 2 1.2147 11.3249
3 1.2200 11.4300
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S (1): present DR results (h/a=0.02;8x8 uniform mesh over quarter of

the plate)

S (2): present DR results (h/a=0.01;8x8uniform mesh over quarter of the

plate)

S (3): Ref. [12] results (thin plate 8x8 uniform mesh over quarter of the

plate).

Ox=y=

1

—a,z==h
2

1
2

Table (3): Material properties used in the orthotropic and laminated

plate comparison analysis.

Material | E,/E, | G,/E, | G,/E, G,/E, v, | SCF(k:=k2)
| 2.345 0.289 0.289 0.289 032 | 5/6
I 14.3 0.5 0.5 0.5 0.3 5/6

Table (4): Comparison of present DR, DR results of Ref. [10], finite
element results [23] and experimental results [20] for a uniformly
loaded simply supported (SS3) square orthotropic plate made of
material 1 (h/a=0.0115)

.  w0o W@ wE) | W)
17.9 0.5859 0.5858 0.58 0.58
53.6 1.2710 1.2710 1.30 1.34
71.5 1.4977 1.4977 1.56 1.59
89.3 1.6862 1.6862 1.74 1.74

(1): present DR results (5x5 uniform noninterlacing mesh over quarter of

the plate).

(2): DR results of Ref. [10].

(3): Reddy’s finite element results [23].

(4): Zaghloul’s and Kennedy’s Ref. [20] experimental results as read from

graph.
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Table (5) Deflection of the center of a two layered anti symmetric cross ply
simply supported in plane fixed (SS5) strip under uniform

pressure(b/a =5,h/a=0.01).

q S| w[0°/90°| w,[90°/0°] W.(B;;=0) %(@) %(2)  %(3)
1 0.6851 0.2516 1314 | -15.0 172.3
18 |2 0.6824 0.2544 0.2961 1305 | -14.1 168.2
3 0.6800 0.2600
1 0.8587 0.3772 88.1 -17.4 127.7
36 |2 0.8561 0.3822 0.4565 87.5 -16.3 124.0
3 0.8400 0.3900
1 1.0453 0.5387 61.0 -17.0 94.0
72 | 2 1.0443 0.5472 0.6491 60.9 -15.7 90.8
3 1.0400 0.5500
1 1.1671 0.6520 50.0 -16.2 79.0
108 | 2 1.1675 0.6630 0.7781 50.0 -14.8 76.1
3 1.1500 0.6600

S (1): present DR results

S (2): DR results Ref. [11].

S (3): Values determined from sun and chin’s results Ref. [21].
(1): 100x (W, —W, )/ W,

(2): 100x (W, —W, )/ W,

(3): 100x (W, —W, )/ W,

5. New Numerical Results

With confidence in the DR program proved through the various
verification exercises undertaken, it was decided to undertake some study
cases and generate results for uniformly loaded laminated rectangular plates.
The plates were assumed to be simply supported on all edges. The effects of
transverse shear deformation, material anisotropy, orientation, and coupling
between stretching and bending on the deflections of laminated plates are
investigated. The material chosen has the following properties:

E, =137.9kN/mm?, E, :9.653kN/mm2,GXy :4.8265kN/mm2,vxy =0.3.

It is assumed that G,, =G,, =G,, .
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5.1 Effect of load

The variations of the center deflections, W_ with load, g for thin

(h/a=0.02) and thick (h/a=0.2) isotropic plates of simply supported in
plane fixed (SS5) condition are given in table (1). It is observed that, the

center deflections of thin and thick plates increase with the applied load, and
that the deflections of thick plates are greater than those of thin plates under
the same loading conditions. The difference in linear deflection is due to
shear deformation effects which are significant in thick plates. Whereas, the
nonlinear difference of thin and thick plates, which are coincident, implies

that the shear deformation effect vanishes as the load is increased.

5.2 Effect of Length to Thickness Ratio

Table (2) contains numerical results of center deflection versus

length to thickness ratio of antisymmetric cross ply [O° /90°/0° /90°] and
angle ply [45° /- 45° 1 45° /- 45° | square plates under lateral load (g =1.0)

for simply supported (SS1) boundary condition. The maximum percentage
difference in deflections for a range of length to thickness ratio between 10
and 100 fluctuates between 35% for simply supported (SS1) cross ply
laminate and 73.3% for angle ply laminate as the length to thickness ratio
increases to a value of a/h = 40.0, and then becomes fairly constant. It is
evident that shear deformation effect is significant for a/h < 40.0. It is
obvious that shear deformation reduces as the length to thickness ratio

increases.
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5.3 Effect of Number of Layers

The maximum deflections of a simply supported (SS5) antisymmetric
cross ply [(O° /90°)n] (n =1,2,3,4,8) square plates under uniformly

distributed load of a moderately thick plate (h/a = 0.1) are given in table (3).
Two, four, six, eight, and sixteen layered laminates are considered. The
results show that as the number of layers increases, the plate becomes stiffer
and deflection becomes smaller. This is mainly due to the existence of
coupling between bending and stretching which generally increases the
stiffness of the plate as the number of layers is increased. When the number
of layers exceeds 8, the deflection becomes independent on the number of
layers. This is because the effect of coupling between bending and
stretching does not change as the number of layers increases beyond 8

layers.

5.4 Effect of Material Anisotropy
According to Whitney and Pagano [3], the severity of shear

deformation effects depends on the material anisotropy, E,/E, of the

layers. The exact maximum deflections of simply supported (SS5) four

layered symmetric cross ply [0°/90°/90°/0°] and angle ply
[45" /—45° /—45°/45°] laminates are compared in table (4) For various

degrees of anisotropy. It is observed that, when the degree of anisotropy is
small the deflection is large. As the degree of the anisotropy increases, the
plate becomes stiffer. This may be attributed to the shear deformation effect
which increases as the material anisotropy decreases. When the degree of

anisotropy becomes greater than 40.0, the deflection becomes approximately
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independent on the degree of anisotropy. This is due to the diminishing of

the shear deformation effects and the dominance of bending effects.

5.5 Effect of Fiber Orientation

The variation of the maximum deflection, W_ with fiber orientation of
a square laminated plate is shown in table (5) for g= 120.0, and h/a = 0.1.
Four simply supported boundary conditions SS2, SS3, SS4 and SS5 are
considered in this case. The nonlinear results of SS2 and SS3 conditions
show minimum deflection at &= 45°. However, this trend is different for a
plate under SS4 and SS5 conditions in which the nonlinear deflection
increases with@. This is due to the in plane fixed edges in the latter case.
Another set of results showing the variation of center deflections, W_ with
load q for a range of orientations is given in table (6). They show the
variations in the center deflection of thick laminates (h/a = 0.2) with load
ranges between g =20.0 and q=200.0 for a simply supported (SS4), 4
layered anti symmetric square plate of orientation [¢°,—8°, 6°,—68°]. It is
noticed that the deflection of thick laminates increases with the applied load

as the angle of orientation is decreased (i.e. from 45° t00°) to a point where

60<q <70 and then increases as the angle of orientation is increased

beyond that point. This results in the inflection of the deflection curves at a

point where60 <@ <70. This behavior is caused by coupling between

bending and stretching which arises as the angle of orientation increases.
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5.6 Effect of reversing lamination order

The DR deflections of two layered anti symmetric cross ply [0° /
90°] simply supported in plane fixed (SS5) rectangular laminates are given
in table (7). The deflection of the plate with coupling stiffness (B;=0) is also

shown for the sake of comparison. The percentage differences between the
center deflections v_vl[O" /90°] and w, [90" /O"] at 0 =20.0is 146.5% whilst
when g = 200.0, it is 54.1%. It is obvious that the deflection depends on the

direction of the applied load or the arrangement of the layers. The coupling
stiffness (Bjj =0) serves as the limit between positive and negative coupling.
For a positive coupling the deflection increases as the magnitude of
coupling increases. In other words, the apparent laminate bending stiffness
decreases as the bending extension coupling increases. Whereas, negative
coupling is seen to stiffen the laminate. This contradicts the common notion
that the bending extension coupling lowers bending stiffness.

5.7 Effect of Aspect Ratio

Table (8) shows the variations in the maximum deflection of a two
layered anti symmetric cross ply and angle ply [45°I —45"] simply
supported in plane fixed (SS5) rectangular laminate under uniform load and
with different aspect ratios (G =200.0), and (h/a = 0.1). It is noticeable that,
when the aspect ratio is small the deflection is small, and as the aspect ratio
increases further beyond 2.0, the deflection becomes independent on the
aspect ratio. This is due to coupling between bending and stretching which
becomes farily constant beyond b /a = 2.0 and therefore the plate behaves as

a beam.
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Table (1) Variation of central deflection W_with load, q of thin (h/a =

0.02) and thick (h/a = 0.2) isotropic plates of simply supported (SS5)
condition (v =0.3)

q s | W

h/a=002 |h/a=0.2

20 1 0.8856 1.0635
2 0.5846 0.6159

40 1 1.7708 2.1271
2 0.8432 0.8626

60 1 2.6562 3.1906
2 1.0138 1.0262

80 1 3.5416 4.2542
2 1.1447 1.1526

100 1 44270 5.3177
2 1.2527 1.2573

S (1): Linear
S (2): Nonlinear

Table (2) A comparison of dimensionless center deflections vs side to
thickness ratio of a four layered anti symmetric cross ply [0°/90° / 0°/
90°] and angle ply [ 45°/ - 45° / 45° | 45°] simply supported (SS1) square

laminates under uniform lateral load g =1.0

w
a/h cO o o o
los 790" 707 190°| | [45° /- 45° 1 45° /- 45° |
10 0.0148 0.0115
20 0.0134 0.0097
30 0.0132 0.0094
40 0.0131 0.0092
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Table (3): Number of layers effect on a simply supported (SS5) anti
symmetric cross ply |(o° /90°), | square plate under uniformly

distributed loads (h/a = 0.1)
W

C
4 [Jo/90°] [0°/90°, | [0°790°].] [0°/90°], | [0 790°],
20 0.2953 0.2278 0.2250 0.2241 0.2232
40 0.4323 0.3769 0.3728 0.3714 0.3702
60 0.5287 0.4807 0.4458 0.4742 0.4727
80 0.6057 0.5605 0.5551 0.5533 0.5517
100 0.6725 0.6258 0.6201 0.6182 0.6165

Subscripted values 2, 3, 4, and 8: No. of the arrangement of a two of layered laminate.
Table (4): Effect of material anisotropy on the dimensionless center
deflection of a four layered symmetric cross ply and angle ply simply
supported laminates (SS5) under uniform lateral
load (g =100.0,h/a=0.1).

E,/E, W
[0°/ 90°/0°/90°] | [45°/-45°/45°/ 457]
2 1.1114 1.1114
6 0.8362 0.8272
10 0.7041 0.6851
14 0.6218 0.5962
20 0.5410 0.5098
25 0.4944 0.4609
30 0.4589 0.4242
50 0.3718 0.3374

Table (5): Effects of fiber orientation ¢ on the deflection of a simply
supported square plate (q =120.0,h/a= 0.1)

) We

SS2 |SS3 | ss4 | ss4
0 1.3706 1.2346 0.6511 0.6513
10 1.3560 1.2074 0.7011 0.6606
20 1.3070 1.1366 0.7805 0.6843
30 1.2438 1.0321 0.8173 0.7101
40 1.1898 0.9259 0.8089 0.7249
50 1.1898 0.9259 0.8089 0.7249
60 1.2438 1.0321 0.8173 0.7101
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Table (6): Variation of central deflection w, with a high pressure range
q of a simply supported (SS4) four layered anti symmetric square plate
of the arrangement |6° /—6° /6° /- 6° | with different orientations (h/a

=0.2).
g | e
6=00r90° | #=15"0r75° | =30°0r60° | =45

20 | 0.2922 0.2799 0.2568 0.2466
60 | 0.5150 0.5141 0.5142 0.5135
100 | 0.6382 0. 6438 0. 6603 0. 6685
140 | 0.7218 0.7382 0. 7667 0. 7816
180 | 0.8007 0.8141 0.8521 0.8725
200 | 0.8326 0.8475 0.8896 0.9124

Table (7): Central deflection of a two layered anti symmetric cross ply
simply supported in plane fixed (SS5) rectangular plate under uniform
pressure (b/a=5.0 h/a=0.1).

%S (3)

q | wo/90°] w,fe0 /0] W.(B;;=0)] %S@) | %S(2)

20 0.7051 0.2860 0.3387 108.2 -15.0 146.5
30 0.8052 0.3616 0.4303 87.1 -16.0 122.9
40 0.8787 0.4221 0.5013 75.3 -15.8 108.2
50 0.9380 0.4738 0.5599 67.5 -15.4 98.0
60 0.9884 0.5191 0.6103 62.0 -14.9 90.4
80 1.0721 0.5966 0.6945 54.4 -14.1 97.7
100 1.1422 0.6620 0.7641 49.4 -13.4 72.4

S (1): 100 x ((V_vl — v_vo)/v_vo S (2): 100 x ((v_\l2 — V_vo)/v_vo, S (3): 100 x
(W, —w, )/ w,
Table (8) Central deflection of a two layered anti symmetric cross ply
and angle ply simply supported in plane fixed (SS5) rectangular plate
under uniform pressure and with different aspect ratios
(h/a=0.1,g = 200.0).

b/a We
[0°/90°] [45° ] - 457
5.00 1.3846 1.2445
4.00 1.3848 1.2448
3.00 1.3854 1.2431
2.00 1.3679 1.2145
1.25 1.1394 1.0471
1.00 0.9009 0.8952
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6. Conclusions

A Dynamic relaxation (DR) program based on finite differences has
been developed for large deflection analysis of rectangular laminated plates
using first order shear deformation theory (FSDT). The plate, which is
assumed to consist of a number of orthotropic layers, is replaced by a single
anisotropic layer and the displacements are assumed linear through the
thickness of the plate. A series of numerical comparisons have been
undertaken to demonstrate the accuracy of the DR program. Finally, a series
of new results for uniformly loaded thin, moderately thick, and thick plates
with simply supported edges have been presented. These results show the
following:-
1. The linear theory seriously over predicts the deflection of plates.
2. The deformations of a plate are dependent on bending and extension in
the nonlinear theory, whereas they are dependent on bending alone in the
linear theory.
3. Convergence of the DR solution depends on several factors including
boundary conditions, mesh size, fictitious densities and applied load.
4. Deflection is greatly dependent on plate length to thickness ratio (a/h) at
small loads, and it becomes almost independent on that when the load is
large.
5. As the number of layers in a plate increases, the plate becomes
increasingly stiffer.
6. As the degree of anisotropy increases, the plate becomes stiffer and when
it is greater than 40.0, the deflection becomes virtually independent on the

degree of anisotropy.
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7. Deflection of plates depends on the angle of orientation of individual
plies. An increase of angle of orientation results in a decrease in the
deflection at small loads and an increase in deflection at large loads.

8. Coupling between bending and stretching increases the deflection of [0°
/90°] and decreases the deflection of [90° /0°] plates depending on whether it
IS positive or negative.

9. Deflection depends on the aspect ratio of plate. When the aspect ratio
becomes greater than 2.0, the plate behaves as a beam, and therefore the
deflection becomes independent on the aspect ratio.

Notations
a, b plate side lengths in x and y directions respectively.

Ai j (i, j =1,2,6) Plate in plane stiffness.

A,,, A Plate transverse shear stiffness.
D; j(i, j =1,2,6) Plate flexural stiffness.

£ €y, Exy Mid —plane direct and shear strains

o

& 8;2 Mid — plane transverse shear strains.

xz !
E,, Ey , ny In — plane elastic longitudinal, transverse and shear moduli.
G

My, My, Myy Stress couples.

G,, Transverse shear moduli in the x —z and y — z planes respectively.

Xz
M, (: M Xa2E3;1h4‘), M, , M, Dimensionless stress couples.
N, Ny, ny Stress resultants.

= NxazEglh’?’), N,, N, Dimensionless stress resultants.

Transverse pressure.
g Dimensionless transverse pressure.

Q,,Q, Transverse shear resultants.

|l Z|

U,V In - plane displacements.
W Deflections
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v_v(= Wh’l)DimensionIess deflection
X, Y, Z Cartesian co — ordinates.

O t Time increment
@, Rotations of the normal to the plate mid — plane

ny Poisson’s ratio
Pus Pus Pwis Pys £, 1N plane, out of plane and rotational fictitious densities.

Xxs Xy Xxy Curvature and twist components of plate mid — plane
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